JPH0544312B2 - - Google Patents

Info

Publication number
JPH0544312B2
JPH0544312B2 JP7082787A JP7082787A JPH0544312B2 JP H0544312 B2 JPH0544312 B2 JP H0544312B2 JP 7082787 A JP7082787 A JP 7082787A JP 7082787 A JP7082787 A JP 7082787A JP H0544312 B2 JPH0544312 B2 JP H0544312B2
Authority
JP
Japan
Prior art keywords
signal
repeater
infrared
light
infrared light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7082787A
Other languages
Japanese (ja)
Other versions
JPS63234985A (en
Inventor
Masashi Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maruman Golf Co Ltd
Original Assignee
Maruman Golf Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruman Golf Co Ltd filed Critical Maruman Golf Co Ltd
Priority to JP7082787A priority Critical patent/JPS63234985A/en
Publication of JPS63234985A publication Critical patent/JPS63234985A/en
Publication of JPH0544312B2 publication Critical patent/JPH0544312B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)
  • Rehabilitation Tools (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は、ゴルフアーがゴルフラウンド中等、
どこでも、手軽に、ゴルフボールに対する、ゴル
フクラブのフエースの傾き方向及びフエースの傾
き角度を測定可能なポケツトタイプの超小型電子
式ゴルフスイング練習機に関する。 <発明が解決しようとする問題点> ゴルフボールに対する、ゴルフクラブのフエー
スの傾き方向及びフエースの傾き角度は、ゴルフ
ボールの飛行方向(スライス又はフツク)に関係
し、ゴルフアーにとつて非常に関心が高い。しか
し、現在製品化されているものは、形状が大き
く、持ち運びに不便であるため、特定の場所でし
か使用することが出来ない。そこで、ゴルフラウ
ンド中でも、手軽にゴルフボールに対する、ゴル
フクラブのフエースの傾き方向及びフエースの傾
き角度を確認することが出来るポケツトサイズの
超小型電子式ゴルフスイング練習機が要望され
る。 <問題点を解決するための手段> 本発明の電子式ゴルフスイング練習機は、ゴル
フスイング位置を検知するポケツトサイズの赤外
光送受信機とゴルフクラブヘツド付近に取り付け
る中継機により構成する。 前記送受信機は、前記中継機へ赤外光を発光す
る赤外発光素子と前記中継機を経由して信号を受
光する赤外受光素子とその受光信号をデータ処理
するLSIとデータを表示及び報知する表示部及び
報知部により構成し、電子回路部分は集積回路化
して超小型化する。 前記中継機は赤外受光素子とオペアンプと遅延
回路と電流増幅部と電源安定化回路部と赤外発光
素子とボタン型電池により構成する。電子回路部
分を集積回路化して、超小型化することによりゴ
ルフクラブヘツドへの内蔵或はクラブシヤフトに
装着する。 特に、前記送受信機の赤外発光素子の発光信号
を、中継機を経由して、別々に設けた2個の赤外
受光素子により受光し、集積回路素子により、そ
れぞれの受光時間を比較して、インパクト領域に
於けるゴルフクラブのフエースの傾き方向及びフ
エースの傾き角度を算出することを特徴とする。 <実施例> 以下、本発明を図面に従い説明する。 第1図は、本発明品の一実施例である送受信機
と中継機の使用状態を示す。送受信機2を大地に
セツトし、中継機3をクラブのヘツド近くのシヤ
フトに取り付け、送受信機2と中継機3が20cm程
度の間隔で合い向かうようにして使用する。 第2図は本発明の送受信機2の斜視図を示す。
23はサーチ用赤外発光素子、21,22は測定
用赤外発光素子、24は赤外受光素子、26は表
示部、27はKEY部、28は大地差し込み用の
ピン(WOOD用のピン)で構成する。 第3図は本発明の中継機の斜視図を示す。31
は赤外発光素子、32は赤外受光素子、33はク
ラブシヤフトの右側に取り付けるゴムバンドであ
り、ゴルフ・スイング時の風圧を利用して全面を
向かせる。 第4図は本発明の中継機をクラブシヤフトに取
り付けた状態を示す図である。 第5図は、赤外発光素子21,22、による20
cm離れた位置での赤外光照射範囲の斜視図であ
る。 第6図は赤外線照射範囲の正面図である。照射
円の直径Rは約5cm、中継機3が照射円内を通過
した時の照射円との交点A−A′及びB−B′とす
る。 第7図は、ゴルフのストレートスイングの場合
の中継機の照射領域と測定時間の関係を示す図で
ある。第7図aは受光開始時の中継機を照射領域
と測定時間の関係を示す図、第7図bは受光終了
時の中継機の照射領域と測定時間の関係を示す図
である。 第8図はスライススイングの場合の中継機の照
射領域と測定時間の状態を示す図である。第8図
aは受光開始時点の照射領域と測定時間の関係を
示す図であり、第8図bは受光終了時点の中継機
3の照射領域と受光時間の関係を示す図である。 第9図はフツクスイングの場合の中継機3の照
射領域と受光時間の関係を示す図である。第9図
aは受光開始時点の中継機3の照射領域と測定時
間の関係図を示す。第9図bは受光終了時点の中
継機3の照射領域と測定時間の関係を示す図であ
る。 HIは受光素子241、H2は受光素子242の
位置を示す。R2は中継開始時点の中継機3の位
置を示し、R1は中継終了時点の中継機3の位置
を示す。T1は受光素子241(H1の位置)で
の受光時間を示す。T2は受光素子242(H2
の位置)での受光時間を示す。角度α1は受光時
間T1に対応した中継機3の赤外光の角度を示
す。α2は受光時間T2に対応した中継機3の赤
外光の角度を示す。 角度θはR1―H1ライン又はR2−H2ラインに
対する中継機の放射角のセンターの傾き角度を示
す、従つて、角度θがゴルフクラブのフエースの
傾き角度に相当する。 T1に対応した距離をd1 T2に対応した距離をd2 中継機の赤外光放射角を±θ1 中継機の速度をV T0を補正時間とし、T0はT1又はT2の0
〜0.134倍の値 中継機と送受信機の距離をKとすると、 T1>T2の場合、フツクスイングと判別し、 d1=V・(T1+T0)=K・tanα1 d2=V・(T2+T0)=K・tanα2 α2+θ=θ1 従つて、 tan(θ1−θ)= {(T2+T0)/(T1+T0)}tanα1 従つて、T1,T2,T0を測定することによ
り、フエースの傾き方向及びフエースの傾き角度
を求められる。 尚、中継機と送受信機の距離K=20cm、 受光素子の位置H1とH2の距離を5cm 中継機の赤外発光素子の放射角θ1=±14゜ 送受信機の測定用赤外発光素子の放射角を±7゜ に設定すると、 α1=θ1 となる。又、近似値として、 tan(θ1−θ)=θ1−θ tanθ1=θ1 とすると、近似値として、次の式より求めること
が出来る。 θ=θ1・{(T1−T2)/(T1+T0)} 尚、フエースの傾き角度の精度を必要としない
時は、T0=0として良い。 同様に、T1<T2は場合は、スライススイン
グと判断し、 θ=θ1・{(T2−T1)/(T2+T0)} となる。 第10図は発光信号と受光信号と基本クロツク
信号の関係を示すタイムチヤートである。基本ク
ロツク信号をCLK、ビツト信号をt0〜t7と
し、送受信機2の測定用赤外発光素子21,22
の発光信号をSO、送受信機2の受光信号をY及
びZ、中継機3の受光信号をRR、中継機3の発
光信号をRSとする。測定用発光信号SOはビツト
信号t0とt4の時間に発光し、5μsの間に
1.25μs間だけ赤外光を発光する。中継機は測定
時、5μs間隔で信号を受光する。中継機3の赤外
発光信号RSは、受光信号RRを1ビツト遅延して
発光し、反射光と区別させる。次に、送受信機2
の赤外受光素子241は、中継機より赤外受光信
号Yを受光すると同様に、赤外受光素子242
は、中継機より赤外受光信号Zを受光する。受光
信号Y及びZはt2又はt6の時間に受光する。
尚、受光信号Xは受光信号Y及びZを示す。 第11図はゴルフスイングと赤外発光信号の関
係を示すタイムチヤートを示す。S1000は
1000msに1回発光信号、S100は100msに
1回発光信号、S2は2msに1回発光信号、
SO信号は5μsに1回発光信号である。T1は受光
素子241による測定信号、T2は受光素子24
2による測定時間である。S1000,S10
0,S2はサーチ用赤外発光素子23より発光
し、SO信号は測定用赤外発光素子21,22よ
り発光する。 S100信号はバツクスイング開始後400ms間発
光、S2は1600ms間発光、SO信号は30ms間
発光し、発光DUTY(単位時間当たりの動作回
数)をゴルフスイング状態に応じ切り替える。 SO信号を30ms発光している時の受光素子2
41の受光時間がT1、受光素子242の受光時
間がT2である。 第12図は送受信機2の電気回路ブロツク構成
図を示す。LSI25にてプログラム制御する。2
1,22,23は赤号発光素子、211,22
1,231は電流増幅用ドライバー、241及び
242は赤外受光素子、240は受光信号増幅用
オペアンプ、26は液晶表示部、261は報知
部、27はkey操作部、291の電源回路は電池
電圧を安定化し、LSI25、赤外受光素子241
及び242、オペアンプ240、表示部26に電
源を供給する。29は酸化銀電池(1.5V 2個)
で構成する。 第13図は中継機3の電気回路ブロツク構成図
を示す。受光素子32にて赤外信号を受信し、オ
ペアンプ33にて電圧増幅し、遅延回路34にて
1ビツト遅延し反射光と区別する、ドライバー3
5にて電流増幅し、赤外発光素子31より赤外信
号を発信する。電源回路36にて電池37の電源
電圧を安定化し、赤外発光素子32、オペアンプ
33、遅延回路34に電源を供給する。電池37
は酸化銀電池(1.5V 2個)で構成する。 第14図にゴルフクラブのフエース傾き方向と
傾き角度測定用プログラムのフローチヤートを示
す。フエースの傾き方向と傾き角度測定開始キー
を操作すると、フエースの傾き方向と傾き角度測
定プログラムを実行する。先ず、ステツプ901に
て前回のスイング回数及びフエースの傾き方向と
傾き角度を1秒間表示する。次のステツプ902に
てサーチ用赤外発光素子S1000が1000msに
1回発光する。次のステツプ903にて受光信号の
有無を確認する。受光信号がなければステツプ
901と903の間を繰り返し実行する。 次のステツプ903にて受光信号を確認すると、
次のステツプ904に移り、アドレスセツト確認音
を報知する。次のステツプ905にてサーチ用赤外
発光素子を100msに1回発光のS100に切り
替えサーチスピードを早くする。次のステツプ
906にて受光信号を確認すると、ステツプ905に戻
る。アドレス中はステツプ905とステツプ906を繰
り返す。 次にテークバツクを開始すると、ステツプ906
にて受光信号が確認出来なくなり、次のステツプ
907に移り、サーチ用赤外発光素子S100を発
光し、次のステツプ908にて受光信号が確認出来
なければ、次のステツプ909に移る。テークバツ
ク開始から400msの間ステツプ907とステツプ
909の間を繰り返す。 ステツプ908にて受光信号を確認するとワツグ
ル動作と判断し、ステツプ905のアドレス状態に
戻る。 次に、テークバツク開始後400ms以上経過す
ると次のステツプ910に移り、サーチ用赤外発光
信号を2msに1回発光のS2信号に切り替え、
サーチスピードを更に早くする。 次のステツプ911にて受光信号が確認されなけ
れば、次のステツプ912に移り、テークバツク開
始後2000ms以内の時間監視をする。トツプオブ
スイング及びダウンスイングの間、ステツプ910
とステツプ912の間を繰り返す。 次に、インパクト領域に近づき、ステツプ911
にてサーチ用赤外発光信号S2を確認すると、次
のステツプ913に移り、測定用赤外発光素子21
及び22が5μsに1回赤外発光信号SOの発光を開
始する。次のステツプ914にて、この高速度の測
定用赤外発光信号SOの受光信号が確認されなけ
れば、次のステツプ915に移り、最大測定時間30
ms以内の間、ステツプ913とステツプ915の間を
繰り返し測定の準備をする。 次にステツプ914にてY又はZの受光信号を確
認すると、次のステツプ916に移り、測定用赤外
発光信号Yの時間カウンターT1及び測定用赤外
発光信号Zの時間カウンターT2がカウントを開
始する。次に、ステツプ917にて最大低ツドスピ
ードに相当する時間18ms以内であれば、次のス
テツプ918に移り、測定用赤外発光信号SOを発光
し、次のステツプ919にてY及びZの受光信号が
あれば、ステツプ916に戻る。 測定用赤外発光信号Y又はZがどちらか受光さ
れている間、ステツプ916とステツプ919の間を繰
り返し、ヘツドの通過時間を計測する。測定用赤
外発光信号Y及びZが共に受光されなくなるとス
テツプ919よりステツプ920に移り、ヘツド通過時
間の計測を終了する。 次にステツプ920にて、T1=T2であれば、
フエースの傾きが無いストレートスイングと判断
し、次のステツプ921に移り、ストレートスイン
グのθ=0とする。ステツプ920にてT1=T2
でなければ、次のステツプ922に移る。ステツプ
922にて、T1>T2であれば、フツクスイング
と判断し、次のステツプ923に移り、フツクスイ
ングのフエース傾き角度θを計算する。ステツプ
922にて、T1>T2でなければ、スライススイ
ングと判断し、次のステツプ924に移り、スライ
ススイングのフエースの傾き角度θを計算する。
ステツプ921又はステツプ923又は924のフエース
角度θを、次のステツプ925にて、メモリーに記
憶させ、次のステツプ926にて終了音を報知して、
最初のステツプ901に戻り、測定したフエースの
傾き方向と傾き角度を表示する。 尚、ステツプ912にて、スイング開始後2000m
s以内に受光信号がなければ、ゴルフスイングで
無いと判断し、ステツプ927にてエラー0とする。
又、ステツプ915にて、T>30ms以上であれば、
ゴルフスイングの軌道はずれと判断し、ステツプ
928にて、エラー1を発生させる。 又、ステツプ917にて、T>18msであれば、
ヘツドスピード3m/s以下と判断し、ステツプ
929にてエラー2を発生させる。 前記のエラー発生により測定を中止し、ステツ
プ930にてエラー音を報知した後、最初のステツ
プ901に戻り、エラー番号を表示部に表示する。 第15図はメモリー読み出し用プログラムのフ
ローチヤートを示す。メモリーキーを操作する
と、先ず最終回スイングのメモリー番地を指定す
る。ステツプ953にてメモリー内容を読み出し、
ステツプ954にて最終回のスイング回数とフエー
スの傾き方向及びフエースの傾き角度を表示す
る。次のステツプ955にてスイング回数をカウン
トダウンさせ、最初のスイング回数まで順次表示
する。例えば、メモリー容量が100回スイング分
である時、250回スイングすれば、スイング回数
250回とフエースの傾き方向とフエースの傾き角
度を表示し、以下、順次、最初のスイング回数
150回までスイング回数とフエースの傾き方向及
びフエースの傾き角度を表示する。 第16図は、表示部26の表示内容を示す。フ
エースの傾き方向表示領域261とフエースの傾き
角度表示領域262により構成する。図はスライス
スイング3度を例に示す。 <発明の効果> 本発明の電子式ゴルフスイング練習機は、ゴル
フスイングのインパクト領域に於て、赤外発光素
子の発光回路を、別々に設けた赤外受光素子にて
受光し、それぞれの受光回数を比較することによ
り、ゴルフクラブのフエースの傾き方向及びフエ
ースの傾き角度を測定する。従つて、赤外発光素
子の発光回数を高めることにより、フエースの領
き角度の測定精度を高めることが可能であり、従
来の方式に比較し、10倍以上の精度でフエースの
傾き角度を測定することが可能である。 又、内部電子回路を集積化することにより、ポ
ケツトサイズの超小型電子式ゴルフスイング練習
機の製作が可能である。 従つて、ゴルフラウンド中或はゴルフ練習場で
の打撃練習中或は自宅での素振り練習中等、どの
ような場所でも、手軽に使用することが出来る。
<Industrial Field of Application> The present invention is applicable to golfers during a golf round, etc.
This invention relates to a pocket-type micro-electronic golf swing training device that can easily measure the inclination direction and inclination angle of the face of a golf club with respect to a golf ball anywhere. <Problems to be Solved by the Invention> The inclination direction of the face of a golf club and the inclination angle of the face with respect to the golf ball are related to the flight direction (slice or hook) of the golf ball, and are of great interest to golfers. is high. However, the currently commercialized products are large and inconvenient to carry, so they can only be used in specific locations. Therefore, there is a need for a pocket-sized, ultra-compact electronic golf swing training device that can easily confirm the inclination direction and inclination angle of the face of the golf club with respect to the golf ball during a golf round. <Means for Solving the Problems> The electronic golf swing training device of the present invention includes a pocket-sized infrared transmitter/receiver for detecting the golf swing position and a repeater attached near the golf club head. The transmitter/receiver includes an infrared light emitting element that emits infrared light to the repeater, an infrared light receiving element that receives a signal via the repeater, an LSI that processes the received light signal, and displays and reports data. The electronic circuit is integrated into an integrated circuit and miniaturized. The repeater includes an infrared light receiving element, an operational amplifier, a delay circuit, a current amplification section, a power supply stabilization circuit section, an infrared light emitting element, and a button type battery. By making the electronic circuit part an integrated circuit and miniaturizing it, it can be built into the golf club head or attached to the club shaft. In particular, the light emission signal of the infrared light emitting element of the transmitter/receiver is received by two separately provided infrared light receiving elements via a repeater, and the light reception time of each is compared using an integrated circuit element. , the inclination direction and the inclination angle of the face of the golf club in the impact area are calculated. <Example> The present invention will be described below with reference to the drawings. FIG. 1 shows how a transmitter/receiver and a repeater, which are an embodiment of the present invention, are used. The transmitter/receiver 2 is set on the ground, the repeater 3 is attached to the shaft near the head of the club, and the transmitter/receiver 2 and the repeater 3 are used so as to face each other at an interval of about 20 cm. FIG. 2 shows a perspective view of the transceiver 2 of the invention.
23 is an infrared light emitting element for searching, 21 and 22 are infrared light emitting elements for measurement, 24 is an infrared light receiving element, 26 is a display part, 27 is a KEY part, 28 is a pin for ground insertion (pin for WOOD) Consists of. FIG. 3 shows a perspective view of the repeater of the present invention. 31
32 is an infrared light emitting element, 32 is an infrared light receiving element, and 33 is a rubber band attached to the right side of the club shaft, which uses wind pressure during a golf swing to direct the entire surface. FIG. 4 is a diagram showing the repeater of the present invention attached to a club shaft. FIG. 5 shows the infrared light emitting elements 21 and 22
FIG. 3 is a perspective view of an infrared light irradiation range at a position cm apart. FIG. 6 is a front view of the infrared irradiation range. The diameter R of the irradiation circle is approximately 5 cm, and the intersection points A-A' and B-B' with the irradiation circle are when the repeater 3 passes through the irradiation circle. FIG. 7 is a diagram showing the relationship between the irradiation area of the repeater and the measurement time in the case of a straight golf swing. FIG. 7a is a diagram showing the relationship between the irradiation area of the repeater at the start of light reception and measurement time, and FIG. 7b is a diagram showing the relationship between the irradiation area of the repeater and measurement time at the end of light reception. FIG. 8 is a diagram showing the irradiation area of the repeater and the measurement time in the case of slice swing. FIG. 8a is a diagram showing the relationship between the irradiation area at the start of light reception and the measurement time, and FIG. 8b is a diagram showing the relationship between the irradiation area of the repeater 3 and the light reception time at the end of light reception. FIG. 9 is a diagram showing the relationship between the irradiation area of the repeater 3 and the light reception time in the case of hook swing. FIG. 9a shows a relationship diagram between the irradiation area of the repeater 3 and the measurement time at the time of starting light reception. FIG. 9b is a diagram showing the relationship between the irradiation area of the repeater 3 and the measurement time at the end of light reception. HI indicates the position of the light receiving element 241, and H2 indicates the position of the light receiving element 242. R2 indicates the position of the repeater 3 at the time of starting the relay, and R1 indicates the position of the repeater 3 at the time of ending the relay. T1 indicates the light receiving time at the light receiving element 241 (position H1). T2 is the light receiving element 242 (H2
shows the light reception time at the position). The angle α1 indicates the angle of the infrared light of the repeater 3 corresponding to the light reception time T1. α2 indicates the angle of the infrared light of the repeater 3 corresponding to the light reception time T2. The angle θ indicates the inclination angle of the center of the radiation angle of the repeater with respect to the R1-H1 line or the R2-H2 line. Therefore, the angle θ corresponds to the inclination angle of the face of the golf club. The distance corresponding to T1 is d1 The distance corresponding to T2 is d2 The infrared radiation angle of the repeater is ±θ1 The speed of the repeater is V T0 is the correction time, and T0 is 0 of T1 or T2.
~0.134 times the value If the distance between the repeater and the transmitter/receiver is K, if T1>T2, it is determined to be a hook swing, and d1=V・(T1+T0)=K・tanα1 d2=V・(T2+T0)=K・tanα2 α2+θ=θ1 Therefore, tan(θ1-θ)= {(T2+T0)/(T1+T0)}tanα1 Therefore, by measuring T1, T2, and T0, the direction of inclination of the face and the angle of inclination of the face can be determined. . Furthermore, the distance between the repeater and the transceiver is K = 20cm, the distance between the positions H1 and H2 of the light receiving elements is 5cm, the radiation angle θ1 of the infrared emitting element of the repeater = ±14°, the radiation of the infrared emitting element for measurement of the transceiver If the angle is set to ±7°, α1 = θ1. Further, as an approximate value, if tan(θ1-θ)=θ1-θ tanθ1=θ1, then the approximate value can be obtained from the following equation. θ=θ1·{(T1-T2)/(T1+T0)} Note that when the accuracy of the inclination angle of the face is not required, T0 may be set to 0. Similarly, if T1<T2, it is determined to be a slice swing, and θ=θ1·{(T2-T1)/(T2+T0)}. FIG. 10 is a time chart showing the relationship between the light emission signal, the light reception signal, and the basic clock signal. The basic clock signal is CLK, the bit signals are t0 to t7, and the measurement infrared light emitting elements 21 and 22 of the transceiver 2 are used.
Let the light emission signal of the transmitter/receiver 2 be Y and Z, the light reception signal of the repeater 3 be RR, and the light emission signal of the repeater 3 be RS. The measurement light emission signal SO is emitted at the time of bit signals t0 and t4, and is emitted during 5μs.
Emits infrared light for only 1.25μs. During measurement, the repeater receives signals at 5μs intervals. The infrared light emission signal RS of the repeater 3 is emitted with a one-bit delay from the light reception signal RR, and is distinguished from the reflected light. Next, transmitter/receiver 2
When the infrared light receiving element 241 receives the infrared light receiving signal Y from the repeater, the infrared light receiving element 242 similarly receives the infrared light receiving signal Y from the repeater.
receives the infrared light reception signal Z from the repeater. The light reception signals Y and Z are received at time t2 or t6.
Note that the light reception signal X indicates the light reception signals Y and Z. FIG. 11 shows a time chart showing the relationship between the golf swing and the infrared light emission signal. S1000 is
Light emission signal once every 1000ms, S100 light emission signal once every 100ms, S2 light emission signal once every 2ms,
The SO signal is a light emission signal once every 5 μs. T1 is the measurement signal from the light receiving element 241, T2 is the measurement signal from the light receiving element 24
This is the measurement time according to 2. S1000, S10
0 and S2 are emitted from the infrared light emitting element 23 for search, and the SO signal is emitted from the infrared light emitting elements 21 and 22 for measurement. The S100 signal is emitted for 400ms after the start of the backswing, the S2 is emitted for 1600ms, and the SO signal is emitted for 30ms, and the light emission DUTY (number of operations per unit time) is switched depending on the golf swing state. Photodetector 2 when emitting SO signal for 30ms
The light receiving time of 41 is T1, and the light receiving time of light receiving element 242 is T2. FIG. 12 shows a block diagram of the electric circuit of the transceiver 2. As shown in FIG. Program controlled by LSI25. 2
1, 22, 23 are red light emitting elements, 211, 22
1,231 is a driver for current amplification, 241 and 242 are infrared light receiving elements, 240 is an operational amplifier for amplifying the received light signal, 26 is a liquid crystal display section, 261 is a notification section, 27 is a key operation section, and 291 is a power supply circuit for battery voltage. stabilized, LSI25, infrared receiving element 241
and 242, supplies power to the operational amplifier 240 and the display unit 26. 29 is silver oxide battery (2 1.5V)
Consists of. FIG. 13 shows a block diagram of the electric circuit of the repeater 3. A driver 3 receives an infrared signal at a light receiving element 32, amplifies the voltage at an operational amplifier 33, and delays it by 1 bit at a delay circuit 34 to distinguish it from reflected light.
5, the current is amplified and an infrared signal is transmitted from the infrared light emitting element 31. The power supply circuit 36 stabilizes the power supply voltage of the battery 37 and supplies power to the infrared light emitting element 32, operational amplifier 33, and delay circuit 34. battery 37
is composed of silver oxide batteries (2 1.5V). FIG. 14 shows a flowchart of a program for measuring the face inclination direction and inclination angle of a golf club. When the face tilt direction and tilt angle measurement start key is operated, a face tilt direction and tilt angle measurement program is executed. First, in step 901, the number of previous swings and the direction and angle of inclination of the face are displayed for one second. In the next step 902, the search infrared light emitting element S1000 emits light once every 1000 ms. In the next step 903, the presence or absence of a light reception signal is confirmed. Step if there is no light reception signal
Repeat between 901 and 903. When the received light signal is confirmed in the next step 903,
Proceeding to the next step 904, an address set confirmation sound is announced. In the next step 905, the search infrared light emitting element is switched to S100, which emits light once every 100 ms, to increase the search speed. next step
After confirming the light reception signal in 906, the process returns to step 905. During addressing, steps 905 and 906 are repeated. Next time you start a takeback, step 906
The received light signal cannot be confirmed in the next step.
The process moves to 907, and the search infrared light emitting element S100 emits light, and if the light reception signal cannot be confirmed in the next step 908, the process moves to the next step 909. Step 907 and step 400ms from start of takeback
Repeat between 909. When the light reception signal is confirmed in step 908, it is determined that the wagging operation is occurring, and the process returns to the address state in step 905. Next, when 400 ms or more have passed after the start of takeback, the process moves to the next step 910, where the search infrared emission signal is switched to the S2 signal that emits light once every 2 ms.
Make the search speed even faster. If the light reception signal is not confirmed in the next step 911, the process moves to the next step 912, and the time within 2000 ms after the start of takeback is monitored. During top of swing and downswing, step 910
and step 912 are repeated. Next, approach the impact area and step 911
When the search infrared light emitting signal S2 is confirmed, the process moves to the next step 913, and the measurement infrared light emitting element 21 is detected.
and 22 starts emitting the infrared light emission signal SO once every 5 μs. If the reception signal of this high-speed measurement infrared emission signal SO is not confirmed in the next step 914, the process moves to the next step 915, and the maximum measurement time is 30 minutes.
Steps 913 and 915 are repeated to prepare for measurement within ms. Next, when the Y or Z light reception signal is confirmed in step 914, the process moves to the next step 916, and the time counter T1 of the measurement infrared emission signal Y and the time counter T2 of the measurement infrared emission signal Z start counting. do. Next, in step 917, if the time corresponding to the maximum low speed is within 18 ms, the process moves to the next step 918, in which the infrared emission signal SO for measurement is emitted, and in the next step 919, Y and Z light reception is performed. If there is a signal, return to step 916. While either the measuring infrared light emission signal Y or Z is being received, steps 916 and 919 are repeated to measure the head passage time. When both the measurement infrared emission signals Y and Z are no longer received, the process moves from step 919 to step 920, and the measurement of the head passage time is completed. Next, in step 920, if T1=T2,
It is determined that the swing is a straight swing with no inclination of the face, and the process moves to the next step 921, where θ=0 for the straight swing. T1=T2 at step 920
Otherwise, proceed to the next step 922. step
At step 922, if T1>T2, it is determined that there is a hook swing, and the process moves to the next step 923, where the phase inclination angle θ of the hook swing is calculated. step
At step 922, if T1>T2 is not satisfied, it is determined that it is a slice swing, and the process moves to the next step 924, where the inclination angle θ of the face of the slice swing is calculated.
The phase angle θ of step 921 or step 923 or 924 is stored in the memory in the next step 925, and the completion sound is announced in the next step 926.
Returning to the first step 901, the measured inclination direction and inclination angle of the face are displayed. In addition, at step 912, 2000m after the start of the swing
If there is no light reception signal within s, it is determined that the swing is not a golf swing, and in step 927, an error is determined to be 0.
Also, in step 915, if T>30ms or more,
It is determined that the trajectory of the golf swing is off and the steps are taken.
At 928, error 1 is generated. Also, at step 917, if T>18ms,
If the head speed is determined to be 3 m/s or less, step
Error 2 is generated at 929. After the measurement is stopped due to the occurrence of the error described above and an error sound is issued in step 930, the process returns to the first step 901 and the error number is displayed on the display section. FIG. 15 shows a flowchart of a memory reading program. When you operate the memory key, you first specify the memory address of the last swing. Read the memory contents in step 953,
At step 954, the number of swings in the final round, the direction of inclination of the face, and the angle of inclination of the face are displayed. In the next step 955, the number of swings is counted down and displayed sequentially up to the first number of swings. For example, if the memory capacity is for 100 swings, if you swing 250 times, the number of swings will be
Displays 250 times, the direction of inclination of the face, and the angle of inclination of the face, and the following, sequentially, the first number of swings.
Displays the number of swings up to 150 times, the direction of inclination of the face, and the angle of inclination of the face. FIG. 16 shows the display contents of the display section 26. It is composed of a face inclination direction display area 261 and a face inclination angle display area 262. The figure shows an example of a slice swing of 3 degrees. <Effects of the Invention> In the electronic golf swing training machine of the present invention, in the impact area of the golf swing, the light emitting circuit of the infrared light emitting element is received by the separately provided infrared light receiving element, and each light receiving By comparing the number of times, the direction of inclination of the face of the golf club and the angle of inclination of the face of the golf club are measured. Therefore, by increasing the number of times the infrared light-emitting element emits light, it is possible to increase the accuracy of measuring the angle of the face, and it is possible to measure the angle of inclination of the face with more than 10 times the accuracy compared to the conventional method. It is possible to do so. Furthermore, by integrating the internal electronic circuit, it is possible to manufacture a pocket-sized ultra-compact electronic golf swing training machine. Therefore, it can be easily used anywhere, such as during a round of golf, during batting practice at a golf driving range, or during practice swing practice at home.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明品の使用状態を示す図、第2図
は送受信機の斜視図、第3図は中継機の斜視図、
第4図は中継機をゴルフ・クラブ・シヤフトに装
着状態を示す図、第5図は測定用赤外発光素子の
よる20cm離れた位置での赤外照射範囲の斜視図、
第6図は測定用赤外発光素子による赤外光照射範
囲の正面図、第7図はストレートスイングの場合
の測定時間の状態を示す図、第8図はスライスス
イングの場合の測定時間の状態を示す図、第9図
はフツクスイングの場合の測定時間の状態を示す
図、a図は受光開始状態を示す図、b図は受光終
了状態を示す図、第10図は基本クロツク信号、
ビツト信号、発光信号、受光信号の関係を示すタ
イムチヤート、第11図はゴルフスイング状態と
赤外発光信号の関係を示す図、第12図は送受信
機の電気回路ブロツク構成図、第13図は中継機
の電気回路ブロツク構成図、第14図は測定用プ
ログラムのフローチヤート、第15図はメモリー
読み出し用プログラムのフローチヤート、第16
図は表示部の表示内容を示す。 1……ゴルフ・クラブ・ヘツド、2……送受信
機、3……中継機、4……ゴルフ・クラブ・シヤ
フト、20……送受信機ケース、21,22……
測定用赤外発光素子、23……サーチ用赤外発光
素子、241……左側赤外受光素子、242……
右側赤外受光素子、25……LSI、26……表示
部、261……報知部、27……キー操作部、2
8……ゴルフボール支えウツド用ピン、29……
電池、30……中継機ケース、31……赤外発光
素子、32……赤外受光素子、33……装着用ゴ
ムバンド、CLK……基本クロツク信号、t0〜
t7……ビツト信号、S……送受信機の赤外発光
信号、Y……送受信機の赤外受光素子241によ
る受光信号、Z……送受信機の赤外受光素子24
2による受光信号、X……受光信号(Y+Z)、
RR……中継機の赤外受光信号、RS……中継機の
赤外発光信号、R……赤外光照射円半径、T1…
…送受信機の受光素子241の受光時間、T2…
…送受信機の赤外受光素子242の受光時間、T
……監視時間、θ……フエースの傾き角度、θ1
……中継機の赤外光放射角、α1……受光時間T
1に対応した中継機の赤外光の角度、α2……受
光時間T2に対応した中継機の赤外光の角度。
Fig. 1 is a diagram showing the state of use of the present invention, Fig. 2 is a perspective view of a transceiver, Fig. 3 is a perspective view of a repeater,
Fig. 4 is a diagram showing the repeater attached to a golf club shaft, Fig. 5 is a perspective view of the infrared irradiation range at a position 20 cm away from the infrared light emitting element for measurement,
Figure 6 is a front view of the infrared light irradiation range by the infrared light emitting element for measurement, Figure 7 is a diagram showing the state of measurement time in the case of a straight swing, and Figure 8 is the state of measurement time in the case of a slice swing. Figure 9 is a diagram showing the state of measurement time in the case of hook swing, Figure a is a diagram showing the light reception start state, Figure B is a diagram showing the light reception end state, Figure 10 is a diagram showing the basic clock signal,
A time chart showing the relationship between the bit signal, the light emitting signal, and the light receiving signal. Fig. 11 is a diagram showing the relationship between the golf swing state and the infrared emitting signal. Fig. 12 is a block diagram of the electrical circuit of the transmitter/receiver. Fig. 13 is a diagram showing the relationship between the golf swing state and the infrared emitting signal. Figure 14 is a flowchart of the measurement program, Figure 15 is a flowchart of the memory read program, and Figure 16 is a block diagram of the electrical circuit of the repeater.
The figure shows the display contents of the display section. 1... Golf club head, 2... Transmitter/receiver, 3... Repeater, 4... Golf club shaft, 20... Transmitter/receiver case, 21, 22...
Infrared light emitting element for measurement, 23... Infrared light emitting element for search, 241... Left infrared light receiving element, 242...
Right infrared light receiving element, 25... LSI, 26... Display section, 261... Notification section, 27... Key operation section, 2
8... Golf ball support pin, 29...
Battery, 30...Repeater case, 31...Infrared light emitting element, 32...Infrared light receiving element, 33...Rubber band for attachment, CLK...Basic clock signal, t0~
t7... Bit signal, S... Infrared emission signal of the transceiver, Y... Light reception signal by the infrared light receiving element 241 of the transceiver, Z... Infrared light receiving element 24 of the transceiver
2 light reception signal, X...light reception signal (Y+Z),
RR...Infrared reception signal of the repeater, RS...Infrared emission signal of the repeater, R...Infrared light irradiation circle radius, T1...
...Light reception time of the light receiving element 241 of the transmitter/receiver, T2...
...Light reception time of the infrared light receiving element 242 of the transmitter/receiver, T
...Monitoring time, θ...Face inclination angle, θ1
... Infrared light emission angle of repeater, α1 ... Light reception time T
The angle of the infrared light of the repeater corresponding to 1, α2...The angle of the infrared light of the repeater corresponding to the light reception time T2.

Claims (1)

【特許請求の範囲】[Claims] 1 ゴルフスイングに於て、信号を受光する受光
素子と受光した信号を遅延する遅延回路と遅延し
た信号を発光する発光素子にて構成した中継機を
ゴルフクラブのシヤフトに装着し、且つ、送受信
機の正面を地面に対し垂直方向に設定し、且つ、
空間に形成される2個の照射円の半径部分が重な
るように、発光信号を発光する細い指向性の2個
の測定用赤外発光素子を前記送受信機の正面の上
下に設け、且つ、ゴルフクラブヘツドが前記2個
の照射円を通過する時、ゴルフクラブヘツドに取
付けた前記中継機が発光する赤外光を受信信号と
して受光し電圧値に変換する指向性の広い2個の
赤外受光素子を前記送受信機の正面の左右に設
け、且つ、電圧値に変換された前記左側の受光信
号を受信している時間及び電圧値に変換された前
記右側の受光信号を受信している時間をそれぞれ
計測すると共に、ゴルフクラブのフエースの傾き
角度を算出するLSIを前記送受信機に内蔵したこ
とを特徴とする電子式ゴルフスイング練習機。
1. During a golf swing, a repeater consisting of a light-receiving element that receives a signal, a delay circuit that delays the received signal, and a light-emitting element that emits the delayed signal is attached to the shaft of the golf club, and the transmitter/receiver Set the front side perpendicular to the ground, and
Two measurement infrared light emitting elements with narrow directivity that emit light signals are provided above and below the front of the transmitter/receiver so that the radii of the two irradiation circles formed in the space overlap, and When the club head passes through the two irradiation circles, two infrared receivers with wide directivity receive the infrared light emitted by the repeater attached to the golf club head as a reception signal and convert it into a voltage value. The elements are provided on the left and right sides of the front of the transmitter/receiver, and the time during which the left side light reception signal converted into a voltage value is received and the time during which the right side light reception signal converted into a voltage value is received. An electronic golf swing training device characterized in that the transceiver has a built-in LSI that measures each and calculates the inclination angle of the face of the golf club.
JP7082787A 1987-03-24 1987-03-24 Electronic type golf swing exerciser Granted JPS63234985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7082787A JPS63234985A (en) 1987-03-24 1987-03-24 Electronic type golf swing exerciser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7082787A JPS63234985A (en) 1987-03-24 1987-03-24 Electronic type golf swing exerciser

Publications (2)

Publication Number Publication Date
JPS63234985A JPS63234985A (en) 1988-09-30
JPH0544312B2 true JPH0544312B2 (en) 1993-07-06

Family

ID=13442800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7082787A Granted JPS63234985A (en) 1987-03-24 1987-03-24 Electronic type golf swing exerciser

Country Status (1)

Country Link
JP (1) JPS63234985A (en)

Also Published As

Publication number Publication date
JPS63234985A (en) 1988-09-30

Similar Documents

Publication Publication Date Title
JPH066182B2 (en) Electronic golf swing training machine
US4136394A (en) Golf yardage indicator system
US6524199B2 (en) System for locating a golf ball
JP4366423B2 (en) System for determining the operating characteristics of a golf swing
US20060287117A1 (en) Miniature radar for measuring club head speed and tempo
US8398502B2 (en) Hitting position detecting device, hitting position detecting method, and method of manufacturing hitting position detecting device
US4991850A (en) Golf swing evaluation system
US6375579B1 (en) Golf swing analysis system and method
JPH0560555B2 (en)
JPH09215808A (en) Practice device for swing type exercise tool, and swing type exercise tool
KR20050031862A (en) Swing training equipment in ball game sports
US20090143159A1 (en) Strike force indicator
US20110028231A1 (en) Method and system for shot tracking
JPH05508917A (en) golf course distance measurement system
KR101887428B1 (en) Ball measurement system
US7215785B1 (en) Passive sound telemetry system and method and operating toy using the same
JPH08266701A (en) Shot ball tracking display device
US5082276A (en) Distance measuring golf putting apparatus
JPH0544312B2 (en)
KR100902110B1 (en) Apparatus for golf driving range
US20110305498A1 (en) Novelty split golf ball wireless measurement device
JPH0545272B2 (en)
JPH0544311B2 (en)
JPH0544309B2 (en)
JPH0544310B2 (en)