JPH0543965B2 - - Google Patents
Info
- Publication number
- JPH0543965B2 JPH0543965B2 JP2286343A JP28634390A JPH0543965B2 JP H0543965 B2 JPH0543965 B2 JP H0543965B2 JP 2286343 A JP2286343 A JP 2286343A JP 28634390 A JP28634390 A JP 28634390A JP H0543965 B2 JPH0543965 B2 JP H0543965B2
- Authority
- JP
- Japan
- Prior art keywords
- staff
- floating
- measurement
- underwater
- propulsion device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005259 measurement Methods 0.000 claims description 32
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 238000005339 levitation Methods 0.000 description 9
- 238000005188 flotation Methods 0.000 description 2
- 238000004441 surface measurement Methods 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Description
【発明の詳細な説明】
〈産業上の利用分野〉
この発明は、、水中基礎の捨石均し出来高等を
測定する際に用いられる自立水中スタツフ装置に
関するものである。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a self-supporting underwater stud device used for measuring the leveling level of rubble of underwater foundations.
〈従来技術〉
捨石マウンド上にケーソン等の直立部を設置す
る防波堤においては、捨石均し出来高が所定の範
囲内に収まつているか検査する必要があり、直立
部の設置前に捨石均し天端高さを多数の測定点で
測定しなければならない。<Prior art> For breakwaters in which upright sections such as caissons are installed on rubble mounds, it is necessary to inspect whether the rubble leveling height is within a predetermined range. The edge height must be measured at multiple measurement points.
そのため、従来においては、第5図に示すよう
に、十分に長い水中スタツフ50を用い、潜水士
M1が水中スタツフ50を測定点に立てると共に、
潜水士船51上の作業員M2が水中スタツフ50
の上部を持つて水中スタツフ50が垂直に立つよ
うに調整し、防波堤A上の測定員M3がレベル5
2を用いて捨石マウンドBの均し天端高さを測定
している。 Therefore, in the past, as shown in FIG. 5, a sufficiently long underwater staff 50 was used to allow the diver to
M 1 stands the underwater staff 50 at the measurement point, and
Worker M2 on board diver ship 51 is underwater staff 50.
Holding the top of the underwater staff 50, adjust it so that it stands vertically, and measurer M3 on breakwater A
2 is used to measure the leveled top height of rubble mound B.
測定点の位置出し測定は、巻尺53あるいは間
綱等を防波堤A上から潜水士船51まで掛け渡
し、測定員M4が水中スタツフ50までの距離を
測定している。また、各測定点間の移動は、潜水
士M1と船上作業員M2が補助しつつ防波堤A上か
ら測定点M3又はM4の誘導により潜水士船51を
移動させて行なつている。 To determine the position of the measurement point, a tape measure 53 or a rope rope or the like is stretched from the top of the breakwater A to the diver's boat 51, and the measuring person M4 measures the distance to the underwater staff 50. Furthermore, movement between each measurement point is carried out by moving the diver ship 51 from above breakwater A by guiding measurement point M 3 or M 4 with the assistance of diver M 1 and shipboard worker M 2 . .
〈この発明が解決しようとする課題〉
しかしながら、前述のような従来方法の場合、
次のような問題点がある。<Problem to be solved by this invention> However, in the case of the conventional method as described above,
There are the following problems.
(i) 潜水士、潜水士補助、作業員等を多く必要と
する。(i) It requires a large number of divers, diver assistants, workers, etc.
(ii) 長尺の水中スタツフを移動させ、垂直に保持
する必要があり重労働となる。(ii) Long underwater staff must be moved and held vertically, resulting in heavy labor.
(iii) 20m以上の大水深になると、測定が不可能に
なる。(iii) Measurements become impossible at deep water depths of 20 m or more.
(iv) 波、潮流の激しい箇所では、測定作業が困難
であると共に、正確な測定ができない。(iv) Measurement work is difficult and accurate measurements cannot be made in locations with strong waves and currents.
この発明は、このような問題点を解消すべくな
されたもので、その目的は、省人化および省力化
を図れると共に、大水深でも測定が可能で、さら
に波、潮流の影響を軽減して正確な測定が可能な
自立水中スタツフ装置を提供することにある。 This invention was made to solve these problems, and its purpose is to save manpower and labor, enable measurement even at great depths, and reduce the effects of waves and currents. An object of the present invention is to provide a self-supporting underwater staff device capable of accurate measurement.
〈課題を解決するための手段〉
本発明は、水中基礎の均し天端高さ等を各測定
点で測定する装置において、第1図に示すよう
に、浮力により上部が水中から突出し得る所定長
さの浮揚スタツフ1に、ピアノ線等の索条体3を
介して重りを兼ねる測定盤4を接続し、この測定
盤4を移動可能としたものである。<Means for Solving the Problems> The present invention provides an apparatus for measuring the leveled top height of an underwater foundation at each measurement point, as shown in FIG. A measuring board 4, which also serves as a weight, is connected to a long floating staff 1 via a cable member 3 such as a piano wire, and the measuring board 4 is made movable.
測定盤4の移動は、潜水士船兼支援船17のウ
インチ18で吊り上げて船17の移動によつて行
なつてもよいし、第4図に示すように垂直スラス
ター20と水平スラスター21によつてもよい。 The measurement panel 4 may be moved by lifting it up with the winch 18 of the diver/support vessel 17, or it may be moved by the vertical thruster 20 and horizontal thruster 21 as shown in FIG. It's good to wear.
さらに、浮揚スタツフ1を索条体3にスイベル
15を介して回転自在に接続すると共に、浮揚ス
タツフ1の水中部分に、波、潮流による浮揚スタ
ツフ1の移動を制御し得る推進機5を設ける。 Further, the floating staff 1 is rotatably connected to the cable body 3 via a swivel 15, and a propulsion device 5 is provided in the underwater portion of the floating staff 1 to control movement of the floating staff 1 due to waves and currents.
〈作 用〉
測定盤4を移動させて測定点に設置すれば、浮
揚スタツフ1が測定盤4の重量により浮力に抗し
て水中に引き込まれ、垂直に自立する。スタツフ
が必要な部分のみで大部分が波、潮流による抵抗
の少ない索条体であるため、浮揚スタツフ1を所
定の測定点に垂直に保持することができる。<Function> When the measurement board 4 is moved and installed at a measurement point, the floating staff 1 is pulled into the water by the weight of the measurement board 4 against the buoyancy, and becomes vertically independent. The floating staff 1 can be held perpendicularly at a predetermined measuring point because the staff is only required and most of it is a cable body with low resistance due to waves and currents.
均し天端高さ等はレベル7により容易に得られ
る。なお、測定点位置も測距儀8と反射鏡9によ
り容易に測定される。 The leveled top height etc. can be easily obtained by level 7. Note that the measurement point position can also be easily measured using the rangefinder 8 and the reflector 9.
波、潮流が激しい場合、浮揚スタツフ1が移動
しても、推進機5により浮揚スタツフ1を調整移
動して浮揚スタツフ1と索条体3の垂直性を保持
できるため、均し天端高さ等と測定点位置を正確
に測定できる。 When the waves and currents are strong, even if the floating staff 1 moves, the propulsion device 5 adjusts and moves the floating staff 1 to maintain the verticality of the floating staff 1 and the cable body 3, so the leveled crown height can be maintained. The position of the measurement point can be measured accurately.
なお、この推進機5を用いて装置全体を移動さ
せることも可能である。 Note that it is also possible to move the entire device using this propulsion device 5.
〈実施例〉
以下、この発明を図示する一実施例に基づいて
説明する。これは、第1図に示すように、ケーソ
ンAが設置される捨石マウンドBの均し天端高さ
を計測する場合に適用した例である。<Example> The present invention will be described below based on an illustrative example. This is an example applied to measuring the leveled top height of a rubble mound B on which a caisson A is installed, as shown in FIG.
本装置は、主として浮揚スタツフ(標尺)1、
浮標(ブイ)2、索条体3、均し面測定盤4、推
進機5から構成する。 This device mainly consists of a floating staff (leveling rod) 1,
It consists of a buoy 2, a rope body 3, a leveling surface measuring board 4, and a propulsion device 5.
浮揚スタツフ1は、φ50〜70mm程度のグラスフ
アイバ製あるいはアルミ製等のパイプから構成す
ると共に、下部が水中に数m没し、上部が水面か
ら数m突出し得る長さとして軽量化を図る。ま
た、この浮揚スタツフ1には、その中央部から上
に5mm間隔程度の標高測定目盛6が設けられる。
この目盛6はレベル7により目視で読み取られる
が、これに限らずデジタル目盛を有する電子スタ
ツフとし、電子レベル7′により自動的に読み取
るようにしてもよい。さらに浮揚スタツフ1の上
端部には、ケーソンA上に設置した光波あるいは
レーザ測距儀8の反射鏡(プリズム)9を取付け
ておく。 The flotation staff 1 is constructed from a pipe made of glass fiber or aluminum with a diameter of about 50 to 70 mm, and its length is such that the lower part can be submerged several meters into the water and the upper part can protrude several meters from the water surface to reduce its weight. Further, this floating staff 1 is provided with altitude measurement scales 6 at intervals of about 5 mm upward from the center thereof.
This scale 6 can be read visually using a level 7, but the present invention is not limited to this, and an electronic staff having a digital scale may be used so that it can be read automatically using an electronic level 7'. Furthermore, a reflecting mirror (prism) 9 of a light wave or laser rangefinder 8 installed on the caisson A is attached to the upper end of the levitation staff 1.
浮標2は、円柱形のブイであり、浮揚スタツフ
1の下部を貫通させて浮揚スタツフ1と一体化さ
せ、浮揚スタツフ1が垂直状態で水面から突出す
るのに充分な浮力を付与する。 The buoy 2 is a cylindrical buoy, passes through the lower part of the buoyant staff 1, is integrated with the buoyant staff 1, and provides sufficient buoyancy for the buoyant staff 1 to protrude from the water surface in a vertical state.
索条体3は、潮流による抵抗を少なくしつつ浮
揚スタツフ1と均し面測定盤4を強固に連結する
ものであり、ピアノ線あるいはシージングワイヤ
ロープ等を用いる。 The cable body 3 is to firmly connect the floating staff 1 and the leveling surface measuring board 4 while reducing resistance due to tidal current, and is made of piano wire, sheathing wire rope, or the like.
均し面測定盤4は、底部に水平載置面を有する
φ200〜250mm程度の重りであり、浮揚スタツフ1
を浮力に抗して水中に引き込んで浮揚スタツフ1
を垂直に自立させ得る重量とする。 The leveling surface measurement board 4 is a weight with a diameter of approximately 200 to 250 mm and has a horizontal mounting surface at the bottom.
buoyant staff 1 by pulling it into the water against the buoyant force.
Let be the weight that allows it to stand on its own vertically.
推進機5は、第1図、第2図に示すように、プ
ロペラ推進の水平スラスター10、左右一対の角
度調整可能な水平翼11、上下一対の角度調整可
能な方向操舵垂直板12を、浮標2に一対的に取
付けて構成し、水平翼11の俯仰角操作により浮
上、下降可能、かつ垂直板12の回転角操作によ
り任意の方向に水平移動可能とする。 As shown in FIGS. 1 and 2, the propulsion device 5 includes a propeller-propelled horizontal thruster 10, a pair of left and right horizontal wings 11 with adjustable angles, a pair of upper and lower angle-adjustable direction steering vertical plates 12, and a buoy. 2, and can float up and down by manipulating the elevation angle of the horizontal wings 11, and horizontally move in any direction by manipulating the rotation angle of the vertical plate 12.
また、浮揚スタツフ1の上端には推進機用のア
ンテナ13を設け、推進機5を遠隔操作できるよ
うにする。さらに、潮流による浮揚スタツフ1お
よび推進機5の移動に対しては、潮流による移動
量をセンサー14により検出して自動的に推進機
5を移動制御するようにする。浮揚スタツフ1と
索条体3はスイベル15を介して接続して推進機
5が自由に回転できるようにし、センサー14は
例えば接触式スイツチとし、第3図に示すよう
に、スイベル15の下端内面に周方向に間隔をお
いて多数設置し、索条体3には作動子16を取付
け、潮流により索条体3が傾斜すると、作動子1
6がセンサー14を作動させ、水平スラスター1
0を駆動するようにする。 Further, an antenna 13 for a propulsion device is provided at the upper end of the levitation staff 1, so that the propulsion device 5 can be remotely controlled. Furthermore, regarding movement of the levitation staff 1 and the propulsion device 5 due to the tidal current, the amount of movement due to the tidal current is detected by the sensor 14, and the movement of the propulsion device 5 is automatically controlled. The levitation staff 1 and the cable body 3 are connected via a swivel 15 so that the propulsion device 5 can rotate freely, and the sensor 14 is, for example, a contact type switch, as shown in FIG. A large number of actuators 16 are installed at intervals in the circumferential direction, and actuators 16 are attached to the cables 3. When the cables 3 are tilted due to the current, the actuators 1
6 activates sensor 14 and horizontal thruster 1
0.
また、均し面測定盤4は、潜水士船兼支援船1
7上のウインチ18によりワイヤーロープ19を
介して吊り上げ、船17の移動により移動できる
ようにする。このような固定型に限らず、第4図
に示すような移動型としてもよい。この場合、均
し面測定盤7の上部に一対のプロペラ推進の垂直
スラスター20を設け、この外側に水平スラスタ
ー21を左右一対で配設する。垂直スラスター2
0で浮上し、水平スラスター21の左右の推力差
により任意の位置に水平移動できる。 In addition, the leveling surface measurement board 4 is connected to the diver ship and support ship 1.
It is hoisted up via a wire rope 19 by a winch 18 on top of the ship 17, and can be moved by the movement of the ship 17. It is not limited to such a fixed type, but may be a movable type as shown in FIG. In this case, a pair of propeller-propelled vertical thrusters 20 are provided above the leveling surface measuring board 7, and a pair of left and right horizontal thrusters 21 are provided outside of these thrusters. vertical thruster 2
It floats up at zero and can horizontally move to any position by the difference in thrust between the left and right sides of the horizontal thruster 21.
以上のような構成で次のように作動する。 The above configuration operates as follows.
(i) 固定型の場合、均し面測定盤4をウインチ1
8により吊り上げて船17を移動させ、所定の
測定位置まで移動させる。浮揚スタツフ1は、
推進機5のプロペラ推進と水平翼11および垂
直板12の操作により浮上移動させる。(i) In the case of fixed type, leveling surface measuring board 4 is attached to winch 1
8 and move the ship 17 to a predetermined measurement position. Levitation staff 1 is
It is floated and moved by propeller propulsion of the propulsion device 5 and operation of the horizontal wings 11 and vertical plates 12.
(ii) 均し面測定盤4を測定位置で下降させると、
均し面測定盤4の重量で浮揚スタツフ1が引き
込まれて垂直に自立する。(ii) When the leveling surface measuring board 4 is lowered at the measurement position,
The floating staff 1 is drawn in by the weight of the leveling surface measuring board 4 and becomes vertically independent.
(iii) 推進機5は垂直板12とスイベル15により
常に潮流の流れ方向に向いており、潮流により
浮揚スタツフ1が移動しても、センサー14に
よりこれを感知して推進機5が自動的に移動
し、浮揚スタツフ1と索条体3の垂直性が保持
される。(iii) The propulsion device 5 is always oriented in the direction of the tidal current by means of the vertical plate 12 and the swivel 15, and even if the flotation staff 1 moves due to the tidal current, the sensor 14 detects this and the propulsion device 5 automatically moves. The verticality of the floating staff 1 and the cable body 3 is maintained.
(iv) この状態でレベル7により浮揚スタツフ1の
目盛6が読み取られ、浮揚スタツフ1の均し面
測定盤4からの距離は一定で既知であるから、
波、潮流にかかわらず、捨石マウンドの天端高
さを正確に測定される。測定位置も測距儀8に
より正確に測定される。(iv) In this state, the scale 6 of the levitation staff 1 is read by the level 7, and since the distance of the levitation staff 1 from the leveling surface measuring plate 4 is constant and known,
The height of the top of a rubble mound can be accurately measured regardless of waves or currents. The measurement position is also accurately measured by the range finder 8.
以上の操作を繰り返して各測定点での均し天端
高さが得られる。 By repeating the above operations, the averaged top height at each measurement point can be obtained.
なお、以上は捨石マウンドの均し天端高さの測
定について説明したが、その他の水中基礎のレベ
ル測定に本発明を適用できることはいうまでもな
い。 In addition, although the measurement of the leveled top height of a rubble mound has been described above, it goes without saying that the present invention can be applied to level measurement of other underwater foundations.
〈発明の効果〉
前述の通り、この発明に係る自立水中スタツフ
装置は、浮力により上部が水中から突出し得る所
定長さの浮揚スタツフに、索条体を介して重りを
兼ねる測定盤を接続し、この測定盤を移動可能と
し、さらに浮揚スタツフの水中部分に浮揚スタツ
フの調整移動を行なう推進機を設けたため、次の
ような効果を奏する。<Effects of the Invention> As mentioned above, the self-supporting underwater staff device according to the present invention includes a floating staff of a predetermined length whose upper part can protrude from the water due to buoyancy, and a measuring board that also serves as a weight connected via a cable body. This measurement panel is made movable, and a propulsion device for adjusting and moving the levitation staff is provided in the underwater portion of the levitation staff, resulting in the following effects.
(i) 従来のような多くの作業員を必要とせず、省
人化を図れる。(i) It does not require as many workers as in the past, resulting in labor savings.
(ii) スタツフの移動、設置を迅速かつ容易に行な
え、測定時間を大幅に短縮することができる。(ii) Staff can be moved and installed quickly and easily, and measurement time can be significantly shortened.
(iii) 大水深であつても、スタツフを容易に垂直に
設置でき、測定が可能となる。(iii) Even in deep water, the staff can be easily installed vertically and measurements can be made.
(iv) 波、潮流が激しくても、推進機によりスタツ
フを調整移動して垂直に保持でき、正確な測定
を行なうことができる。(iv) Even in strong waves and currents, the propulsion device can adjust and move the staff to hold it vertically, making it possible to perform accurate measurements.
第1図は、この発明に係る自立水中スタツフ装
置の使用状態を示す概略図、第2図はスタツフの
推進機を示す平面図、第3図a,bは、スタツフ
の下部を示す縦断面図、横断面図、第4図は均し
測定盤の変形例を示す斜視図、第5図は従来の測
定方法を示す斜視図である。
1…浮揚スタツフ、2…浮標、3…索条体、4
…均し面測定盤、5…推進機、6…標高測定目
盛、7…レベル、8…測距儀、9…反射鏡、10
…水平スラスター、11…水平翼、12…方向操
舵垂直板、13…アンテナ、14…センサー、1
5…スイベル、16…作動子、17…潜水士船兼
支援船、18…ウインチ、19…ワイヤロープ、
20…垂直スラスター、21…水平スラスター。
Fig. 1 is a schematic diagram showing the state of use of the self-supporting underwater staff device according to the present invention, Fig. 2 is a plan view showing the propulsion device of the staff, and Figs. 3 a and b are longitudinal sectional views showing the lower part of the staff. , a cross-sectional view, FIG. 4 is a perspective view showing a modification of the leveling measuring board, and FIG. 5 is a perspective view showing a conventional measuring method. 1...float staff, 2...buoy, 3...cord body, 4
...Leveling surface measuring board, 5...Propulsion device, 6...Elevation measurement scale, 7...Level, 8...Distance meter, 9...Reflector, 10
...Horizontal thruster, 11...Horizontal wing, 12...Directional steering vertical plate, 13...Antenna, 14...Sensor, 1
5... Swivel, 16... Operator, 17... Diver ship and support vessel, 18... Winch, 19... Wire rope,
20...Vertical thruster, 21...Horizontal thruster.
Claims (1)
において、浮力により上半部が水中から突出し得
る所定長さの浮揚スタツフの下端に索条体の一端
を回転自在に接続し、他端を重りを兼ねる測定盤
に接続し、浮力に抗して浮揚スタツフを水中に引
込んでこれを垂直に立てると共に、浮揚スタツフ
の水中部分に波、潮流による浮揚スタツフの移動
を制御し得る推進機を設け、かつ測定盤を移動可
能としたことを特徴とする自立水中スタツフ装
置。1 In a device for measuring the level of an underwater foundation at each measurement point, one end of the cable is rotatably connected to the lower end of a floating staff of a predetermined length whose upper half can protrude out of the water due to buoyancy, and the other end is connected to a weight. The floating staff is connected to a measurement panel that also serves as a buoyant staff, and the floating staff is pulled into the water against buoyant force to stand it vertically, and a propulsion machine that can control the movement of the floating staff due to waves and tidal currents is installed in the underwater part of the floating staff. A self-supporting underwater staff device characterized in that the measurement panel is movable.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28634390A JPH04160314A (en) | 1990-10-24 | 1990-10-24 | Self-standing underwater staff device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28634390A JPH04160314A (en) | 1990-10-24 | 1990-10-24 | Self-standing underwater staff device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04160314A JPH04160314A (en) | 1992-06-03 |
JPH0543965B2 true JPH0543965B2 (en) | 1993-07-05 |
Family
ID=17703160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28634390A Granted JPH04160314A (en) | 1990-10-24 | 1990-10-24 | Self-standing underwater staff device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04160314A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4429376B1 (en) * | 2009-06-03 | 2010-03-10 | 潔 斎藤 | Underwater foundation leveling device |
CN103759717B (en) * | 2014-01-22 | 2016-04-20 | 中国科学院半导体研究所 | A kind of optical fiber temperature deep diving mark continuous measurement system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5439067B2 (en) * | 1974-01-21 | 1979-11-26 | ||
JPS63284418A (en) * | 1987-05-15 | 1988-11-21 | Nec Corp | Fixed-point holding underwater buoy system |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5439067U (en) * | 1977-08-23 | 1979-03-14 |
-
1990
- 1990-10-24 JP JP28634390A patent/JPH04160314A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5439067B2 (en) * | 1974-01-21 | 1979-11-26 | ||
JPS63284418A (en) * | 1987-05-15 | 1988-11-21 | Nec Corp | Fixed-point holding underwater buoy system |
Also Published As
Publication number | Publication date |
---|---|
JPH04160314A (en) | 1992-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5507596A (en) | Underwater work platform support system | |
US3214921A (en) | Pipe laying apparatus | |
EA004201B1 (en) | Apparatus for deploying a load to an underwater target position with enhanced accuracy and a method to control such apparatus | |
JP2019077293A (en) | Hydrological survey base and hydrological survey method using unmanned aircraft | |
EP0169219A1 (en) | Remotely operated underwater vehicle and method of operating same. | |
JPH04307386A (en) | Method and apparatus for scanning underwater sonar | |
CN107063196A (en) | Seabed sand waves migration observation device and method based on pressure gauge | |
KR20220067201A (en) | Coastal Underwater Survey Unit | |
JPH0543965B2 (en) | ||
CN107255473B (en) | measuring method for establishing dynamic reference plane | |
JPH10299020A (en) | Installation and sinking method for underwater structure and its equipment | |
JP4157416B2 (en) | Auxiliary device for position measurement of underwater object, position measurement system for underwater object, position measurement method for underwater object, and method for joining existing and new submerged boxes | |
JP2003028639A (en) | Position display system for immersed tube unit | |
EP3923709A1 (en) | A submerged observation unit for a fish tank | |
US4335520A (en) | Survey spar system for precision offshore seafloor surveys | |
CN110081866A (en) | One kind snorkel formula emergency hydrographic survey device | |
JP3252163B2 (en) | Underwater and underwater conditions observation device | |
CN209783586U (en) | Floating and diving type emergency hydrological measuring device | |
JP2002081086A (en) | Position and attitude measuring method and device for submerged caisson in submerging caisson | |
CN213275953U (en) | Underwater terrain measuring device | |
JPH04161516A (en) | Depth sounding robot | |
JPS6133450B2 (en) | ||
CN109733549B (en) | Upward sweeping type ship draft detection system and method based on flexible framework support | |
JP2019196624A (en) | Underwater work support method and underwater work support system | |
Wilson et al. | A Survey Spar System for Precision Offshore Seafloor Surveys |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |