JPH0543884B2 - - Google Patents

Info

Publication number
JPH0543884B2
JPH0543884B2 JP59128292A JP12829284A JPH0543884B2 JP H0543884 B2 JPH0543884 B2 JP H0543884B2 JP 59128292 A JP59128292 A JP 59128292A JP 12829284 A JP12829284 A JP 12829284A JP H0543884 B2 JPH0543884 B2 JP H0543884B2
Authority
JP
Japan
Prior art keywords
oil
bearing
particle size
resin
under
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59128292A
Other languages
Japanese (ja)
Other versions
JPS616429A (en
Inventor
Shigeru Moriguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Toyo Bearing Co Ltd filed Critical NTN Toyo Bearing Co Ltd
Priority to JP59128292A priority Critical patent/JPS616429A/en
Publication of JPS616429A publication Critical patent/JPS616429A/en
Publication of JPH0543884B2 publication Critical patent/JPH0543884B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/664Retaining the liquid in or near the bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/44Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/20Thermoplastic resins
    • F16C2208/40Imides, e.g. polyimide [PI], polyetherimide [PEI]
    • F16C2208/42Polyamideimide [PAI]

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、軸受保持器に関するものである。 〔従来の技術〕 従来、軸受等の摺動材の摩擦係数低下のため
に、液状の潤滑油を始めとし、半固体状のグリー
スおよび固体状潤滑剤が広く使用されていること
はよく知られている。しかし、科学技術の急速な
進歩に伴つて、摺動材の使用される条件は次第に
厳しくなり、たとえば液体ロケツト用のターボポ
ンプは、軸受やメカニカルシールが極低温の液化
ガスにさらされるので、これらの耐寒性を考慮す
る必要がある。 また、地上から約400Kmの距離で地球の周回軌
道上に設置される人工衛星または宇宙ステーシヨ
ンは、極低温から高温に至る広い温度条件で使用
されるのは勿論のこと、設置環境の真空度が10-6
〜10-7Torrになるので、これらに使用される軸
受保持器には、揮散し易い油、グリース等の液状
潤滑剤を保持させることが困難である。 また地上において、例えば20000rpmといった
高速で回転する工作機のスピンドル(主軸)用の
転がり軸受用保持器(直径200mm)には、最高約
8000Gの遠心負荷が掛かるので、摺動面から油や
グリース等が流出または飛散してしまう。したが
つて、このような高遠心力負荷の条件では、前記
した高真空度で使用する場合と同様に、軸受保持
器に液体の潤滑剤を過不足なく安定して保持させ
るのは困難である。 一方、軸受保持器の成形材料または表面被膜と
して自己潤滑性のある四フツ化エチレン系樹脂の
ような合成樹脂が用いられる。このような材料を
用いたときは、軸受が回転するにつれて、保持器
を構成する材料の一部が転動体に転移し、さらに
内外輪の軌道面に移行して摩擦面全面に薄い潤滑
膜が形成され、潤滑効果が発現するのである。な
お、これ以外にも、軸受の内外輪、保持器および
ボール等に、金、銀のような金属または二硫化モ
リブデン等の固体潤滑剤を、メツキ、被覆(コー
テイング)または蒸着(スパツタリング)させる
方法もよく知られている。 〔発明が解決しようとする問題点〕 しかし、以上述べた自己潤滑性のある樹脂、金
銀等の金属もしくは二硫化モリブデン等のような
固体潤滑剤は、潤滑油やグリースといつた液体潤
滑剤に比較して一般に潤滑膜の耐久性は著しく劣
るので、安定して摺動性のよい軸受保持器を得る
ことはできない。また、前記したように、高遠心
力負荷の条件、または−60〜200℃という極低温
から高温に至る条件で、しかも宇宙空間のような
超真空中で軸受内の摩擦面に潤滑油を長時間連続
して安定供給することは、潤滑油の揮散性、耐
熱・耐寒性に関係するばかりでなく、保持器の物
性とも相まつて極めて達成し難い技術であり、上
記過酷な条件の下で耐久性よく摩擦面を液体潤滑
できる軸受保持器とすることが課題であつた。 〔問題点を解決するための手段〕 上記の問題点を解決するために、この発明は平
均粒径が15〜50μmの分級整粒したポリアミドイ
ミド樹脂粉末を焼成してなり体積比で7〜17%の
連通気孔を有する焼結体に、完全フツ素化油を含
浸させてなる軸受保持器としたのである。以下そ
の詳細を述べる。 まず、この発明のポリアミドイミド樹脂(以
下、PAI樹脂と呼ぶ)1は、優れた耐熱性、耐薬
品性、機械的性質および電気絶縁性を有し、押出
成形、射出成形等の溶融成形が可能な樹脂である
が、一方において、吸水率が大きく、比較的多量
に吸水した樹脂は耐熱性が低下し、たとえば吸水
時に成形品を急激に加熱すると、成形品内部の水
分が高圧蒸気となり、表面が膨れたり発泡したり
し、また極低温下においても、種々の支障を来た
す危険があるので、吸水に対する配慮をすれば、
軸受保持器の母体としては恰好の樹脂であるとい
える。このようなPAI樹脂1としては、たとえ
ば、米国アモコ社製トーロン(登録商標Torlon)
を挙げることができる。 つぎに、この発明における体積比7〜17%の連
通気孔2を有するPAI樹脂1は原料PAI樹脂粉末
を平均粒径が15〜50μmに分級整粒し、これを従
来の保持器と同じ形状に加圧し、焼成して得られ
るものであつて、樹脂の平均粒径、圧力等を適宜
調整することによつて体積比7〜17%の連通気孔
のものが得られる。この際、原料樹脂粉末に15μ
m未満の微小粒径の粉末が混入していると、折角
の粒子間の空〓を埋めてしまい、製品の気孔率の
バラツキを大きくするので、前記のような分級整
粒が必要となる。また、逆に50μmを越えて粒度
が大き過ぎると粒子間の空〓が大きくなり、後述
する含浸油の高速回転時における保持率(保油
率)が低下して好ましくない。 さらに、この発明における完全フツ素化油は、
パーフルオロポリエーテル(PFPE)またはパー
フルオロポリアルキルエーテル(PFAE)と一般
に呼ばれる化合物であつて、たとえばイタリアの
モンテフルオス社製のフオンブリン
(FOMBLIN)を商品例として挙げることができ
る。このような完全フツ素化油は極めて安定でし
かも不活性であり、耐熱性、耐薬品性、耐酸化
性、耐溶剤性に優れ、かつ、潤滑性を始めとし、
高温、高エネルギー線にさらされても固体劣化物
を生ずることなく、低蒸気圧(たとえば20℃で
10-13Torrのもの)、低流動点(たとえば−80℃
のもの)であるといつた諸特性を有している。 以上述べた連通気孔2を有するPAI樹脂1の成
形品に完全フツ素化油を含浸させるには、気孔内
の空気や水分の排除を容易にするために加熱、減
圧の雰囲気下で操作することが望ましく、含浸が
終わつて過剰の完全フツ素化油を取り除けば、こ
の発明の軸受保持器が得られる。 〔作用〕 この発明の軸受保持器は、この成形素材がポリ
アミドイミド樹脂を所定の平均粒径に分級整粒し
た焼結体であり、このものは焼結粒子間に所定の
連通気孔を均等に保有する。このため、上記連通
気孔に完全フツ素化油が充分に浸透し、かつ確実
に保持されて、工作機スピンドル用転がり軸受に
装着されたときに最高8000Gの遠心負荷を受けた
場合でも過剰に滲出することがない。 また、滲出した適量の完全フツ素化油は、低蒸
気圧であるから、10-7〜10-8Torrといつた真空
度の条件下においても短時間で揮発せず、単分子
被膜程度の厚さの油膜でもつて耐摩耗性の良い潤
滑性を発揮し、さらに低流動点で耐熱性もあるの
で−60〜200℃といつた広い温度範囲で使用する
ことができる。 したがつて、このような完全フツ素化油と前記
所定のポリアミドイミド樹脂焼結体の物性が相ま
つて、高・低温かつ超真空下における、または高
遠心負荷を受ける使用状態における軸受保持器の
摺動特性が改善され、そのような使用状態でこの
[Industrial Field of Application] This invention relates to a bearing retainer. [Prior Art] It is well known that liquid lubricants, semi-solid greases, and solid lubricants have been widely used to reduce the coefficient of friction of sliding materials such as bearings. ing. However, with rapid advances in science and technology, the conditions under which sliding materials are used have become increasingly strict. For example, in turbo pumps for liquid rockets, bearings and mechanical seals are exposed to cryogenic liquefied gas. It is necessary to consider the cold resistance of In addition, artificial satellites or space stations that are installed in orbit around the Earth at a distance of approximately 400 km from the ground are not only used in a wide range of temperature conditions ranging from extremely low temperatures to high temperatures, but also due to the degree of vacuum in the installation environment. 10 -6
~10 -7 Torr, so it is difficult to hold liquid lubricants such as oil and grease that easily volatilize in the bearing retainers used in these devices. In addition, on the ground, rolling bearing cages (diameter 200 mm) for machine tool spindles that rotate at high speeds of 20,000 rpm, for example,
Since a centrifugal load of 8000G is applied, oil, grease, etc. will leak or scatter from the sliding surface. Therefore, under such high centrifugal force load conditions, it is difficult to stably hold liquid lubricant in the bearing retainer in just the right amount, as in the case of use at a high degree of vacuum. On the other hand, a synthetic resin such as a self-lubricating ethylene tetrafluoride resin is used as the molding material or surface coating of the bearing retainer. When such a material is used, as the bearing rotates, part of the material that makes up the cage is transferred to the rolling elements, and then transferred to the raceway surfaces of the inner and outer rings, forming a thin lubricant film over the entire friction surface. This results in the formation of a lubricating effect. In addition, there are other methods of plating, coating, or sputtering a metal such as gold or silver or a solid lubricant such as molybdenum disulfide on the inner and outer rings, cage, balls, etc. of the bearing. is also well known. [Problems to be solved by the invention] However, the above-mentioned self-lubricating resins, metals such as gold and silver, and solid lubricants such as molybdenum disulfide cannot be used with liquid lubricants such as lubricating oil and grease. In comparison, the durability of the lubricating film is generally significantly inferior, so it is not possible to obtain a bearing retainer with stable sliding properties. In addition, as mentioned above, lubricating oil is applied to the friction surfaces inside the bearing for a long time under conditions of high centrifugal force loads or conditions ranging from extremely low temperatures to high temperatures of -60 to 200 degrees Celsius, and even in ultra-vacuum such as in outer space. Continuous and stable supply is an extremely difficult technology to achieve, not only because it is related to the lubricating oil's volatility and heat and cold resistance, but also because of the physical properties of the cage. The challenge was to create a bearing retainer that could provide good liquid lubrication to the friction surfaces. [Means for Solving the Problems] In order to solve the above problems, the present invention is made by firing classified and sized polyamide-imide resin powder having an average particle size of 15 to 50 μm, and having a volume ratio of 7 to 17 μm. The bearing retainer is made by impregnating a sintered body with 100% communicating holes with fully fluorinated oil. The details will be described below. First, the polyamide-imide resin (hereinafter referred to as PAI resin) 1 of the present invention has excellent heat resistance, chemical resistance, mechanical properties, and electrical insulation properties, and can be melt-molded by extrusion molding, injection molding, etc. However, on the other hand, resins that have a high water absorption rate and absorb a relatively large amount of water will have reduced heat resistance.For example, if a molded product is rapidly heated during water absorption, the moisture inside the molded product will turn into high-pressure steam, causing the surface It may swell or foam, and even at extremely low temperatures, there is a risk of various problems, so if consideration is given to water absorption,
It can be said that resin is suitable as a base material for bearing cages. As such PAI resin 1, for example, Torlon (registered trademark) manufactured by Amoco, USA
can be mentioned. Next, the PAI resin 1 having the communicating pores 2 with a volume ratio of 7 to 17% in this invention is obtained by classifying and sizing raw material PAI resin powder to have an average particle size of 15 to 50 μm, and shaping it into the same shape as a conventional cage. It is obtained by pressurizing and firing, and by appropriately adjusting the average particle size of the resin, pressure, etc., it is possible to obtain a product with continuous pores having a volume ratio of 7 to 17%. At this time, add 15μ to the raw resin powder.
If powder with a fine particle size of less than m is mixed in, it will fill the voids between the particles and increase the variation in the porosity of the product, so the classification and grading as described above is necessary. On the other hand, if the particle size is too large, exceeding 50 μm, the voids between the particles will become large, which is undesirable because the retention rate (oil retention rate) of the impregnating oil during high-speed rotation, which will be described later, will decrease. Furthermore, the fully fluorinated oil in this invention is
It is a compound generally called perfluoropolyether (PFPE) or perfluoropolyalkyl ether (PFAE), and for example, FOMBLIN manufactured by Montefluos of Italy can be mentioned as a commercial product. These fully fluorinated oils are extremely stable and inert, and have excellent heat resistance, chemical resistance, oxidation resistance, and solvent resistance, as well as lubricity and other properties.
It does not produce solid deterioration products even when exposed to high temperature and high energy radiation, and has a low vapor pressure (e.g. at 20℃).
10 -13 Torr), low pour point (e.g. -80℃)
It has the characteristics of being In order to impregnate the molded article of PAI resin 1 having the above-mentioned communicating pores 2 with fully fluorinated oil, it must be operated under a heated and reduced pressure atmosphere to facilitate the removal of air and moisture within the pores. is desirable, and after the impregnation is completed and the excess fully fluorinated oil is removed, the bearing retainer of the present invention is obtained. [Function] In the bearing retainer of the present invention, the molded material is a sintered body made by classifying and sizing polyamide-imide resin to a predetermined average particle size. Possess. Therefore, the fully fluorinated oil sufficiently penetrates into the above-mentioned communication hole and is securely retained, so that it does not ooze out excessively even when subjected to a centrifugal load of up to 8000G when installed in a rolling bearing for a machine tool spindle. There's nothing to do. In addition, the appropriate amount of fully fluorinated oil that oozes out has a low vapor pressure, so it does not volatilize in a short time even under vacuum conditions of 10 -7 to 10 -8 Torr, and forms a monomolecular film. It exhibits good wear-resistant lubricity even with a thick oil film, and has a low pour point and heat resistance, so it can be used in a wide temperature range from -60 to 200 degrees Celsius. Therefore, the physical properties of the fully fluorinated oil and the specified polyamide-imide resin sintered body combine to make the bearing cage suitable for use under high/low temperature and ultra-vacuum conditions, or under high centrifugal loads. The sliding properties have been improved and this

【表】 取り除き、工作機用スピンドルに装着された場合
の使用状態を想定して、遠心分離機を用いて、室
温下(23℃)8000Gの遠心力を負荷したときの含
油率(%)の変化を求め、その結果を第2図に示
した。また、航空宇宙機器にころがり軸受を装着
した場合を想定して、常圧または10-9の真空の条
件において、それぞれ−60℃または200℃の温度
条件における軸受の摩擦トルクを測定し、この結
果を第2表に示した。なお、摩擦トルクは使用軸
受#7204、回転数1000rpm、
[Table] Oil content (%) when a centrifugal force of 8000G is applied at room temperature (23℃) using a centrifuge, assuming the usage condition when removed and installed on a machine tool spindle. The changes were determined and the results are shown in Figure 2. In addition, assuming that rolling bearings are installed in aerospace equipment, we measured the friction torque of the bearings under normal pressure or 10 -9 vacuum conditions, and at temperatures of -60°C and 200°C, respectively. are shown in Table 2. The friction torque is based on bearing #7204, rotation speed 1000 rpm,

【表】 スラスト荷重5Kgfの条件下で求めた。 この結果によると、実施例1〜3は、300時間
後においても含油率をほぼ一定値に保つており
(第2図)、潤滑性能(摩擦トルク)は第2表に示
すように、低温においても高温においても、ま
た、低圧下においても充分使用に耐える優れたも
のであつた。 比較例 1〜4 実施例1〜3で用いたPAI樹脂の分級整粒しな
い原粉末そのまま、分級整粒して平均粒径が
11.4μmである微粉末、および分級整粒して平均
粒径が89μmである粗粉末、さらに、別末分級品
で平均粒径24.6μmである粉末を第3表に示すよ
うな条件で加圧し焼成して、実施例1〜3と同様
の形状の成形体を得た。これら成形体に、実施例
1〜3におけると同様の含浸処理を行なうと同時
に遠心力負荷による含油率%の変化および潤滑性
能を調べた。含油率の変化は第3図にまとめた。
なお、比較例1〜4の潤滑性能は摩擦トルクが大
きく、かつ、不安定であつた。さらに、この発明
の保持器の温度上昇(1時間加熱)による油保持
能力(保油率)の変化を調べ、その結果を第4図
に示した。 第3図および第4図の結果から明らかなよう
に、比較列1の含油率変化は一見安定しているに
見えるが、第3図で同じ未分級品(比較例4)の
含油率が小さいことと、第4図の保油率が分級品
と比較して著しく劣ることから未分級品では含油
率の安定は得られないことがわかる。また、比較
例2のように微粉末を主体とするときは、含浸し
た当
[Table] Obtained under the condition of thrust load of 5 kgf. According to the results, in Examples 1 to 3, the oil content was maintained at a nearly constant value even after 300 hours (Figure 2), and the lubrication performance (friction torque) was as shown in Table 2 at low temperatures. It was also excellent enough to withstand use even at high temperatures and under low pressure. Comparative Examples 1 to 4 The raw powder of PAI resin used in Examples 1 to 3, which was not classified and sized, was classified and sized to have an average particle size.
A fine powder with a particle size of 11.4 μm, a coarse powder with an average particle size of 89 μm after classification and grading, and a powder with an average particle size of 24.6 μm in a separately classified product were pressed under the conditions shown in Table 3. By firing, molded bodies having the same shapes as those of Examples 1 to 3 were obtained. These molded bodies were subjected to the same impregnation treatment as in Examples 1 to 3, and at the same time, changes in oil content % due to centrifugal force load and lubrication performance were examined. Changes in oil content are summarized in Figure 3.
In addition, the lubrication performance of Comparative Examples 1 to 4 had large friction torque and was unstable. Furthermore, changes in oil retention capacity (oil retention rate) due to temperature rise (heated for 1 hour) of the cage of the present invention were investigated, and the results are shown in FIG. As is clear from the results in Figures 3 and 4, the change in oil content in Comparison Row 1 appears to be stable at first glance, but in Figure 3, the oil content of the same unclassified product (Comparative Example 4) is small. In addition, the oil retention rate shown in Figure 4 is significantly inferior to that of the classified product, which indicates that the oil content cannot be stabilized with the unclassified product. In addition, when using mainly fine powder as in Comparative Example 2, the impregnated

〔効果〕〔effect〕

この発明の軸受保持器は、以上説明したように
自己潤滑性のあるポリアミドイミド樹脂の15〜
50μmに分級整粒された焼結粒子間に、完全フツ
素化油がよく浸透して油保持能力に優れたもので
ある。このため、−60〜200℃という極低温から高
温に至る広温度範囲で使用でき、また10-9といつ
た超真空の使用条件において、しかも高速で回転
することにより8000G程度の遠心負荷を受けると
いつた極めて過酷な条件においても、完全フツ素
化油による液体潤滑が可能となる。このため、た
とえば工作機械のスピンドル用軸受保持器ばかり
でなく、航空宇宙用の軸受保持器としても適用で
きる高性能の軸受保持器となる利点がある。
As explained above, the bearing retainer of this invention is made of self-lubricating polyamide-imide resin.
Fully fluorinated oil penetrates well between the sintered particles, which are classified and sized to 50 μm, resulting in excellent oil retention ability. Therefore, it can be used in a wide temperature range from -60 to 200 degrees Celsius, from extremely low temperatures to high temperatures, and can be used under ultra-vacuum conditions of 10 -9 , and is subject to centrifugal loads of about 8000 G due to high speed rotation. Liquid lubrication using fully fluorinated oil becomes possible even under extremely harsh conditions. Therefore, it has the advantage of being a high-performance bearing holder that can be used not only as a bearing holder for machine tool spindles, but also as a bearing holder for aerospace applications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の軸受保持器を例示するため
の斜視図、第2図および第3図はそれぞれ実施例
および比較例における遠心力(8000G)負荷時の
含油率の時間的経過を示す図、第4図はこの発明
の実施例および比較例における温度と保油率との
関係を示す図である。 1……ポリアミドイミド(PAI)樹脂、2……
連通気孔。
FIG. 1 is a perspective view illustrating the bearing retainer of the present invention, and FIGS. 2 and 3 are diagrams showing the time course of oil content under centrifugal force (8000G) load in an example and a comparative example, respectively. , FIG. 4 is a diagram showing the relationship between temperature and oil retention rate in Examples and Comparative Examples of the present invention. 1...Polyamideimide (PAI) resin, 2...
Connecting vents.

Claims (1)

【特許請求の範囲】[Claims] 1 平均粒径が15〜50μmの分級整粒したポリア
ミドイミド樹脂粉末を焼成してなり体積比で7〜
17%の連通気孔を有する焼結体に、完全フツ素化
油を含浸してなる軸受保持器
1. Sintered polyamideimide resin powder with an average particle size of 15 to 50 μm and a volume ratio of 7 to 50 μm.
A bearing retainer made of a sintered body with 17% continuous pores impregnated with fully fluorinated oil.
JP59128292A 1984-06-20 1984-06-20 Bearing retainer Granted JPS616429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59128292A JPS616429A (en) 1984-06-20 1984-06-20 Bearing retainer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59128292A JPS616429A (en) 1984-06-20 1984-06-20 Bearing retainer

Publications (2)

Publication Number Publication Date
JPS616429A JPS616429A (en) 1986-01-13
JPH0543884B2 true JPH0543884B2 (en) 1993-07-02

Family

ID=14981197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59128292A Granted JPS616429A (en) 1984-06-20 1984-06-20 Bearing retainer

Country Status (1)

Country Link
JP (1) JPS616429A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9073104B2 (en) 2008-08-14 2015-07-07 National Oilwell Varco, L.P. Drill cuttings treatment systems
US9079222B2 (en) 2008-10-10 2015-07-14 National Oilwell Varco, L.P. Shale shaker

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2590484B2 (en) * 1987-08-12 1997-03-12 日本精工株式会社 Rotation support device for direct drive motor
JPH0251717U (en) * 1988-10-06 1990-04-12
JPH0788853B2 (en) * 1990-07-16 1995-09-27 株式会社安川電機 Rolling bearing
JPH0495125U (en) * 1990-12-27 1992-08-18
US5401105A (en) * 1992-12-28 1995-03-28 Nsk Ltd. Ball bearing and method for producing a cage of the ball bearing
JP3365449B2 (en) * 1994-07-07 2003-01-14 日本精工株式会社 Rolling bearing
US5575570A (en) * 1994-07-08 1996-11-19 Nsk Ltd. Cage for rolling bearing
US6164831A (en) * 1998-04-03 2000-12-26 J. Morita Mfg. Corp. Rolling bearing for high-speed rotating equipment
US6569816B2 (en) 2000-08-18 2003-05-27 Ntn Corporation Composition having lubricity and product comprising the composition
CN1946783B (en) 2004-04-23 2012-01-25 Ntn株式会社 Porous resin article and method for production thereof
EP2275698B1 (en) 2004-06-07 2014-12-31 NTN Corporation Method of manufacturing a rolling bearing retainer
JP4851695B2 (en) * 2004-08-30 2012-01-11 Ntn株式会社 Sliding material
US7703983B2 (en) * 2004-06-10 2010-04-27 Ntn Corporation Sliding material and sliding bearing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5455257A (en) * 1977-09-22 1979-05-02 Skf Ab Cage of rolling body of bearing
JPS5610818A (en) * 1979-07-05 1981-02-03 Nippon Seiko Kk Holder for roller bearing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5455257A (en) * 1977-09-22 1979-05-02 Skf Ab Cage of rolling body of bearing
JPS5610818A (en) * 1979-07-05 1981-02-03 Nippon Seiko Kk Holder for roller bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9073104B2 (en) 2008-08-14 2015-07-07 National Oilwell Varco, L.P. Drill cuttings treatment systems
US9079222B2 (en) 2008-10-10 2015-07-14 National Oilwell Varco, L.P. Shale shaker

Also Published As

Publication number Publication date
JPS616429A (en) 1986-01-13

Similar Documents

Publication Publication Date Title
JPH0543884B2 (en)
US5236784A (en) Bearing material and plastic bearing
KR101081808B1 (en) A manufacturing method of sliding bearing
US2798005A (en) Porous metal bearing containing polytetrafluoroethylene and a solid lubricant
US2788324A (en) Plain bearings or anti-friction elements
US5447774A (en) Composite sliding member with high porosity sintering layer
JPH05240251A (en) Sintered oil retaining bearing
US4425247A (en) Composite self-lubricating material
US3419363A (en) Self-lubricating fluoride-metal composite materials
CN109702199A (en) A kind of high-entropy alloy-base self-lubricating oily bearing material
US3464845A (en) Antifriction bearings
JPH0244875B2 (en)
JPS6313953B2 (en)
JPS6143557A (en) Material for composite bearing with plastic sliding surface
JP3422994B1 (en) Lubricants, sliding members and solid lubricants
JP2001132756A (en) Sliding member coated with resin and method of manufacturing the same
JP4310053B2 (en) Oil-impregnated sliding material and slide bearing
US3437592A (en) Electrically conductive solid lubricant members and apparatus employing them
JP2587457B2 (en) Cage for rolling bearing
JPS6331004B2 (en)
US3523079A (en) Electrically conductive solid lubricant members and process and apparatus employing them
JP2977941B2 (en) Manufacturing method of low friction coefficient sintered bearing
JPS6237681B2 (en)
Sliney High temperature solid lubricants: when and where to use them
JPH10169661A (en) Cage for rolling bearing

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term