JPH0543691B2 - - Google Patents

Info

Publication number
JPH0543691B2
JPH0543691B2 JP60027839A JP2783985A JPH0543691B2 JP H0543691 B2 JPH0543691 B2 JP H0543691B2 JP 60027839 A JP60027839 A JP 60027839A JP 2783985 A JP2783985 A JP 2783985A JP H0543691 B2 JPH0543691 B2 JP H0543691B2
Authority
JP
Japan
Prior art keywords
methane
hydrogen
refrigerant
expander
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60027839A
Other languages
Japanese (ja)
Other versions
JPS61189233A (en
Inventor
Okya Saito
Masataka Hiraide
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP60027839A priority Critical patent/JPS61189233A/en
Publication of JPS61189233A publication Critical patent/JPS61189233A/en
Publication of JPH0543691B2 publication Critical patent/JPH0543691B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0219Refinery gas, cracking gas, coke oven gas, gaseous mixtures containing aliphatic unsaturated CnHm or gaseous mixtures of undefined nature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0238Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0252Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/12Refinery or petrochemical off-gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/20Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/32Compression of the product stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • F25J2270/06Internal refrigeration with work-producing gas expansion loop with multiple gas expansion loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/60Closed external refrigeration cycle with single component refrigerant [SCR], e.g. C1-, C2- or C3-hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(発明の利用分野) 本発明は、炭化水素分解物の精製法に関し、さ
らに詳しくは、石油、天然ガス等を原料として、
例えば熱分解によりエチレン等を製造するプラン
トにおける炭化水素分解物の低温精製法に関す
る。 (従来の技術) 炭化水素熱分解物から水素、メタン等の副生軽
質留分、エチレン等の特定重質留分およびエタン
等の副生重質留分とを分離する方法、並びに副生
水素と副生メタンを分離精製する方法は従来から
種々提案され、実用に供されているが、エチレン
等の特定留分が副生軽質留分に同伴されるのを防
止し、エチレン等の得率増加を図ることは、運転
コストの低減および省エネルギーの観点から非常
に重要なことである。 従来の炭化水素分解物の分離精製設備(例えば
特開昭57−108192号公報)の典型的な系統図を第
2図に示す。この設備は、供給物処理工程1、脱
メタン塔工程3および水素、メタン分離精製工程
2から構成される。炭化水素の熱分解により得ら
れる分解ガスは、分解に供給される原料および分
解方法によりその成分組成は変化するが、通常、
代表的成分として硫化水素、炭酸ガス等の酸性ガ
ス、水素、メタン、エチレン、プロピレン、ブタ
ジエン等のC4炭化水素、さらに高沸点の炭化水
素と分解時に使用する水蒸気により構成される。
酸性ガスおよび水分を除去した分解ガスは、多段
圧縮機で最終的に約35Kg/cm2G程度にまで圧縮さ
れる。供給物処理工程1では、コンプレツター等
で圧縮高圧化された水素、メタン、エチレン、エ
タン、さらに重質留分を含む分解ガスFをライン
8,9,10および11を介して順次、熱交換器
E−1,E−2,E−3およびE−4に通し、ラ
イン4,5および6を通る冷媒(プロピレン冷媒
やエチレン冷媒)により逐次、冷却、低温化す
る、上記低温化によつて逐次生成した大部分のエ
チレンを含む凝縮液は、気液分離ドラムD−1,
D−2およびD−3でガスと分離され、それぞれ
ライン12,13,14および15を通り、脱メ
タン塔工程3の脱メタン塔T−2に送られる。こ
の冷却は一般的に−60℃から−110℃程度まで行
なわれ、その冷却程度はメタン中にリークするエ
チレンの損失許容度により決定される。一方、最
終段の精留塔T−1で分離された水素、メタンを
主成分とするガスは、ライン16を介して水素、
メタン分離精製工程2に送られる。水素、メタン
分離精製工程2での主としてメタンから構成され
る凝縮液の一部は供給物処理工程1の精留塔T−
1の還流液として供給され、また脱メタン塔工程
3の脱メタン塔T−2の塔頂ガスが水素、メタン
分離精製工程2での水素、メタン混合ガス冷却器
E−5の冷媒として供給されるようになつてい
る。 脱メタン塔工程3は、前記供給物処理工程1か
ら供給される凝縮液を脱メタン塔T−2に受け入
れ、前記凝縮液成分であるエチレン、エタン等の
重質留分中に残存する水素、メタン等の軽質留分
を最終的にエチレン以上の重質留分から分離精製
するものである。脱メタン塔T−2は、塔本体3
0と、コンデンサー31、還流ドラム32および
還流ポンプ33からなる還流系統と、リボイラ3
4とを備えている。脱メタン塔T−2の塔頂から
は残存水素、メタンを含む留分が抜き出され、一
方、塔底からはエチレンおよびエタン塔の重質留
分Eが抜き出される。 次に、水素、メタン分離精製工程2は、前記供
給物処理工程1から供給される、主として水素、
メタンから構成される混合ガスをジユールートム
ソン効果を利用した深冷分離法により最終的に約
95mol%程度の水素ガスとメタンを主成分とする
液に分離精製するものである。供給混合ガスは、
ライン16から順次、第1段冷却器E−5、第1
段分離ドラムD−4、第2段冷却器E−6および
第2段分離ドラムD−5を通つて精製され、最終
的にライン21および22からそれぞれ高圧およ
び低圧メタンガスが、並びにライン23から精製
水素ガスが取出される。冷却器E−5およびE−
6に使用される冷媒は、分離ドラムD−4および
D−5からの凝縮メタン液(ライン21,22)
と精製水素ガス(ライン23)が用いられる。こ
の際、水素の相当部は設備能力を助けるために冷
媒メタン液に吹き込まれ、その分圧効果により低
温の冷媒メタン液が生成する。残りの水素はさら
に一部がエチレンプラント内で水添用として消費
され、必要量が含まれる微量の一酸化炭素を除去
した後、製品水素として払い出される。その残り
は燃料として消費される。 一方、冷却過程で凝縮し、脱メタン塔へ供給さ
れたエチレンおよび高沸点成分は、溶解する水素
およびメタンを脱メタン塔での精留操作により最
終的に分離し、塔底留分として精製されて次工程
に供給される。この際、分離された水素およびメ
タンは塔頂ガス成分として取出され、膨脹機や熱
交換器を経由してその持つている冷熱を有効に回
収された後、燃料として払い出され、消費され
る。 上記従来法における各部の物質収支のデータの
一例を第1表に示した。
(Field of Application of the Invention) The present invention relates to a method for refining hydrocarbon decomposition products, and more specifically, the present invention relates to a method for refining hydrocarbon decomposition products, and more specifically, using petroleum, natural gas, etc. as a raw material,
For example, the present invention relates to a low-temperature purification method for hydrocarbon decomposition products in plants that produce ethylene and the like by thermal decomposition. (Prior art) A method for separating by-product light fractions such as hydrogen and methane, specified heavy fractions such as ethylene, and by-product heavy fractions such as ethane from hydrocarbon thermal decomposition products, and by-product hydrogen Various methods have been proposed and put to practical use for separating and purifying by-product methane. Aiming for an increase in energy consumption is very important from the viewpoint of reducing operating costs and saving energy. A typical system diagram of a conventional separation and purification facility for hydrocarbon decomposition products (for example, Japanese Patent Application Laid-Open No. 108192/1982) is shown in FIG. This equipment consists of a feed treatment step 1, a demethanizer step 3, and a hydrogen and methane separation and purification step 2. The composition of cracked gas obtained by thermal decomposition of hydrocarbons varies depending on the raw materials supplied to the cracking and the cracking method, but usually,
Typical components are acidic gases such as hydrogen sulfide and carbon dioxide, hydrogen, C4 hydrocarbons such as methane, ethylene, propylene, and butadiene, as well as high-boiling-point hydrocarbons and steam used during decomposition.
The cracked gas from which acidic gas and moisture have been removed is finally compressed to about 35 kg/cm 2 G by a multistage compressor. In feed processing step 1, cracked gas F containing hydrogen, methane, ethylene, ethane, and heavy fractions compressed and pressurized in a compressor etc. is sequentially passed through lines 8, 9, 10 and 11 to a heat exchanger. Pass through E-1, E-2, E-3 and E-4, and sequentially cool and lower the temperature with a refrigerant (propylene refrigerant or ethylene refrigerant) passing through lines 4, 5 and 6. The generated condensate containing most of ethylene is transferred to the gas-liquid separation drum D-1,
It is separated from the gas at D-2 and D-3 and sent to the demethanizer T-2 of the demethanizer step 3 through lines 12, 13, 14 and 15, respectively. This cooling is generally carried out to about -60°C to -110°C, and the degree of cooling is determined by the tolerance for loss of ethylene leaking into methane. On the other hand, the gas mainly composed of hydrogen and methane separated in the final stage rectification column T-1 is passed through line 16 to hydrogen and methane.
Sent to methane separation and purification step 2. A part of the condensate mainly composed of methane in the hydrogen and methane separation and purification step 2 is sent to the rectification column T- in the feed treatment step 1.
1, and the top gas of the demethanizer T-2 in the demethanizer step 3 is supplied as hydrogen, the hydrogen in the methane separation and purification step 2, and the methane mixed gas cooler E-5 as a refrigerant. It is becoming more and more like this. The demethanizer step 3 receives the condensate supplied from the feed treatment step 1 into the demethanizer T-2, and removes hydrogen remaining in heavy fractions such as ethylene and ethane, which are components of the condensate. Light fractions such as methane are ultimately separated and purified from heavy fractions containing ethylene and higher. The demethanizer tower T-2 has a tower main body 3
0, a reflux system consisting of a condenser 31, a reflux drum 32, and a reflux pump 33, and a reboiler 3.
4. A fraction containing residual hydrogen and methane is extracted from the top of the demethanizer column T-2, while a heavy fraction E of ethylene and ethane column is extracted from the bottom of the column. Next, the hydrogen and methane separation and purification step 2 mainly consists of hydrogen and methane supplied from the feed processing step 1.
A mixed gas consisting of methane is finally approximately
It separates and refines the liquid into a liquid whose main components are approximately 95 mol% hydrogen gas and methane. The supplied mixed gas is
Sequentially from line 16, first stage cooler E-5, first
It is purified through the stage separation drum D-4, the second stage cooler E-6 and the second stage separation drum D-5, and finally high pressure and low pressure methane gas are purified from lines 21 and 22, respectively, and purified from line 23. Hydrogen gas is extracted. Cooler E-5 and E-
The refrigerant used in 6 is the condensed methane liquid (lines 21, 22) from separation drums D-4 and D-5.
and purified hydrogen gas (line 23) are used. At this time, a considerable portion of hydrogen is blown into the refrigerant methane liquid to support the equipment capacity, and the partial pressure effect produces a low-temperature refrigerant methane liquid. A portion of the remaining hydrogen is further consumed for hydrogenation within the ethylene plant, and after removing the necessary trace amount of carbon monoxide, it is discharged as product hydrogen. The rest is consumed as fuel. On the other hand, the ethylene and high-boiling components that are condensed during the cooling process and supplied to the demethanizer are purified as a bottom fraction by finally separating dissolved hydrogen and methane by rectification in the demethanizer. and then supplied to the next process. At this time, the separated hydrogen and methane are taken out as gas components at the top of the tower, and after effectively recovering their cold heat through an expander and heat exchanger, they are discharged as fuel and consumed. . Table 1 shows an example of material balance data for each part in the conventional method.

【表】 (発明が解決しようとする問題点) 従来例である第2図のプロセスは、炭化水素混
合物を冷却するために必要な高価な冷媒(プロピ
レン冷媒およびエチレン冷媒)の使用量の低減化
を図るために、ジユールトムソン膨脹による自己
冷却(膨脹機C−1)を採用したものであるが、
低温冷媒の多量消費に多くのエネルギーを必要と
する欠点がある。すなわち、上記方法にて問題と
なる点は、炭化水素よりメタン、エチレン等の分
離をするためには、−100℃程度の高価なエチレン
冷媒等を多量に必要とし、そのためのエネルギー
消費が非常に大きいことである。これを解決する
ために、本発明者らは、炭化水素の熱分解により
生成する水素量と、プラント内でアセチレン等の
水添用および製品として払い出す必要水素量との
差で過剰となる水素、並びに脱メタン塔の塔頂水
素およびメタンガスを膨脹機を経由して低温化し
た後、前記ガス流の冷媒として使用することによ
り省エネルギー化を図ることを提案したが(特願
昭59−229361号)、エクセルギー損失およびエネ
ルギー消費の観点から充分なものとはいえなかつ
た。 本発明の目的は、上記従来技術の欠点を解消
し、圧縮、冷却等に要するエネルギー消費を低減
した炭化水素分解物の精製法を提供することにあ
る。 (問題点を解決するための手段) 本発明は、水素、メタン、エチレン、エタンお
よび高沸点炭化水素成分を含む炭化水素分解物の
ガス流から、メタンおよびそれより低沸点成分と
エチレンおよびそれより高沸点成分とに分離する
供給物処理工程と、エチレン、エタンおよびそれ
より高沸点成分からメタンおよび水素を回収する
脱メタン工程と、メタンおよびそれより低沸点成
分をさらに分離して水素ガスを精製する水素、メ
タン分離精製工程とを有する炭化水素分解物の精
製法において、水素、メタン分離精製工程におけ
る最終凝縮工程の前段階から、分離精製後の必要
水素量を差引いて過剰となる分の水素ガスおよび
これに同伴するメタンガスを分岐し、第1の膨脹
機により低温化した後、前記少なくとも1つの工
程の冷媒として使用するとともに、該使用後の冷
媒の一部または全部を少なくとも1回、前記第1
の膨脹機以外の膨脹機によつて低温化し、これを
前記3工程の少なくとも1つの工程の冷媒として
利用することを特徴とする。典型的には、本発明
は、前記水素、メタン分離精製工程の最終凝縮器
の前段階から分離精製後の必要水素量を差引いて
過剰となる分の水素ガスおよびこれに同伴するメ
タンガスを分岐し、第1の膨脹機により低温化し
た後、前記供給物処理工程、水素、メタン分離精
製工程および脱メタン塔塔頂蒸気を冷却、凝縮す
るための冷媒として利用し、さらに冷媒として利
用した前記水素ガスおよびこれに同伴するメタン
ガスの全量または一部を、少なくとも1回前記第
1の膨脹機と異なる他の膨脹機により低温化して
圧力、温度レベルの異なる少なくとも1種の冷媒
として前記工程等の冷媒に利用するようにしたも
のである。 本発明において、過剰となる分の水素ガスを低
温化するための膨脹機としては、、エチレン、エ
タンおよびそれより高沸点の炭化水素成分中に溶
解する水素およびメタンを分離除去するための脱
メタン塔の塔頂水素およびメタンガスの膨脹機C
−1を兼用することが好ましい。 また本発明において、前記膨脹機をシステムか
ら払い出されるメタンガスの圧縮機と同軸に組合
わせ、該圧縮機の所要動力の全部または一部を負
担させることが好ましい。 本発明によれば、前記膨脹機で低温化した水素
およびメタンガスを、前記脱メタン塔の塔頂蒸気
または塔内蒸気を冷却、凝縮するための冷媒とし
て利用することにより、より大きな省エネルギー
効果を得ることができる。 本発明は、処理流量と圧縮比を基に適正に設
計、製作された圧縮機により約35Kg/cm2G程度に
昇圧された分解ガスを逐次冷却し、生成する凝縮
液を脱メタン塔30に供給し、溶解する水素、メ
タンを塔頂オフガスとして除去し、そのオフガス
を膨脹機C−1を経て冷媒として利用し、該冷熱
を回収された後の燃料等として利用する点は従来
技術と同じであるが、分解ガスの冷却工程で分離
され、水素とメタンとの分離精製工程に送られて
約−125℃程度に冷却されたガスを従来のように
その全量を冷却し、精製水素(約95%程度)と残
メタン液とに分離する水素精製工程に送らず、そ
の一部をライン40から分岐し、これを前記脱メ
タン塔30の塔頂オフガスと合流させ、膨脹機C
−1を通して冷媒として有効に利用するようにし
た点、前記膨脹機C−1を通して冷媒として利用
した後、少なくとも1回(本発明の実施例では膨
脹機C−2,C−3の2回)他の膨脹機を通し
て、圧力、温度レベルの異なる冷媒として利用
し、冷熱の有効利用を図るようにした点、さら
に、前記膨脹機C−1,C−2,C−3を通して
生成された冷媒を前記脱メタン塔30の塔頂蒸気
または塔内蒸気の冷却、凝縮に利用するようにし
た点が従来技術と異なる。また前記膨脹機C−
1,C−2,C−3を、システムの残ガスとして
払い出されるメタンガスの圧縮機C−4と同軸に
組合わせ、該圧縮機の所要動力の全部または一部
を負担させることにより、より大きい省エネルギ
ー効果を得るようにした点でも従来技術と異な
る。 すなわち、本発明においては、第1図に示すご
とく、水素、メタン分離精製工程2における最終
段階の水素精製工程(第2段分離ドラムD−5)
に送る前段階で水素およびそれに同伴するメタン
をライン40で分岐し、膨脹機C−1によつて減
圧処理することにより、一層価値の高い冷媒を
得、熱交換器E−4,E−3で熱回収した後、再
度膨脹機C−2により減圧処理することにより、
膨脹機C−1を経由することにより生成した冷媒
とは、圧力、温度の異なる冷媒を得、これを熱交
換器E−5,E−4,E−3,E−2を経由させ
て再度熱回収を行ない、さらに膨脹機C−3を経
由することにより、前記2種類の冷媒と圧力、温
度の異なる冷媒を生成させ、これをE−5,E−
4,E−3,E−2,E−7を経由させて熱回収
を図るようにし、さらに脱メタン塔T−2の塔頂
水素およびメタンガスも熱交換器E−4、分離ド
ラムD−6を経て前記膨脹機C−1,C−2,C
−3それぞれを経由させることにより低温化し、
圧力、温度の異なる冷媒を生成させ、同様に熱回
収を図ようにした点に特色がある。すなわち、本
発明は、メタンと水素の分離工程2における最終
段階での水素およびそれに同伴するメタンおよび
脱メタン塔の塔頂水素およびメタンガスを膨脹機
を経由して低温化して、冷媒として使用した後、
当該ガスの一部または全部を少なくとも1回、他
の膨脹機を経由することにより少なくとも1回冷
温化して冷媒となし、これらの冷媒からの冷熱回
収により、より省エネルギー化を可能としたもの
である。膨脹機を経由することにより生成される
圧力、温度の異なる冷媒の種類は、冷却側流体お
よび被冷却側流体との熱量、温度、およびエクセ
ルエネルギー損失を考慮して決定される。第1図
中に、このように決定された温度、圧力条件の例
を示した。 さらに本発明においては、脱メタン塔塔頂凝縮
器D−6に必要な冷熱も、熱交換器E−4におい
て前記膨脹機C−1〜C−4を経由して生成され
る冷媒によつて供給されるため、例えば−60℃レ
ベル、−80℃レベル、−100℃レベルの3種類のエ
チレン冷媒を有する装置では、−100℃レベルのエ
チレン冷媒が不要となり、大きな省エネルギー効
果を図ることができる。 第2表は、従来例と比較した本発明におけるエ
ネルギー消費データを示したものである。この場
合の物質収支はいずれも第1表に記載したものと
大略同値である。この結果から明らかなように、
本発明においては顕著な省エネルギー効果が得ら
れることがわかる。
[Table] (Problems to be solved by the invention) The conventional process shown in Figure 2 reduces the amount of expensive refrigerants (propylene refrigerant and ethylene refrigerant) required to cool the hydrocarbon mixture. In order to achieve this, self-cooling using Joel Thompson expansion (expansion machine C-1) was adopted.
It has the disadvantage that it requires a lot of energy due to the large consumption of low-temperature refrigerant. In other words, the problem with the above method is that in order to separate methane, ethylene, etc. from hydrocarbons, a large amount of expensive ethylene refrigerant with a temperature of about -100°C is required, which consumes a lot of energy. That's a big thing. In order to solve this problem, the present inventors discovered that there is an excess of hydrogen due to the difference between the amount of hydrogen produced by thermal decomposition of hydrocarbons and the amount of hydrogen required to be used for hydrogenation of acetylene etc. and released as products in the plant. , as well as a proposal to save energy by lowering the temperature of hydrogen and methane gas at the top of the demethanizer via an expander and then using the gas stream as a refrigerant (Japanese Patent Application No. 59-229361). ), was not sufficient from the viewpoint of exergy loss and energy consumption. An object of the present invention is to provide a method for purifying hydrocarbon decomposition products that eliminates the drawbacks of the above-mentioned conventional techniques and reduces energy consumption required for compression, cooling, etc. (Means for Solving the Problems) The present invention provides a method for converting a hydrocarbon decomposition product gas stream containing hydrogen, methane, ethylene, ethane and high boiling point hydrocarbon components into methane and lower boiling point components and ethylene and lower boiling point components. a feed treatment step that separates high-boiling components; a demethanization step that recovers methane and hydrogen from ethylene, ethane, and higher-boiling components; and further separation of methane and lower-boiling components to purify hydrogen gas. In a method for purifying hydrocarbon decomposition products that has a hydrogen and methane separation and purification step, the amount of excess hydrogen obtained by subtracting the required amount of hydrogen after separation and purification from the stage before the final condensation step in the hydrogen and methane separation and purification step. After the gas and the accompanying methane gas are branched and lowered in temperature by a first expander, they are used as a refrigerant in the at least one step, and a part or all of the used refrigerant is used at least once in the 1st
It is characterized in that the temperature is lowered by an expander other than the expander described above, and this is used as a refrigerant in at least one of the three steps. Typically, the present invention branches the excess hydrogen gas and the accompanying methane gas by subtracting the required amount of hydrogen after separation and purification from a stage before the final condenser of the hydrogen and methane separation and purification process. , the hydrogen used as a refrigerant is used as a refrigerant for cooling and condensing the vapor at the top of the feed processing step, the hydrogen and methane separation and purification step, and the demethanizer tower after being lowered in temperature by the first expander. The entire amount or part of the gas and the accompanying methane gas are lowered to a lower temperature at least once in another expansion machine different from the first expansion machine to obtain at least one type of refrigerant having a different pressure and temperature level as a refrigerant for the above steps, etc. It was designed to be used for. In the present invention, the expander for lowering the temperature of excess hydrogen gas is a demethanizer for separating and removing hydrogen and methane dissolved in ethylene, ethane, and hydrocarbon components with higher boiling points. Column overhead hydrogen and methane gas expander C
It is preferable to also use -1. Further, in the present invention, it is preferable that the expander is coaxially combined with a compressor for methane gas discharged from the system, so that all or part of the required power of the compressor is borne. According to the present invention, a greater energy saving effect can be obtained by utilizing the hydrogen and methane gas whose temperature has been lowered in the expander as a refrigerant for cooling and condensing the tower top vapor or tower internal vapor of the demethanizer. be able to. The present invention sequentially cools cracked gas that has been pressurized to approximately 35 kg/cm 2 G using a compressor that is appropriately designed and manufactured based on the processing flow rate and compression ratio, and the resulting condensate is sent to the demethanizer 30. It is the same as the conventional technology in that the supplied and dissolved hydrogen and methane are removed as off-gas at the top of the column, the off-gas is used as a refrigerant through the expander C-1, and the cold heat is recovered and used as fuel etc. However, the gas that is separated in the cracked gas cooling process and sent to the hydrogen and methane separation and purification process and cooled to approximately -125℃ is cooled in its entirety as in the conventional method, and purified hydrogen (approximately 95%) and residual methane liquid, a part of it is branched from the line 40 and combined with the top off-gas of the demethanizer 30, and then sent to the expander C.
-1 is effectively used as a refrigerant through the expander C-1, at least once (twice in the expanders C-2 and C-3 in the embodiment of the present invention) after being used as a refrigerant through the expander C-1. In addition, the refrigerant generated through the expansion machines C-1, C-2, and C-3 is used as a refrigerant with different pressure and temperature levels to effectively utilize the cold energy. This method differs from the prior art in that it is used for cooling and condensing the top vapor or internal vapor of the demethanizer 30. Further, the expansion machine C-
1, C-2 and C-3 are coaxially combined with the methane gas compressor C-4, which is discharged as residual gas from the system, and by bearing all or part of the required power of the compressor, a larger It also differs from conventional technology in that it achieves an energy-saving effect. That is, in the present invention, as shown in FIG.
By branching off hydrogen and the methane accompanying it in line 40 and subjecting it to depressurization treatment by expander C-1 before sending it to heat exchangers E-4 and E-3, a more valuable refrigerant is obtained. After the heat is recovered by the expander C-2, the pressure is reduced by
The refrigerant generated by passing through the expander C-1 is a refrigerant with a different pressure and temperature, and is passed through the heat exchangers E-5, E-4, E-3, and E-2 again. By performing heat recovery and further passing through the expander C-3, a refrigerant having a pressure and temperature different from the above two types of refrigerants is generated, and this is converted into E-5, E-
4, E-3, E-2, and E-7 for heat recovery, and the top hydrogen and methane gas of demethanizer T-2 are also transferred to heat exchanger E-4 and separation drum D-6. through the expansion machines C-1, C-2, and C.
−3, the temperature is lowered by passing through each of the
It is unique in that it generates refrigerants with different pressures and temperatures, and also attempts to recover heat. That is, the present invention lowers the temperature of the hydrogen and accompanying methane in the final stage of the methane-hydrogen separation step 2 and the hydrogen and methane gas at the top of the demethanizer via an expander and uses them as a refrigerant. ,
Part or all of the gas is cooled at least once by passing through another expansion machine to become a refrigerant, and by recovering cold heat from these refrigerants, it is possible to further save energy. . The types of refrigerants with different pressures and temperatures generated by passing through the expander are determined in consideration of the amount of heat, temperature, and Excel energy loss between the cooling side fluid and the cooled side fluid. FIG. 1 shows an example of the temperature and pressure conditions determined in this way. Furthermore, in the present invention, the cold heat required for the demethanizer tower top condenser D-6 is also generated by the refrigerant generated in the heat exchanger E-4 via the expanders C-1 to C-4. For example, in a device that uses three types of ethylene refrigerant: -60°C level, -80°C level, and -100°C level, the -100°C level ethylene refrigerant is not required, resulting in a significant energy saving effect. . Table 2 shows energy consumption data for the present invention compared to the conventional example. The material balances in this case are approximately the same as those listed in Table 1. As is clear from this result,
It can be seen that a remarkable energy saving effect can be obtained in the present invention.

【表】 (発明の効果) 本発明によれば、水素、メタン分離精製工程お
よび脱メタン塔の塔頂部から水素、メタンを取り
出し、膨脹機を通して減圧化し、メタン以下の低
沸点成分とエチレン以上の高沸点成分を分離する
工程の冷媒として利用することにより、システム
全体の冷却用動力を低減し、省エネルギー化を図
ることができる。
[Table] (Effects of the invention) According to the present invention, hydrogen and methane are extracted from the hydrogen and methane separation and purification process and from the top of the demethanizer, and the pressure is reduced through an expander. By using it as a refrigerant in the process of separating high-boiling components, it is possible to reduce the cooling power of the entire system and save energy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示す装置系統
図、第2図は、従来の同様な炭化水素分解物の精
製法の装置系統図である。 E−1,E−2,E−3,E−4,E−5,E
−6……分解ガスの冷却用熱交換器、E−7……
冷熱回収用熱交換器、D−1,D−2,D−3,
D−4,D−5……気液分離ドラム、C−1,C
−2,C−3……膨脹機、T−1……精留塔、T
−2……脱メタン塔。
FIG. 1 is an apparatus system diagram showing an embodiment of the present invention, and FIG. 2 is an apparatus system diagram for a similar conventional method for purifying hydrocarbon decomposition products. E-1, E-2, E-3, E-4, E-5, E
-6... Heat exchanger for cooling cracked gas, E-7...
Heat exchanger for cold heat recovery, D-1, D-2, D-3,
D-4, D-5... Gas-liquid separation drum, C-1, C
-2, C-3... Expansion machine, T-1... Rectification column, T
-2...Demethanizer tower.

Claims (1)

【特許請求の範囲】 1 水素、メタン、エチレン、エタンおよび高沸
点炭化水素成分を含む炭化水素分解物のガス流か
ら、メタンおよびそれより低沸点成分とエチレン
およびそれより高沸点成分とに分離する供給物処
理工程と、エチレン、エタンおよびそれより高沸
点成分からメタンおよび水素を回収する脱メタン
工程と、メタンおよびそれより低沸点成分をさら
に分離して水素ガスを精製する水素、メタン分離
精製工程とを有する炭化水素分解物の精製法にお
いて、水素、メタン分離精製工程における最終凝
縮工程の前段階から、分離精製後の必要水素量を
差引いて過剰となる分の水素ガスおよびこれに同
伴するメタンガスを分岐し、第1の膨脹機により
低温化した後、前記少なくとも1つの工程の冷媒
として使用するとともに、該使用後の冷媒の一部
または全部を少なくとも1回、前記第1の膨脹機
以外の膨脹機によつて低温化し、これを前記3工
程の少なくとも1つの工程の冷媒として利用する
ことを特徴とする炭化水素分解物の精製法。 2 特許請求の範囲第1項記において、前記第1
の膨脹機として、脱メタン工程の塔頂水素および
メタンガスの膨脹機を兼用することを特徴とする
炭化水素分解物の精製法。 3 特許請求の範囲第1項または第2項におい
て、前記第1の膨脹機によつて低温化することに
より生成された冷媒を、脱メタン工程の塔頂蒸気
または塔内蒸気を冷却、凝縮させるための冷媒と
して用いることを特徴とする炭化水素分解物の精
製法。 4 特許請求の範囲第1項ないし第3項のいずれ
かにおいて、前記膨脹機により低温化した流体
を、前記供給物処理工程、メタン分離精製工程お
よび脱メタン工程の冷媒として使用することを特
徴とする炭化水素分解物の精製法。 5 特許請求の範囲第1項ないし第3項におい
て、前記膨脹機をシステムから払い出されるメタ
ンガスの圧縮機と同軸に組合わせ、該圧縮機の所
要動力の全部または一部を負担するようにしたこ
とを特徴とする炭化水素分解物の精製法。
[Claims] 1. Separation of methane and lower boiling components and ethylene and higher boiling components from a gas stream of hydrocarbon decomposition products containing hydrogen, methane, ethylene, ethane and high boiling hydrocarbon components. a feed treatment process, a demethanization process to recover methane and hydrogen from ethylene, ethane, and higher boiling components, and a hydrogen and methane separation and purification process to further separate methane and lower boiling components to purify hydrogen gas. In a method for purifying a hydrocarbon decomposition product, the amount of hydrogen gas and accompanying methane gas obtained by subtracting the required amount of hydrogen after separation and purification from the stage before the final condensation step in the hydrogen and methane separation and purification process. The refrigerant is branched, and after being lowered in temperature by the first expansion machine, it is used as a refrigerant in the at least one step, and a part or all of the used refrigerant is at least once used in an expansion machine other than the first expansion machine. A method for purifying a hydrocarbon decomposition product, which comprises lowering the temperature using an expander and using this as a refrigerant in at least one of the three steps. 2. In claim 1, the first
1. A method for purifying hydrocarbon decomposition products, characterized in that the expander for the top hydrogen and methane gas in the demethanization process is also used as the expander for the demethanization process. 3. In claim 1 or 2, the refrigerant produced by lowering the temperature by the first expander is used to cool and condense the overhead vapor or the vapor in the column in the demethanization process. A method for purifying a hydrocarbon decomposition product, characterized in that it is used as a refrigerant. 4. According to any one of claims 1 to 3, the fluid lowered in temperature by the expander is used as a refrigerant in the feed treatment step, the methane separation and purification step, and the demethanization step. A method for purifying hydrocarbon decomposition products. 5. In claims 1 to 3, the expander is coaxially combined with a compressor for methane gas discharged from the system, and bears all or part of the power required by the compressor. A method for purifying hydrocarbon decomposition products characterized by:
JP60027839A 1985-02-15 1985-02-15 Method of purifying hydrocarbon decomposition product Granted JPS61189233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60027839A JPS61189233A (en) 1985-02-15 1985-02-15 Method of purifying hydrocarbon decomposition product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60027839A JPS61189233A (en) 1985-02-15 1985-02-15 Method of purifying hydrocarbon decomposition product

Publications (2)

Publication Number Publication Date
JPS61189233A JPS61189233A (en) 1986-08-22
JPH0543691B2 true JPH0543691B2 (en) 1993-07-02

Family

ID=12232094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60027839A Granted JPS61189233A (en) 1985-02-15 1985-02-15 Method of purifying hydrocarbon decomposition product

Country Status (1)

Country Link
JP (1) JPS61189233A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4814589B2 (en) * 2005-03-31 2011-11-16 三菱化学株式会社 Method for separating C2 + fraction from light gas containing NOx
JP4814587B2 (en) * 2005-03-31 2011-11-16 三菱化学株式会社 Method for separating C2 + fraction from light gas containing NOx
JP4814588B2 (en) * 2005-03-31 2011-11-16 三菱化学株式会社 Method for separating C2 + fraction from light gas containing NOx
WO2014099569A1 (en) * 2012-12-18 2014-06-26 Invista Technologies S.À R.L. Hydrogen cyanide production with controlled feedstock composition
EP3550240A1 (en) * 2018-04-06 2019-10-09 Linde Aktiengesellschaft Method for separating a mixture of components, and a separating device
CN114087849A (en) * 2021-11-25 2022-02-25 北京恒泰洁能科技有限公司 Pyrolysis gas cryogenic separation method

Also Published As

Publication number Publication date
JPS61189233A (en) 1986-08-22

Similar Documents

Publication Publication Date Title
CA1250220A (en) Process for the separation of a c in2 xx hydrocarbon fraction from natural gas
JP2575045B2 (en) Method for recovery and purification of ethylene
CA1235650A (en) Parallel stream heat exchange for separation of ethane and higher hydrocarbons from a natural or refinery gas
KR100338278B1 (en) Improved recovery of olefins
JP3602807B2 (en) Method for separating a raw material gas mixture
EA004469B1 (en) Method and installation for separating a gas mixture and gases obtained by said installation
CN112028731B (en) Method for separating propylene reaction product from propane dehydrogenation
JPH03505913A (en) Cryogenic separation of gas mixtures
JPS58195778A (en) Manufacture of carbon monoxide
WO2005009930A1 (en) Method and apparatus for separating hydrocarbon
US4608068A (en) Recovery of C3+ hydrocarbons
JP2869357B2 (en) Ethylene recovery method
EP0126309B1 (en) Process for recovering c4-hydrocarbons using a dephlegmator
JPH02503348A (en) How to recover helium from natural gas streams
US4695303A (en) Method for recovery of natural gas liquids
JPH0553193B2 (en)
CN110631326B (en) Fischer-Tropsch synthesis tail gas recycling system process
CA1216511A (en) Apparatus and method for recovering light hydrocarbons from hydrogen containing gases
JPH0543691B2 (en)
WO2005050109A1 (en) Gas liquefying plant
KR100843487B1 (en) Advanced heat integrated rectifier system
US2519955A (en) Production of hydrocarbon-oxygen mixtures
KR101676069B1 (en) Hydrocarbon gas processing
JP3730362B2 (en) Method for separating hydrogen and methane from gaseous hydrocarbons
KR101687851B1 (en) Hydrocarbon gas processing