JPH0543490B2 - - Google Patents

Info

Publication number
JPH0543490B2
JPH0543490B2 JP8164482A JP8164482A JPH0543490B2 JP H0543490 B2 JPH0543490 B2 JP H0543490B2 JP 8164482 A JP8164482 A JP 8164482A JP 8164482 A JP8164482 A JP 8164482A JP H0543490 B2 JPH0543490 B2 JP H0543490B2
Authority
JP
Japan
Prior art keywords
strength
plate
plastic
annealing
deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8164482A
Other languages
Japanese (ja)
Other versions
JPS58199114A (en
Inventor
Terufumi Machida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP8164482A priority Critical patent/JPS58199114A/en
Publication of JPS58199114A publication Critical patent/JPS58199114A/en
Publication of JPH0543490B2 publication Critical patent/JPH0543490B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/18Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets by squeezing between surfaces, e.g. rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/0011Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for shaping plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/0037Forming articles from a moulding composition enclosed in a deformable bag

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【発明の詳細な説明】 この発明は、常温で高い形状安定性と剛性をす
る高強度熱可塑性樹脂体の製造方法に関する。近
年、工業を中心に広く用いられているプラスチツ
クの欠点のひとつは、他の工業材料特に金属に比
べて強度がかなり低いことである。この発明は特
に熱可塑性樹脂に関して、この欠点を大幅に改善
する樹脂体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a high-strength thermoplastic resin body that exhibits high shape stability and rigidity at room temperature. One of the drawbacks of plastics, which have been widely used mainly in industry in recent years, is that their strength is considerably lower than that of other industrial materials, especially metals. The present invention relates to a method for producing resin bodies which significantly improves this drawback, particularly with regard to thermoplastic resins.

一般に熱可塑性樹脂体の多くは、ペレツトを溶
融し、融点近傍の高温で押出し成形、射出成形、
カレンダ成形、圧縮成形する等の方法で作られ
る。このとき金属のように冷間で変形加工をして
も、直後の大きなスプリングバツクとか、熱や時
間経過に伴なうひずみ回復が生じ形状が安定しな
いので、冷間加工方法は普通採用されていない。
In general, many thermoplastic resin bodies are made by melting pellets and extrusion molding, injection molding, etc. at high temperatures near the melting point.
It is made by calender molding, compression molding, etc. At this time, even if it is cold deformed like metal, the shape will not be stable due to large spring back immediately after and strain recovery due to heat and the passage of time, so the cold working method is not usually adopted. do not have.

このようにして得られるプラスチツク体の強
度、例えば引張強さは、ポリエチレンで約1Kg
f/mm2、ポリアセタールで約6Kgf/mm2、ポリカ
ーボネートで約7Kgf/mm2の値をとる。この値は
重量当りの強さ(比強度)を比較した場合、プラ
スチツクは軽いので遜色はないといえるが同一寸
法で比較した場合には、例えば工業界で最も広く
用いられている軟鋼が約35Kgf/mm2であるからそ
れを比べれば極めて低く、そのため用途が限られ
ざるを得ない。
The strength of the plastic body obtained in this way, for example, the tensile strength of polyethylene, is approximately 1 kg.
f/mm 2 , about 6 Kgf/mm 2 for polyacetal, and about 7 Kgf/mm 2 for polycarbonate. When comparing the strength per weight (specific strength), plastic is lighter, so it can be said that it is comparable, but when comparing the same dimensions, for example, mild steel, which is the most widely used in industry, is about 35Kgf. /mm 2 , which is extremely low compared to that, and therefore its uses are inevitably limited.

そこでこの問題を解決するためプラスチツク中
に繊維を含有させて強化する方策が従来とられて
来た。いわゆる繊維強化プラスチツク(FRPと
略記されることもある)であるが、ガラス繊維を
はじめ多くの繊維が開発され、強化の目的を達成
している。しかし、この強化方法は必ずしも簡単
なものではなく、(1)コストがかかる。(2)繊維の切
断や前処理または取扱いが煩雑である。(3)短繊維
(一般に1〜2mm以下)でさえも一様に含有させ
るのが難かしい。(4)成形機械工具の摩耗や損傷も
引起しやすい。など幾多の欠点があつた。
In order to solve this problem, conventional measures have been taken to strengthen plastics by incorporating fibers into them. Many fibers, including glass fiber, have been developed to achieve the purpose of reinforcing the so-called fiber-reinforced plastics (sometimes abbreviated as FRP). However, this strengthening method is not necessarily easy and (1) is costly. (2) Cutting, pretreatment, and handling of fibers are complicated. (3) It is difficult to uniformly contain even short fibers (generally 1 to 2 mm or less). (4) It also tends to cause wear and damage to molding machine tools. There were many shortcomings.

この発明はこのような複合化によらず熱可塑性
樹脂体の強度を改善し、熱可塑性樹脂体の有用性
に新たな可能性を提供するものである。
This invention improves the strength of thermoplastic resin bodies without relying on such compositing, and provides new possibilities for the usefulness of thermoplastic resin bodies.

この発明の二つのステツプからなつている。ひ
とつは熱可塑性樹脂を前述のひずみ回復を生ずる
条件、すなわち常温を含む温間までの温度で加工
(以下冷間加工とよぶ)することで、他のひとつ
は冷間加工後直ちにその加工体を、その周囲を囲
む部材により、その形状を外力により拘束しなが
ら急速焼なまし(以下不完全焼なましと呼ぶ)す
ることである。
This invention consists of two steps. One is to process the thermoplastic resin under conditions that cause strain recovery as described above, that is, at temperatures up to warm temperatures including room temperature (hereinafter referred to as cold working), and the other is to process the processed body immediately after cold working. , rapid annealing (hereinafter referred to as incomplete annealing) is carried out while the shape is restrained by an external force using a member surrounding the periphery.

この不完全焼きなましでは、緩和効果が現れな
い温度と時間の組合せからなる条件で行うことが
望ましい。もし、高い温度で或いは長時間焼きな
ましを行つてひずみが完全になくなるようにし、
すなわち完全に緩和効果が生ずるようにすると、
残留応力がなくなるため、強度が大きくならな
い。
This incomplete annealing is desirably performed under conditions consisting of a combination of temperature and time that does not produce a relaxation effect. If annealing is performed at high temperature or for a long time to completely eliminate distortion,
In other words, if we allow the relaxation effect to occur completely,
Since there is no residual stress, the strength does not increase.

その原理は本発明者が1979年(昭和54年)に発
見し、「塑性と加工」第20巻第222号(1979年)第
610〜617頁に発表したプラスチツクの熱誘起変形
現象と命名された現象、即ち、溶融ないし半溶融
状態で押し出し成形され、冷却された熱可塑性プ
ラスチツクは、形状記憶がなされており、ある温
度以上、例えば流動しうる温度に加熱されると、
その際何の力を加えなくとも、前の成形加工によ
り力が加えられた方向にかつその力の程度によ
り、急激に大きな流動あるいは変形をするという
現象に基づくものである。実験の結果この熱誘起
変形の能力を持つプラスチツクを意識的に形成で
きることがわかつた。すなわち冷間で与えられた
ひずみを外力で拘束保持しながら、適当な条件で
加熱(不完全焼なまし)すると、ひずみの性質が
変わり、熱誘起変形能が形成される。このように
して得た熱誘起変形能は、やはり、常用温度以下
では完全にかくされているが、ある温度以上に加
熱した時にのみ姿を現わすものである。この熱誘
起変形能は、そのまゝ感温変形機能要素として利
用もできるが、仮に加熱した時に現れようとする
変形を、外力で抑えつけたとすれば、その応力に
相当する残留応力がプラスチツクに全体的に内在
されるだろう。この残留応力が大きければプラス
チツクは強化されることになる。このような処理
をしたプラスチツクはもちろん通常環境では形状
が安定していて、ただ残留応力により強度が改善
されていることになる。
The principle was discovered by the present inventor in 1979, and was published in "Plasticity and Processing" Vol. 20, No. 222 (1979).
The phenomenon called thermally induced deformation of plastics, which was published on pages 610-617, is that thermoplastics extruded in a molten or semi-molten state and cooled have shape memory, and above a certain temperature, For example, when heated to a temperature that allows it to flow,
This is based on the phenomenon that even if no force is applied at that time, the material undergoes sudden large flow or deformation depending on the direction and degree of force applied during the previous molding process. Experiments have shown that it is possible to consciously create plastics that have the ability to undergo thermally induced deformation. That is, by heating (incomplete annealing) under appropriate conditions while restraining and holding the cold strain by external force, the nature of the strain changes and thermally induced deformability is formed. The thermally induced deformability obtained in this way is also completely hidden below the normal temperature, but becomes visible only when heated above a certain temperature. This heat-induced deformability can be used as is as a temperature-sensitive deformation function element, but if the deformation that appears when heated is suppressed by an external force, residual stress corresponding to that stress will be applied to the plastic. It will be totally immanent. If this residual stress is large, the plastic will be strengthened. Plastics treated in this way are, of course, stable in shape under normal circumstances, but their strength is improved by residual stress.

そして、その加熱の際、その加工体をその周囲
を囲む面を有する部材により保持して、加熱によ
る変形を阻止するようにすると、前記部材は変形
に対抗する力を加工体に与えることになり、その
作用により加工体は結果として外力により拘束を
受けることになり、プラスチツクに前記の残留応
力を与えることができる。
During heating, if the workpiece is held by a member having a surrounding surface to prevent deformation due to heating, the member will apply a force to the workpiece to counter deformation. As a result of this action, the workpiece is restrained by an external force, and the above-mentioned residual stress can be imparted to the plastic.

冷間加工を加えて不完全焼なましを行なうこと
によつて、残留応力を内在せしめ、これによつて
強化する方法は、あらゆる熱可塑性樹脂に応用可
能である。例えば常温では硬く脆いアクリルの如
きものも、100〜150℃の如き温間では変形加工が
可能であるから同じ効果を期待できる。また最終
製品の形状もとくに限定されない。例えば板や帯
状のものは、圧延の方法、線や棒状のものは穴計
圧延、引抜き、押出し等の方法、その他形状の場
合も金属を加工する方法がほゞそのまゝ利用で
き、不完全焼なましの間だけその形状を保持する
治具を工夫しさえすればやはり残留応力を内在せ
しめて強化効果が得られる。
The method of incorporating residual stress by cold working and incomplete annealing and thereby strengthening it can be applied to all thermoplastic resins. For example, materials such as acrylic, which are hard and brittle at room temperature, can be deformed at temperatures of 100 to 150°C, so the same effect can be expected. Furthermore, the shape of the final product is not particularly limited. For example, for plates and strips, rolling methods can be used, for wires and rods, methods such as hole-meter rolling, drawing, and extrusion can be used, and for other shapes, metal processing methods can be used almost as is, and imperfections can be used. As long as the jig is devised to maintain its shape only during annealing, residual stress can be incorporated and a strengthening effect can be obtained.

その治具(部材)は加工体の熱変形に起因する
外力を十分受けられるように、その加工体に密着
した方がよく、場合によつては外側から押圧する
ことが好ましい。
The jig (member) should be in close contact with the workpiece so that it can sufficiently receive the external force caused by thermal deformation of the workpiece, and in some cases it is preferable to press it from the outside.

第1図は本発明の方法の一例として、強化プラ
スチツク板を作る方法を段階的に示した模式図で
あつて、第1図aは冷間圧延を、第1図bは形状
保持した圧延板の不完全焼なまし工程を夫々示し
ている。
FIG. 1 is a schematic diagram showing step-by-step a method for making a reinforced plastic plate as an example of the method of the present invention, in which FIG. 1a shows cold rolling, and FIG. The incomplete annealing process is shown respectively.

第1図aにおいては厚さTのプラスチツク板1
を冷間圧延ロール2で厚さtの板1′にするとこ
ろを示している。第1図bにおいて、3,4は厚
さtの板1′を抑えるホルダー、5,6は加熱及
び冷却手段を示している。
In FIG. 1a, a plastic plate 1 of thickness T is shown.
The figure shows the process of forming a plate 1' with a thickness t using cold rolling rolls 2. In FIG. 1b, 3 and 4 are holders for holding the plate 1' having a thickness of t, and 5 and 6 are heating and cooling means.

第2図は棒状プラスチツクの不完全焼なましを
行う状態を示し、板の場合の第1図bの図に相当
する。引抜き、押出し、あるいは孔型圧延によつ
て形成された棒状プラスチツクを使用する。第2
図においては、プラスチツクの棒状体1″の上下
からホルダー3′,4′をかぶせて棒を抑える。尚
図示はしないが、加熱手段、冷却手段をホルダー
に設けることは、第1図bの場合と同様である。
棒状体の場合は図示の如く、上下から抑えるとい
つても実際上は周囲から抑えることになる。
FIG. 2 shows the incomplete annealing of a plastic rod and corresponds to the view in FIG. 1b for a plate. Bars of plastic formed by pultrusion, extrusion, or groove rolling are used. Second
In the figure, holders 3' and 4' are placed over the plastic rod-shaped body 1'' from above and below to hold the rod in place.Although not shown, heating means and cooling means may be provided on the holder in the case of FIG. 1b. It is similar to
In the case of a rod-shaped body, as shown in the figure, whenever it is held down from above and below, it is actually held down from the periphery.

実際の生産ラインとしては圧延機の出口に連接
した所定隙間を持つ長いダイスをセツトし、冷間
圧延直後のプラスチツクを通過させる。このとき
ダイスは材質は問わないが、プラスチツクが加熱
されたときにひずみを回復しようとして変形する
のでこれを押えるのに十分な構造強度を持たなけ
ればならない。ダイスの加熱には電気抵抗加熱等
のほか高周波誘導加熱も採用でき、その方法に特
別な限定はない。又冷却は水冷でも空冷でもよ
い。
In an actual production line, a long die with a predetermined gap connected to the outlet of a rolling mill is set, and the plastic immediately after cold rolling is passed through it. At this time, the material of the die does not matter, but it must have sufficient structural strength to suppress the deformation of the plastic as it tries to recover from the strain when it is heated. In addition to electric resistance heating, high frequency induction heating can also be used for heating the dice, and there are no particular limitations on the method. Further, the cooling may be water cooling or air cooling.

この発明の方法は前記のようなものであつて、
フイルムのようなものではなく、薄板、棒状体な
ど高い剛性を有するものに適用され、さらに板の
場合は充分に広い幅のものの製造が可能である。
The method of this invention is as described above,
It is applicable not to things like films, but to things with high rigidity such as thin plates and rod-shaped objects, and in the case of plates, it is possible to manufacture objects with a sufficiently wide width.

実施例 1 市販の板厚6.3mmのポリアセタール(融点178
℃、ガラス転移点93℃)の薄板に第1図aに示す
ように直径70mmのロールでスプリングバツクを差
引いてリダクシヨン60%を与え、直ちに電気抵抗
炉中のホルダー(アルミニウム製)でこれを拘束
し次に示すあらかじめ定められた電気炉温度で定
められた時間不完全焼なましを行なつた。試作し
た板の強度はテンシロン引張試験機により、平行
部巾10mm、GL20mm、速度30mm/分で求めた。実
験の結果最初7.35Kgf/mm2の引張り強さが不完全
焼なまし後、第3図に示す如く圧延の方向で10.5
〜11.4Kgf/mm2と、約50%も改善された。第2図
において、()は従来の板の強さ、()は150
℃で40分焼なました場合の強さ、()は170℃で
30分焼なました場合の強さを夫々示している。
Example 1 Commercially available polyacetal with a thickness of 6.3 mm (melting point 178
As shown in Figure 1a, a 60% reduction is applied to a thin plate with a glass transition point of 93°C (glass transition point: 93°C), with spring back subtracted, using a roll with a diameter of 70 mm, and immediately restrained in a holder (made of aluminum) in an electric resistance furnace. Then, incomplete annealing was performed at the following predetermined electric furnace temperature for a predetermined time. The strength of the prototype plate was determined using a Tensilon tensile tester at a parallel part width of 10 mm, GL of 20 mm, and a speed of 30 mm/min. The experimental results showed that the initial tensile strength was 7.35Kgf/ mm2 , but after incomplete annealing, the tensile strength was 10.5Kgf/mm2 in the rolling direction as shown in Figure 3.
~11.4Kgf/ mm2 , an improvement of about 50%. In Figure 2, () is the strength of the conventional board, () is 150
Strength when annealed at ℃ for 40 minutes, () at 170℃
Each shows the strength when annealed for 30 minutes.

なお前記板とホルダーとの隙間が大きいとこの
強化作用が減殺されるので、不完全焼なまし中の
変形は極力抑える必要がある。また得られた板は
真夏の条件30〜35℃で2ケ月また100℃の湯中で
30分保持しても何等の寸法形状の変化は認められ
なかつた。しかし160〜170℃もの高温では圧延方
向に収縮し板厚が増すというような変形がおこな
われ、板の形状と強度はほぼ原形の値に戻ること
が認められた。
Note that if the gap between the plate and the holder is large, this reinforcing effect will be diminished, so deformation during incomplete annealing must be suppressed as much as possible. The obtained board was kept at 30 to 35 degrees Celsius in midsummer for two months, and then in hot water at 100 degrees Celsius.
Even after holding for 30 minutes, no change in size or shape was observed. However, at high temperatures of 160 to 170°C, deformation occurs such as shrinkage in the rolling direction and increase in plate thickness, and the shape and strength of the plate were found to return to almost their original values.

実施例 2 二方向に強化するため前記の実施例1のポリア
セタール原板をクロス圧延すなわち直交方向に交
互に圧延(合計75%)し、ついで150℃で40分保
持後、更に効果をあげるため170℃で20分間保持
する不完全焼なまし処理をした。この板の引張強
さは両方向とも9.8Kgf/mm2であつた。これは原
板よりも約30%の向上である。
Example 2 In order to strengthen the polyacetal in two directions, the polyacetal original sheet of Example 1 was cross-rolled, that is, rolled alternately in orthogonal directions (75% in total), then held at 150°C for 40 minutes, and then heated at 170°C to further increase the effect. An incomplete annealing process was carried out for 20 minutes. The tensile strength of this plate was 9.8 Kgf/mm 2 in both directions. This is about a 30% improvement over the original.

実施例 3 前述のポリアセタールを75%冷間圧延し、170
℃で20分間不完全焼なまし処理をした。この板の
引張強さは、原板の約3.5倍の24Kgf/mm2に達し
た。このことから冷間圧延率の大きい方が強化効
果があがることが判る。
Example 3 The above-mentioned polyacetal was cold rolled by 75% and
An incomplete annealing process was carried out at ℃ for 20 minutes. The tensile strength of this plate reached 24 kgf/mm 2 , approximately 3.5 times that of the original plate. This shows that the higher the cold rolling rate, the greater the strengthening effect.

実施例 4 板厚6.1mmのポリカーボネート板を60%冷間圧
延し、120℃で50分間不完全焼なましをした。そ
の圧延強度は原板(7Kgf/mm2より約100%改善
され14Kgf/mm2に達した。150℃で50分の焼なま
しではその半径程度の改善がみられた。
Example 4 A polycarbonate plate with a thickness of 6.1 mm was cold rolled by 60% and incompletely annealed at 120°C for 50 minutes. Its rolling strength reached 14 Kgf/mm 2 , which was approximately 100% improved over the original sheet (7 Kgf/mm 2 ) .An improvement of about the same radius was observed after annealing at 150°C for 50 minutes.

プラスチツクの強度改善は通常繊維その他を含
有あるいは組合せる複合化によるが、当然制限も
出てくるので、プラスチツク自体を改質すること
も必要である。この発明の方法は冷間加工と加熱
を組合せた連続ラインに取込むことができて簡単
なもので250%までも強度改善でき実用の期待が
持てよう。もちろん繊維強化したものに適用すれ
ば一層効果が大きい。上記実施例では圧延板を示
したが、もちろん圧縮、引張り、深絞り、引抜
き、押出し、曲げ、その他の加工法でも同様な効
果があることはいうまでもない。
The strength of plastics is usually improved by incorporating or combining them with fibers and other materials, but this naturally comes with limitations, so it is also necessary to modify the plastics themselves. The method of this invention is simple and can be incorporated into a continuous line that combines cold working and heating, and it can improve the strength by up to 250%, and is expected to be put to practical use. Of course, the effect will be even greater if it is applied to fiber-reinforced materials. Although a rolled plate is shown in the above embodiment, it goes without saying that compression, tension, deep drawing, drawing, extrusion, bending, and other processing methods can also have similar effects.

また本発明の方法によつて改質、強化したプラ
スチツク板は打抜き(穴あけ)加工性の面からも
改善効果が著じるしい。プラスチツクは軟質で弾
性が大きく分離しにくいため、普通打抜き縁がく
さび形を呈し、金属のようにまつすぐな切口面が
得られず離間の一つであつた。ところがこの発明
によつて得られた板は強度向上のため打抜き荷重
またはせん断抵抗が高くなると同時に、過剰な軟
質が抑えられる結果、切口面が平滑になり、その
まゝ実用できるようになつた。
Furthermore, the plastic plate modified and strengthened by the method of the present invention has a remarkable improvement effect in terms of punching (drilling) workability. Plastic is soft and elastic, making it difficult to separate, so the punched edge usually takes on a wedge shape, making it impossible to obtain a straight cut surface like metal. However, the plate obtained by this invention has a high punching load or shear resistance due to improved strength, and at the same time, the excessive softness is suppressed, resulting in a smooth cut surface, and it can be put to practical use as it is.

実施例 5 ポンチ径20mm、ダイス径20.5mmでポリアセター
ルとポリカーボネートの、この発明で得られた板
を打抜き、同程度の板厚の市販品と比較した。
Example 5 A plate made of polyacetal and polycarbonate obtained according to the present invention was punched using a punch diameter of 20 mm and a die diameter of 20.5 mm, and compared with a commercially available plate having a similar thickness.

第4図はポンチストロークと打抜き力(せん断
応力)との関係を示し、aはポリアセタール、b
はポリカーボネートを夫々示し、図中は市販
品、,はこの発明によつて作製したものを
夫々示す。図示の如く、この発明により強化が十
分なものの方が曲線の立上りが急激で、最高点ま
ですみやかに達し、それ以降の荷重低下も急激で
せん断がスムースであることが判る。
Figure 4 shows the relationship between punch stroke and punching force (shear stress), where a is polyacetal, b is
1 and 2 respectively indicate polycarbonate, and in the figure, , indicates a commercially available product, and , indicates a product produced according to the present invention, respectively. As shown in the figure, it can be seen that in the case where the reinforcement according to the present invention is sufficient, the rise of the curve is more rapid and the maximum point is quickly reached, and the load decreases thereafter is also more rapid and the shearing is smoother.

第5図は打抜き製品の切口面を示したもので、
aはポリアセタール、bはポリカーボネートの場
合を示し、は従来品、,はこの発明で強化
された板の場合を夫々示している。強化が行なわ
れた板は材料分離の主体が引張り優先形から、せ
ん断優先形に変つており切口面は喰込みが少な
く、平滑になつており、優れた切口になつてい
る。穴あけ製品の切口面も同様に改善された。
Figure 5 shows the cut surface of the punched product.
1.a shows the case of polyacetal, b shows the case of polycarbonate, . shows the case of the conventional product, and . In the strengthened board, the main material separation is changed from a tension-first type to a shear-first type, and the cut surface has less gouge and is smooth, resulting in an excellent cut. The cut surface of the drilled product was similarly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは、この発明の方法の各工程を示
す図、第2図は棒状体の場合の焼なまし状態を示
す図、第3図はこの発明によるポリアセタールの
強度の改善を示す図、第4図a,bはこの発明に
よる強化プラスチツク板のポンチストロークとせ
ん断応力との関係を示す図、第5図a,bはこの
発明による強化プラスチツク板と従来の板との切
口面の状態を比較する図である。 符号の説明、1……プラスチツク板、2……圧
延ロール、3,4……ホルダー、5,6……加熱
冷却手段。
Figures 1a and b are diagrams showing each step of the method of the present invention, Figure 2 is a diagram showing the annealing state in the case of a rod-shaped body, and Figure 3 is a diagram showing the improvement in the strength of polyacetal according to the present invention. Figures 4a and 4b are diagrams showing the relationship between the punch stroke and shear stress of the reinforced plastic plate according to the present invention, and Figures 5a and 5b are cross-sectional views of the reinforced plastic plate according to the present invention and the conventional plate. It is a figure which compares a state. Explanation of symbols: 1...Plastic plate, 2...Rolling roll, 3, 4...Holder, 5, 6...Heating and cooling means.

Claims (1)

【特許請求の範囲】[Claims] 1 熱可塑性樹脂体にひずみ回復を生じる条件で
変形加工を行い、直ちにその加工体を、その周囲
を囲む面を有する部材により、その形状を外力に
より拘束しながら急速焼きなましを行うことによ
つて残留応力を内在させることを特徴とする常温
で高い形状安定性と剛性を有する高強度熱可塑性
樹脂体の製造方法。
1 Deformation processing is performed on the thermoplastic resin body under conditions that cause strain recovery, and then the processed body is immediately annealed by rapid annealing while its shape is restrained by external force using a member having a surrounding surface. A method for producing a high-strength thermoplastic resin body having high shape stability and rigidity at room temperature, which is characterized by incorporating stress.
JP8164482A 1982-05-17 1982-05-17 Preparation of high strength thermoplastic resin Granted JPS58199114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8164482A JPS58199114A (en) 1982-05-17 1982-05-17 Preparation of high strength thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8164482A JPS58199114A (en) 1982-05-17 1982-05-17 Preparation of high strength thermoplastic resin

Publications (2)

Publication Number Publication Date
JPS58199114A JPS58199114A (en) 1983-11-19
JPH0543490B2 true JPH0543490B2 (en) 1993-07-01

Family

ID=13752042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8164482A Granted JPS58199114A (en) 1982-05-17 1982-05-17 Preparation of high strength thermoplastic resin

Country Status (1)

Country Link
JP (1) JPS58199114A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179626A (en) * 1984-09-28 1986-04-23 Idemitsu Petrochem Co Ltd Annealing device of resin base plate
DE3612518A1 (en) * 1986-04-14 1987-10-15 Rxs Schrumpftech Garnituren METHOD FOR PRODUCING A PLASTIC PART WITH MOLDED MEMORY, AND DEVICE FOR CARRYING OUT THIS METHOD, AND PLASTIC PARTS MANUFACTURED BY THIS METHOD
US4783301A (en) * 1986-10-30 1988-11-08 The Dow Chemical Company Polybutene molded article and method for making same
JP2606894B2 (en) * 1988-08-18 1997-05-07 チッソ株式会社 Rolled heat-treated film or sheet manufacturing method
EP0707942B1 (en) * 1994-10-20 2000-03-01 Interventional Technologies Inc Method for manufacturing a polymeric material with enhanced mechanical properties

Also Published As

Publication number Publication date
JPS58199114A (en) 1983-11-19

Similar Documents

Publication Publication Date Title
US10144999B2 (en) Processing of alpha/beta titanium alloys
US3340101A (en) Thermoforming of metals
Li et al. Numerical simulation of linear friction welding of titanium alloy: effects of processing parameters
US3394045A (en) Polypropylene sheet and method
Barnes Superplastic aluminum forming-expanding its techno-economic niche
WO2006129566A1 (en) Method for processing magnesium alloy sheet and magnesium alloy sheet
CN112719179A (en) Forging method of TC1 titanium alloy bar
Wang et al. Severe plastic deformation techniques for bulk ultrafine-grained materials
CN105234173A (en) Rolling machining method for improving microstructure texture and mechanical property of magnesium alloy sheet strip
JPH0543490B2 (en)
McQueen Metal forming: Industrial, mechanical computational and microstructural
Kedia et al. Globularisation of α lamellae in titanium alloy: Effect of strain, strain path and starting microstructure
CN109504874B (en) Ti3Preparation method of Al alloy bolt
US5019183A (en) Process for enhancing physical properties of aluminum-lithium workpieces
CN115233061A (en) Ultrahigh-plasticity rare earth wrought magnesium alloy plate and preparation method thereof
Huang et al. Prediction of forming limit in single point incremental forming with the ductile fracture criterion
US4493737A (en) Method for fabricating uranium alloy articles without shape memory effects
CN110404966A (en) It is used to prepare the roughing technique and method of high-strength high-tractility magnesium alloy thin plate
US3071847A (en) Metal treatment
US2327209A (en) Alloy steel article and process of producing the same
Kong et al. Study on variable gradient characteristics hot stamping under non-uniform temperature field
CN219745856U (en) Magnesium alloy warm-cold combined rolling unit
Hu et al. Microstructure Evolution of AZ31 Magnesium Alloy in Rolling Zone
Borhani et al. nano structures by severe plastic deformation (SPD) processes
CN106399884A (en) Novel method for preparation and processing of high-performance magnesium alloy profile