JPH0543467Y2 - - Google Patents

Info

Publication number
JPH0543467Y2
JPH0543467Y2 JP1988010541U JP1054188U JPH0543467Y2 JP H0543467 Y2 JPH0543467 Y2 JP H0543467Y2 JP 1988010541 U JP1988010541 U JP 1988010541U JP 1054188 U JP1054188 U JP 1054188U JP H0543467 Y2 JPH0543467 Y2 JP H0543467Y2
Authority
JP
Japan
Prior art keywords
hard insulating
insulating plate
sealing body
synthetic resin
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1988010541U
Other languages
Japanese (ja)
Other versions
JPH01115231U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1988010541U priority Critical patent/JPH0543467Y2/ja
Publication of JPH01115231U publication Critical patent/JPH01115231U/ja
Application granted granted Critical
Publication of JPH0543467Y2 publication Critical patent/JPH0543467Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

〔産業上の利用分野〕 この考案は、電解コンデンサの封口構造の改良
に係り、特に高温度環境における寿命特性を向上
させる封口構造に関する。 〔従来の技術〕 通常の電解コンデンサ、特に大型の電解コンデ
ンサの封口部は、フエノール樹脂等の合成樹脂積
層板からなる硬質絶縁板の表面にゴム等の弾性絶
縁板を貼り合わせ、これをコンデンサ素子を収納
した外装ケースに装着するとともに、外装ケース
開口部を加締めた構造となつている。 あるいは、実公昭59−10751号公報に記載され
た考案のように、耐熱性合成樹脂の周縁に断面コ
形のゴム溝環を被覆した構造が提案されている。 しかし、フエノール樹脂板等の硬質絶縁板から
は、電解液との接触によつて不純物が抽出する場
合があり、電解コンデンサの腐蝕の原因となる。
そのため、実公昭52−2844号公報に記載された考
案のように、硬質絶縁板の一面に弾性絶縁板、他
面にポリエチレンあるいはポリプロピレン等から
なる合成樹脂薄膜層を形成した三層構造の封口板
が提案されている。 このような封口板は、フエノール樹脂等の硬質
絶縁板の一面にポリエチレン等の合成樹脂薄膜層
を熱処理により形成した後、ゴム等の弾性絶縁板
を貼り合わせ、これに打抜き加工を施して所望の
形状に形成している。そのため、硬質絶縁板と電
解液とは合成樹脂薄膜によつて隔離される。 〔考案が解決しようとする課題〕 しかし、このような封口構造でも、封口体の周
縁端面はなお外部に露出して電解液と接触するの
で、それが腐蝕の原因となる場合があつた。 また、封口体を製造する工程において、フエノ
ール樹脂等からなる硬質絶縁板面上に弾性絶縁板
および合成樹脂薄膜層を形成した積層板を打抜く
工程では、予め熱処理を施して前記積層板を軟化
させている。このとき硬質絶縁板の硬度が高いほ
ど熱処理による温度は高くする。ところが、耐熱
性に劣るポリプロピレン等の合成樹脂薄膜を形成
した場合、打抜き工程での熱処理温度は合成樹脂
薄膜の耐熱温度による制約を受けることになる。
そのため、硬質絶縁板の硬度は、打抜き工程での
制約のため、密封性を保持するのに最低限必要な
硬度を得る程度の低さに抑制される。この硬質絶
縁板の硬度は、封口体のガス透過性に影響し、電
解コンデンサの寿命特性を直接的に決定する要素
ともなる。従来のガス透過性の高い硬質絶縁板に
よる封口構造では、130°以上の高温での使用条件
において充分な寿命特性を実現することが困難で
あつた。 更に、高い使用温度環境では、ポリプロピレン
等の合成樹脂薄膜層が熱変化し、そのため硬質絶
縁板が電解液と接触して腐蝕の原因となる場合も
あつた。 この考案は、封口体による腐蝕を防止しつつ、
高温度環境における寿命特性の向上を図り、さら
に電解コンデンサの小型化を目的としている。 〔課題を解決するための手段〕 この考案は、硬質絶縁板の一面にポリイミドま
たは芳香族ポリアミドからなる合成樹脂薄膜層を
形成するとともに、硬質絶縁板の周縁部を弾性絶
縁体で覆つて形成した封口体を外装ケースの開口
部に装着して加締めたことを特徴としている。 〔作用〕 第1図に示すように、耐熱性に優れたポリイミ
ドまたは芳香族ポリアミドからなる合成樹脂薄膜
層6は、フエノール樹脂等からなる硬質絶縁板5
と電解液とを隔離して腐食を防止する。また、硬
質絶縁板5の周縁部は、弾性絶縁体7によつて覆
われているため、前記の合成樹脂薄膜層6とあい
まつて、硬質絶縁板5の表面が直接にコンデンサ
素子1と臨む部分を遮蔽し、硬質絶縁板5と電解
液とは接触しなくなる。 更に、硬質絶縁板5の一面に設けられたポリイ
ミドまたは芳香族ポリアミドは耐熱性に優れるの
で、硬質絶縁板5を高温で加熱処理することがで
き、硬度の高い、すなわち、ガス透過性の低い封
口体2を製造することが可能となる。そのうえ、
耐熱性に優れるポリイミドまたは芳香族ポリアミ
ドは、高温度における使用環境でも、その熱変化
は最小限に抑制される。 また、硬度の高い硬質絶縁板が得られるので、
従来の硬質絶縁板と同等の機械的強度を有する硬
質絶縁板を形成する場合、薄く形成することがで
きる。 ついで、この考案の封口構造による電解コンデ
ンサと従来の電解コンデンサとの寿命特性の比較
試験の結果を示す。 比較試験は、定格電圧10WV静電容量18000μF
の電解コンデンサを用意し、実施例としてフエノ
ール樹脂からなる硬質絶縁板の一面に芳香族ポリ
アミドからなる合成樹脂薄膜層を形成し、硬質絶
縁板の周縁部に弾性ゴムからなる弾性絶縁体を嵌
合させた封口体を装着した。また従来例として硬
質絶縁板の一面にポリプロピレンからなる合成樹
脂薄膜層を形成したほか、実施例と同様の封口体
を装着した。これら実施例および従来例の電解コ
ンデンサを各10個用意し、内各5個を130℃の温
度環境下で定格電圧を印加しつつ、また他各5個
の電圧を印加せずにその静電容量および損失角の
正接の経時変化を測定した。以下にその平均値を
示す。
[Industrial Application Field] This invention relates to an improvement in the sealing structure of an electrolytic capacitor, and particularly to a sealing structure that improves the life characteristics in a high temperature environment. [Prior Art] The sealing part of a normal electrolytic capacitor, especially a large electrolytic capacitor, is made by pasting an elastic insulating plate made of rubber or the like on the surface of a hard insulating plate made of a laminate of synthetic resin such as phenolic resin, and then attaching this to the capacitor element. The structure is such that it is attached to an exterior case that houses the camera, and the opening of the exterior case is crimped. Alternatively, a structure has been proposed in which the periphery of a heat-resistant synthetic resin is covered with a rubber groove ring having a U-shaped cross section, as described in Japanese Utility Model Publication No. 59-10751. However, impurities may be extracted from a hard insulating plate such as a phenol resin plate when it comes into contact with an electrolytic solution, causing corrosion of the electrolytic capacitor.
Therefore, as in the idea described in Japanese Utility Model Publication No. 52-2844, a three-layer sealing plate has a hard insulating plate with an elastic insulating plate on one side and a synthetic resin thin film layer made of polyethylene or polypropylene on the other side. is proposed. Such a sealing plate is made by forming a thin film layer of synthetic resin such as polyethylene on one side of a hard insulating plate such as phenolic resin by heat treatment, then bonding an elastic insulating plate such as rubber, and punching this to form the desired shape. It is formed into a shape. Therefore, the hard insulating plate and the electrolyte are separated by the synthetic resin thin film. [Problems to be solved by the invention] However, even with such a sealing structure, the peripheral end face of the sealing body is still exposed to the outside and comes into contact with the electrolyte, which may cause corrosion. In addition, in the process of manufacturing a sealing body, in the process of punching out a laminate in which an elastic insulating plate and a synthetic resin thin film layer are formed on a hard insulating plate surface made of phenolic resin, heat treatment is performed in advance to soften the laminate. I'm letting you do it. At this time, the higher the hardness of the hard insulating plate, the higher the temperature during the heat treatment. However, when a synthetic resin thin film such as polypropylene, which has poor heat resistance, is formed, the heat treatment temperature in the punching process is limited by the heat resistance temperature of the synthetic resin thin film.
Therefore, the hardness of the hard insulating plate is suppressed to a level low enough to obtain the minimum hardness required to maintain sealing performance due to constraints in the punching process. The hardness of this hard insulating plate affects the gas permeability of the sealing body and is also a factor that directly determines the life characteristics of the electrolytic capacitor. With conventional sealing structures using hard insulating plates with high gas permeability, it has been difficult to achieve sufficient life characteristics under conditions of use at high temperatures of 130° or higher. Furthermore, in a high operating temperature environment, the thin film layer of a synthetic resin such as polypropylene undergoes thermal changes, which may cause the hard insulating plate to come into contact with the electrolyte, causing corrosion. This idea prevents corrosion caused by the sealing body while
The aim is to improve life characteristics in high-temperature environments and to further downsize electrolytic capacitors. [Means for solving the problem] This invention consists of forming a synthetic resin thin film layer made of polyimide or aromatic polyamide on one surface of a hard insulating board, and covering the peripheral edge of the hard insulating board with an elastic insulator. It is characterized by the sealing body being attached to the opening of the exterior case and crimped. [Function] As shown in FIG. 1, the synthetic resin thin film layer 6 made of polyimide or aromatic polyamide with excellent heat resistance is attached to the hard insulating plate 5 made of phenolic resin or the like.
and electrolyte to prevent corrosion. Furthermore, since the peripheral edge of the hard insulating plate 5 is covered with the elastic insulator 7, the surface of the hard insulating plate 5, together with the synthetic resin thin film layer 6, directly faces the capacitor element 1. The hard insulating plate 5 and the electrolyte no longer come into contact with each other. Furthermore, since the polyimide or aromatic polyamide provided on one surface of the hard insulating board 5 has excellent heat resistance, the hard insulating board 5 can be heat-treated at high temperatures, resulting in a seal with high hardness, that is, low gas permeability. It becomes possible to manufacture the body 2. Moreover,
Polyimide or aromatic polyamide, which has excellent heat resistance, suppresses thermal changes to a minimum even when used in high-temperature environments. In addition, since a hard insulating board with high hardness can be obtained,
When forming a hard insulating board that has the same mechanical strength as a conventional hard insulating board, it can be formed thin. Next, we will show the results of a comparative test of the life characteristics of the electrolytic capacitor with the sealed structure of this invention and a conventional electrolytic capacitor. Comparison test is rated voltage 10WV capacitance 18000μF
An electrolytic capacitor was prepared, and as an example, a synthetic resin thin film layer made of aromatic polyamide was formed on one side of a hard insulating plate made of phenolic resin, and an elastic insulator made of elastic rubber was fitted around the periphery of the hard insulating plate. A sealed seal was attached. Further, as a conventional example, a synthetic resin thin film layer made of polypropylene was formed on one surface of a hard insulating plate, and a sealing body similar to that of the embodiment was attached. Ten of these electrolytic capacitors of the example and the conventional example were prepared, and while applying the rated voltage to five of each in a temperature environment of 130°C, the electrostatic capacitance of the other five was applied without applying any voltage. Changes in capacitance and loss angle tangent over time were measured. The average values are shown below.

【表】【table】

【表】【table】

【表】【table】

〔実施例〕〔Example〕

次いでこの考案の実施例を図面にしたがい説明
する。 第1図は、この考案の第1の実施例を示す部分
断面図である。第2図は、この考案の第1の実施
例で使用する封口体を示す部分断面斜視図、第3
図は第2の実施例で使用する封口体を示す部分断
面斜視図、また、第4図は、第3の実施例を示す
部分断面図である。 コンデンサ素子1は、第1図に示したように、
両極電極箔10と電解紙11とを巻回するととも
に、各電極箔10から電極引き出し用のタブ12
が導出されている。このコンデンサ素子1は電解
液が含浸された後、アルミニウム等からなる有底
筒状の外装ケース4に収納される。外装ケース4
の開口部には、外装ケース4を封止する封口体2
が配置される。 封口体2を構成するフエノール樹脂等からなる
硬質絶縁板5の一面には、第2図に示したよう
に、合成樹脂薄膜層6が形成されている。この合
成樹脂薄膜層6を硬質絶縁板5に形成する場合、
フエノール樹脂等からなる硬質絶縁板の一面に、
ポリイミドまたは芳香族ポリアミド等を熱融着さ
せて、積層板を形成する。そして、この積層板
を、好ましくは130℃以上の温度で加熱処理して、
所望の形状を硬質絶縁板に打ち抜くことにより、
合成樹脂薄膜層6が一面に設けられた硬質絶縁板
5が形成される。加熱処理する温度の上限は、ポ
リイミドまたは芳香族ポリアミドの融点もしくは
熱分解点以下であればよい。そして、封口体2の
周縁部には、少なくともこの周縁部を覆う断面コ
形の弾性ゴム等からなる弾性絶縁体7を配置す
る。更に、封口体2の所定位置には、封口体2を
貫通するリベツト部とリード部からなる外部接続
端子3が固着され、封口体2を貫通したリベツト
部先端にコンデンサ素子1から導出されたタブ1
2が電気的に接続される。 以上のように構成された封口体2は、コンデン
サ素子1が収納された外装ケース4の開口部に装
着されるとともに、外装ケース4の開口端部を加
締めることにより電解コンデンサを密封する。 この実施例においては、封口体2の少なくとも
電解液と接触する部分は合成樹脂薄膜層6および
弾性絶縁体7によつて覆われることになり、電解
コンデンサの腐食を防止する。 次いで第2の実施例では、第3図に示したよう
に、フエノール樹脂等からなる硬質絶縁板5の一
面にポリイミドまたは芳香族ポリアミドからなる
合成樹脂薄膜層6が、第1の実施例と同様にして
形成されているとともに、封口体2の他面には、
この面と周縁部とを覆う弾性ゴムからなる弾性絶
縁体9が貼着している。外部接続端子3は硬質絶
縁板5および弾性絶縁体9をともに貫通して封口
体2に固着される。この実施例においては、封口
体2の上面は、周縁部と同様に弾性絶縁体9で覆
われ、更に外部接続端子3と封口体2との接合部
において、外部接続端子3が弾性絶縁体9に食い
込むように固着されるので、第1の実施例と比較
して、更に密封性が良好となる。 次いで第4図に示したこの考案の第3の実施例
について説明する。この実施例において封口体2
は、フエノール樹脂からなる硬質絶縁板5の一面
に、第1の実施例と同様にしてポリイミドまたは
芳香族ポリアミドからなる合成樹脂薄膜層6を形
成し、かつ硬質絶縁板5の周縁部を弾性絶縁体7
で覆つた構成からなる。この封口体2は、第1の
実施例と同様に外装ケース4の開口部に装着さ
れ、加締め工程を施されて電解コンデンサを密封
する。そして、この封口体2の上面に、封口体2
と電解コンデンサの開口部全体を覆う合成樹脂層
8を被覆する。この合成樹脂層8は、耐熱性、耐
薬品性に優れるとともに、固化した後も外部接続
端子3との密着性に優れた樹脂であればよく、好
ましくはシリコン樹脂が適当である。なお、電解
コンデンサの封口部にシリコン樹脂等を被覆する
場合、一般に弾性ゴムとの密着が脆弱となる。そ
のため、この実施例では、封口体2の弾性絶縁体
7を硬質絶縁板5の周縁部にのみ配置した。 この実施例による場合は、第2の実施例と比較
して更に電解コンデンサの密封性が向上し、耐洗
浄性も良好となるので信頼性が向上する。更に、
シリコン樹脂を被覆した場合は、固化した後もシ
リコン樹脂は柔軟であるため、外部接続端子3を
折り曲げた場合もその密着性が損なわれることは
ない。 〔考案の効果〕 以上のように、この考案は、硬質絶縁板の一面
にポリイミドまたは芳香族ポリアミドからなる合
成樹脂薄膜層を形成するとともに、硬質絶縁板の
周縁部を弾性絶縁体で覆つて形成した封口体を外
装ケースの開口部に装着して加締めたことを特徴
としているので、電解コンデンサの電解液と封口
体の硬質絶縁板とが接触することがなくなり、腐
食を未然に防止することができる。 また、硬質絶縁板の一面に形成される芳香族ポ
リアミドまたはポリイミドからなる合成樹脂薄膜
層は、耐熱性に優れるので、高い使用温度環境に
おいても熱変化することなく電解液と硬質絶縁板
とを隔離する。 また、封口体の硬質絶縁板は硬度の高いもの、
すなわちガス透過性の低いものを使用することが
可能となる。したがつて、従来の封口構造と比較
して、特に高い使用温度環境における電気的特性
の劣化を防止し、寿命特性を向上させることがで
きる。 そのうえ、硬度の高い硬質絶縁板が得られるの
で、従来の硬質絶縁板と同等の機械的強度を有す
る硬質絶縁板を形成する場合、硬質絶縁板を薄く
することができる分だけ、電解コンデンサの小型
化が図れる。 以上のようにこの考案は、封口構造を改良する
ことにより電解コンデンサの寿命特性の向上を図
るとともに、小型化を実現するものである。
Next, an embodiment of this invention will be explained according to the drawings. FIG. 1 is a partial sectional view showing a first embodiment of this invention. FIG. 2 is a partial cross-sectional perspective view showing the sealing body used in the first embodiment of this invention;
The figure is a partially sectional perspective view showing the sealing body used in the second embodiment, and FIG. 4 is a partially sectional view showing the third embodiment. The capacitor element 1, as shown in FIG.
While winding the bipolar electrode foil 10 and the electrolytic paper 11, a tab 12 for drawing out the electrode is formed from each electrode foil 10.
has been derived. After this capacitor element 1 is impregnated with an electrolytic solution, it is housed in a bottomed cylindrical outer case 4 made of aluminum or the like. Exterior case 4
A sealing body 2 for sealing the outer case 4 is provided in the opening of the
is placed. As shown in FIG. 2, a synthetic resin thin film layer 6 is formed on one surface of a hard insulating plate 5 made of phenolic resin or the like constituting the sealing body 2. As shown in FIG. When forming this synthetic resin thin film layer 6 on the hard insulating plate 5,
On one side of a hard insulating board made of phenolic resin,
A laminate is formed by heat-sealing polyimide, aromatic polyamide, or the like. Then, this laminate is heat-treated preferably at a temperature of 130°C or higher,
By punching the desired shape into a hard insulating board,
A hard insulating plate 5 having a synthetic resin thin film layer 6 provided on one surface is formed. The upper limit of the heat treatment temperature may be below the melting point or thermal decomposition point of the polyimide or aromatic polyamide. An elastic insulator 7 made of elastic rubber or the like and having a U-shaped cross section is disposed on the peripheral edge of the sealing body 2 to cover at least this peripheral edge. Further, an external connection terminal 3 consisting of a rivet portion and a lead portion passing through the sealing body 2 is fixed at a predetermined position of the sealing body 2, and a tab led out from the capacitor element 1 is attached to the tip of the rivet portion penetrating the sealing body 2. 1
2 are electrically connected. The sealing body 2 configured as described above is attached to the opening of the outer case 4 in which the capacitor element 1 is housed, and seals the electrolytic capacitor by crimping the open end of the outer case 4. In this embodiment, at least the portion of the sealing body 2 that comes into contact with the electrolyte is covered with a synthetic resin thin film layer 6 and an elastic insulator 7 to prevent corrosion of the electrolytic capacitor. Next, in the second embodiment, as shown in FIG. 3, a synthetic resin thin film layer 6 made of polyimide or aromatic polyamide is formed on one surface of a hard insulating plate 5 made of phenolic resin, etc., as in the first embodiment. On the other side of the sealing body 2,
An elastic insulator 9 made of elastic rubber is attached to cover this surface and the peripheral edge. The external connection terminal 3 penetrates both the hard insulating plate 5 and the elastic insulator 9 and is fixed to the sealing body 2. In this embodiment, the upper surface of the sealing body 2 is covered with an elastic insulator 9 in the same manner as the peripheral portion, and furthermore, at the joint between the external connection terminal 3 and the sealing body 2, the external connection terminal 3 is covered with an elastic insulator 9. Since it is fixed in such a way that it bites into, the sealing performance is even better than that of the first embodiment. Next, a third embodiment of this invention shown in FIG. 4 will be explained. In this embodiment, the sealing body 2
In this example, a synthetic resin thin film layer 6 made of polyimide or aromatic polyamide is formed on one surface of a hard insulating plate 5 made of phenolic resin in the same manner as in the first embodiment, and the peripheral edge of the hard insulating plate 5 is elastically insulated. body 7
It consists of a structure covered with This sealing body 2 is attached to the opening of the exterior case 4 as in the first embodiment, and subjected to a crimping process to seal the electrolytic capacitor. Then, the sealing body 2 is placed on the upper surface of this sealing body 2.
and a synthetic resin layer 8 covering the entire opening of the electrolytic capacitor. This synthetic resin layer 8 may be any resin that has excellent heat resistance and chemical resistance and also has excellent adhesion to the external connection terminals 3 even after solidification, and preferably silicone resin is suitable. Note that when covering the sealing portion of an electrolytic capacitor with silicone resin or the like, the adhesion to the elastic rubber is generally weak. Therefore, in this embodiment, the elastic insulator 7 of the sealing body 2 is arranged only at the peripheral edge of the hard insulating plate 5. According to this embodiment, the sealing performance of the electrolytic capacitor is further improved compared to the second embodiment, and the cleaning resistance is also improved, so that reliability is improved. Furthermore,
When coated with silicone resin, the silicone resin remains flexible even after solidification, so even if the external connection terminal 3 is bent, its adhesion will not be impaired. [Effects of the invention] As described above, this invention forms a synthetic resin thin film layer made of polyimide or aromatic polyamide on one surface of a hard insulating board, and covers the peripheral edge of the hard insulating board with an elastic insulator. Since the sealing body is attached to the opening of the exterior case and crimped, there is no contact between the electrolytic solution of the electrolytic capacitor and the hard insulating plate of the sealing body, thereby preventing corrosion. I can do it. In addition, the synthetic resin thin film layer made of aromatic polyamide or polyimide formed on one surface of the hard insulating board has excellent heat resistance, so it isolates the electrolyte from the hard insulating board without thermal change even in high operating temperature environments. do. In addition, the hard insulating board of the sealing body should be of high hardness.
That is, it becomes possible to use a material with low gas permeability. Therefore, compared to conventional sealed structures, it is possible to prevent deterioration of electrical characteristics, especially in high operating temperature environments, and improve life characteristics. Moreover, since a hard insulating board with high hardness can be obtained, when forming a hard insulating board that has the same mechanical strength as a conventional hard insulating board, the thickness of the hard insulating board can be made thinner, making the electrolytic capacitor smaller. can be achieved. As described above, this invention aims to improve the life characteristics of an electrolytic capacitor by improving the sealing structure, and also realizes miniaturization.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案の実施例を示した部分断面図
である。第2図は、この考案の第1の実施例で、
また第3図は第2の実施例で使用する封口体を示
す部分断面斜視図、また、第4図は、第3の実施
例を示す部分断面図である。 1……コンデンサ素子、2……封口体、3……
外部接続端子、4……外装ケース、5……硬質絶
縁板、6……合成樹脂薄膜層、7,9……弾性絶
縁体、8……合成樹脂層、10……電極箔、11
……電解紙、12……タブ。
FIG. 1 is a partial sectional view showing an embodiment of this invention. Figure 2 shows the first embodiment of this invention.
Further, FIG. 3 is a partially sectional perspective view showing the sealing body used in the second embodiment, and FIG. 4 is a partially sectional view showing the third embodiment. 1... Capacitor element, 2... Sealing body, 3...
External connection terminal, 4... Exterior case, 5... Hard insulating plate, 6... Synthetic resin thin film layer, 7, 9... Elastic insulator, 8... Synthetic resin layer, 10... Electrode foil, 11
...Electrolytic paper, 12... tab.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 硬質絶縁板の一面にポリイミドまたは芳香族ポ
リアミドからなる合成樹脂薄膜層を形成するとと
もに、硬質絶縁板の周縁部を弾性絶縁体で覆つて
形成した封口体を外装ケースの開口部に装着して
加締めたことを特徴とする電解コンデンサの封口
構造。
A synthetic resin thin film layer made of polyimide or aromatic polyamide is formed on one surface of a hard insulating plate, and a sealing body formed by covering the peripheral edge of the hard insulating plate with an elastic insulator is attached to the opening of the outer case. The sealed structure of an electrolytic capacitor is characterized by its tight seal.
JP1988010541U 1988-01-29 1988-01-29 Expired - Lifetime JPH0543467Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1988010541U JPH0543467Y2 (en) 1988-01-29 1988-01-29

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1988010541U JPH0543467Y2 (en) 1988-01-29 1988-01-29

Publications (2)

Publication Number Publication Date
JPH01115231U JPH01115231U (en) 1989-08-03
JPH0543467Y2 true JPH0543467Y2 (en) 1993-11-02

Family

ID=31218293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1988010541U Expired - Lifetime JPH0543467Y2 (en) 1988-01-29 1988-01-29

Country Status (1)

Country Link
JP (1) JPH0543467Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010293A (en) * 2008-06-25 2010-01-14 Fanuc Ltd Electrolytic capacitor, motor driving device having the same and electrolytic capacitor mounting method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS522844U (en) * 1975-06-24 1977-01-10

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5766535U (en) * 1980-10-06 1982-04-21

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS522844U (en) * 1975-06-24 1977-01-10

Also Published As

Publication number Publication date
JPH01115231U (en) 1989-08-03

Similar Documents

Publication Publication Date Title
JPS6114650B2 (en)
KR960026875A (en) Chip Solid Electrolytic Capacitors and Manufacturing Method Thereof
WO2019045072A1 (en) Electrolytic capacitor
JPH10275751A (en) Electric double layer capacitor and its manufacture
JPH0543467Y2 (en)
JP3942559B2 (en) Electrochemical devices
JP3102021B2 (en) Aluminum electrolytic capacitor
JPS6127163Y2 (en)
JP3430856B2 (en) Cased capacitor
JPH02194614A (en) Chip capacitor and manufacture thereof
JP4441958B2 (en) Chip capacitor
JPS6025898Y2 (en) Electrolytic capacitor
JPH0539582Y2 (en)
JPS5943726Y2 (en) Electrolytic capacitor
JPH0473284B2 (en)
JPH0231781Y2 (en)
US11437197B2 (en) Electrolytic capacitor with improved connection part
JPH0331072Y2 (en)
JPH0310660Y2 (en)
JPH0310665Y2 (en)
JPS5814522A (en) Electrolytic condenser and method of producing same
JPH0316277Y2 (en)
JP2001102239A (en) Chip capacitor
JPH0447952Y2 (en)
JPH0412514A (en) Chip type aluminum electrolytic capacitor