JPH0543205A - Production of oxide superconductive film - Google Patents

Production of oxide superconductive film

Info

Publication number
JPH0543205A
JPH0543205A JP3229404A JP22940491A JPH0543205A JP H0543205 A JPH0543205 A JP H0543205A JP 3229404 A JP3229404 A JP 3229404A JP 22940491 A JP22940491 A JP 22940491A JP H0543205 A JPH0543205 A JP H0543205A
Authority
JP
Japan
Prior art keywords
layer
oxide
raw material
superconducting film
oxide superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3229404A
Other languages
Japanese (ja)
Inventor
Akiyo Okuhara
明代 奥原
Yoshinori Takada
善典 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP3229404A priority Critical patent/JPH0543205A/en
Publication of JPH0543205A publication Critical patent/JPH0543205A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain a stabilized-quality oxide superconductive film by the sol-gel method which is low in inflammability. CONSTITUTION:An aq. soln. contg. a complexing agent consisting of the oxidation or reduction product of monosaccharides and a raw compd. for forming an oxide superconductor is spread over a substrate, and the spread layer is heated to thermally decompose the raw compd. The process is repeated plural times to form the superimposed layers of the thermally decomposed raw compd. on the substrate, and the superimposed layers are sintered to produce an oxide superconductive layer. Consequently, the spreading liq. is prepared as the aq. soln., a good-quality gel film is formed, a homogeneous superconductive film excellent in superconductivity is stably obtained, the spreading liq, is difficult to ignite, and the production equipment and process are simplified.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ゾル・ゲル法により超
電導特性に優れる酸化物超電導膜を製造する方法に関す
る。
TECHNICAL FIELD The present invention relates to a method for producing an oxide superconducting film having excellent superconducting properties by a sol-gel method.

【0002】[0002]

【従来の技術】従来、ゾル・ゲル法による酸化物超電導
膜の製造方法としては、アルコール類やプロピオン酸、
あるいは酢酸に原料化合物を溶解させてなる展開液を基
材上に展開し、その展開層を加熱処理して原料化合物を
熱分解したのち焼結処理する方法が知られていた。
2. Description of the Related Art Conventionally, as a method for producing an oxide superconducting film by a sol-gel method, alcohols, propionic acid,
Alternatively, there has been known a method in which a developing solution obtained by dissolving a raw material compound in acetic acid is spread on a substrate, the developed layer is heat-treated to thermally decompose the raw material compound, and then sintered.

【0003】しかしながら、展開液の粘度等の経時変化
が大きくて、得られる酸化物超電導膜の超電導特性が安
定せず、バラツキが大きい問題点があった。また、展開
液が引火しやすく、引火予防のために製造設備、ないし
製造工程が複雑化する問題点などもあった。
However, there has been a problem that the viscosity of the developing solution changes with time and the superconducting properties of the resulting oxide superconducting film are not stable, resulting in large variations. In addition, the developing solution easily ignites, and there is a problem that manufacturing facilities or manufacturing processes are complicated to prevent ignition.

【0004】[0004]

【発明が解決しようとする課題】本発明は、引火性の低
いゾル・ゲル法により品質の安定した酸化物超電導膜を
得ることを課題とする。
SUMMARY OF THE INVENTION An object of the present invention is to obtain an oxide superconducting film having stable quality by a sol-gel method having low flammability.

【0005】[0005]

【課題を解決するための手段】本発明は、単糖類の酸化
物又は還元物からなる錯化剤と、酸化物超電導体形成用
の原料化合物を含有する水溶液を基材上に展開し、その
展開層を加熱処理して原料化合物を熱分解させる操作を
複数回繰り返して、基材上に原料化合物の熱分解処理層
の重畳層を形成したのち、その重畳層を焼結処理するこ
とを特徴とする酸化物超電導膜の製造方法を提供するも
のである。
The present invention develops an aqueous solution containing a complexing agent composed of an oxide or reduced product of a monosaccharide and a raw material compound for forming an oxide superconductor on a substrate, The operation of thermally treating the spreading layer to thermally decompose the raw material compound is repeated a plurality of times to form a superposed layer of the pyrolytically treated layer of the raw material compound on the substrate, and then the superposed layer is sintered. The present invention provides a method for producing an oxide superconducting film.

【0006】[0006]

【作用】単糖類の酸化物又は還元物からなる錯化剤を用
いることにより、酸化物超電導体形成用の原料化合物の
水溶液を得ることができ、引火しにくく、かつ溶媒の蒸
発や溶質の重合等で粘度等の液質が変化しにくい展開液
を得ることができる。その結果、長時間にわたり品質の
安定した成膜が可能になり、ゾル・ゲル法による酸化物
超電導膜の連続成膜処理が可能となる。
[Function] By using a complexing agent composed of an oxide or reduced product of a monosaccharide, an aqueous solution of a raw material compound for forming an oxide superconductor can be obtained, which is hard to catch fire, and solvent evaporation and solute polymerization. It is possible to obtain a developing solution in which the liquid quality such as viscosity does not easily change. As a result, it is possible to form a film with stable quality for a long time, and it is possible to perform a continuous film forming process of an oxide superconducting film by a sol-gel method.

【0007】[0007]

【発明の構成要素の例示】本発明は、ゾル・ゲル法によ
り酸化物超電導膜を製造するもので、その展開液とし
て、単糖類の酸化物又は還元物からなる錯化剤と、酸化
物超電導体形成用の原料化合物を含有する水溶液を用い
るものである。
The present invention is intended to produce an oxide superconducting film by a sol-gel method. As a developing solution for the oxide superconducting film, a complexing agent composed of an oxide or a reduced product of a monosaccharide and an oxide superconducting film are used. An aqueous solution containing a raw material compound for body formation is used.

【0008】展開液の調製は、錯化剤と原料化合物と水
を混合することにより行うことができる。混合効率等の
点より好ましい展開液の調製方式は、錯化剤を予め添加
した水溶液に原料化合物を添加する方式である。
The developing solution can be prepared by mixing the complexing agent, the raw material compound and water. The preferred method of preparing the developing solution from the viewpoint of mixing efficiency is a method of adding the raw material compound to an aqueous solution to which the complexing agent has been added in advance.

【0009】錯化剤としては、単糖類の酸化物又は還元
物が用いられる。その例としては、ヘプトン酸、グルコ
ン酸、ソルビット、それらのアンモニウム塩などがあげ
られる。錯化剤の使用量は、展開液の安定性などにより
適宜に決定することができるが、一般には水100重量
部あたり、5〜60重量部、就中20〜40重量部であ
る。
As the complexing agent, oxides or reduced products of monosaccharides are used. Examples thereof include heptonic acid, gluconic acid, sorbit, ammonium salts thereof, and the like. The amount of the complexing agent used can be appropriately determined depending on the stability of the developing solution and the like, but is generally 5 to 60 parts by weight, and preferably 20 to 40 parts by weight, per 100 parts by weight of water.

【0010】酸化物超電導体形成用の原料化合物として
は、錯化剤と反応してキレート等の水溶性化合物を形成
する形態のものが用いられる。その例としては、イット
リウム、バリウム、銅、ビスマス、ストロンチウム、カ
ルシウム等の酸化物超電導体を形成する元素の硝酸塩の
如き酸化物、塩化物、フッ化物などがあげられる。好ま
しく用いうる原料化合物は、酸化物超電導体を形成する
元素以外の構成元素が酸化物等としてガス化し、揮散し
やすい化合物形態を有するものである。なお、用いる原
料化合物は、焼結工程等で酸素成分を補給できることよ
り、酸素を含有する化合物形態である必要はない。
As a raw material compound for forming an oxide superconductor, a compound which reacts with a complexing agent to form a water-soluble compound such as a chelate is used. Examples thereof include oxides such as yttrium, barium, copper, bismuth, strontium, calcium, etc., such as nitrates of elements forming oxide superconductors, chlorides, fluorides, and the like. The raw material compound that can be preferably used is one having a compound form in which constituent elements other than the element forming the oxide superconductor are easily gasified as an oxide or the like and volatilized. The raw material compound to be used does not need to be in the form of a compound containing oxygen because it can replenish the oxygen component in the sintering step and the like.

【0011】各原料化合物の使用量は通例、酸化物超電
導体を形成する組成割合、すなわち例えばYBa2Cu3
yの形成を目的とする場合には、Y、Ba、Cuをそれぞ
れ1:2:3のモル比で含有することとなる使用割合と
される。また、臨界電流密度の磁気特性のより向上を目
的等として、ピンニングセンターが形成される使用割合
とすることもできる。
The amount of each raw material compound used is usually the composition ratio for forming an oxide superconductor, that is, for example, YBa 2 Cu 3 O.
For the purpose of forming y, the use ratio is such that Y, Ba, and Cu are contained in a molar ratio of 1: 2: 3, respectively. In addition, for the purpose of further improving the magnetic characteristics of the critical current density, the usage rate at which the pinning center is formed can be set.

【0012】展開液における原料化合物の濃度は、溶解
可能な範囲で適宜に決定してよい。一般には、0.1mmo
l/l〜2mol/l、就中0.01〜1mol/lとされる。
なお展開液の調製に際しては、異なる化合物形態の各原
料化合物を併用してよい。
The concentration of the raw material compound in the developing solution may be appropriately determined within the range where it can be dissolved. Generally 0.1 mmo
L / l to 2 mol / l, especially 0.01 to 1 mol / l.
When preparing the developing solution, raw material compounds having different compound forms may be used in combination.

【0013】酸化物超電導膜の形成は、展開液を基材上
に展開し、その展開層を加熱処理して原料化合物を熱分
解させる操作を複数回繰り返して、基材上に原料化合物
の熱分解処理層の重畳層を形成したのち、その重畳層を
焼結処理することにより行われる。
The formation of the oxide superconducting film is carried out by expanding the developing solution on the base material and subjecting the developed layer to heat treatment to thermally decompose the raw material compound a plurality of times. This is performed by forming a superposed layer of the decomposition treatment layer and then sintering the superposed layer.

【0014】基材としては、焼結温度に耐える適宜なも
のを用いてよい。一般には、銀、ないし銀合金、就中、
銀・白金合金、銀・パラジウム合金の如き高融点合金、
あるいは各種のセラミックなどからなるものが用いられ
る。
As the base material, any suitable material that can withstand the sintering temperature may be used. In general, silver or silver alloys, among others,
High melting point alloys such as silver / platinum alloys, silver / palladium alloys,
Alternatively, those made of various ceramics are used.

【0015】展開液の展開は、例えばスピンコート方式
などの適宜な方式で行ってよい。形成する展開層の厚さ
は、均質な酸化物超電導膜を得る点より、20μm以
下、就中10μm以下が好ましい。その厚さが厚過ぎる
と重畳させる各層間の表面性状がバラツキやすくなり、
形成される酸化物超電導膜が不均質になりやすくなる。
The developing solution may be spread by an appropriate method such as a spin coating method. The thickness of the spread layer to be formed is preferably 20 μm or less, and more preferably 10 μm or less from the viewpoint of obtaining a homogeneous oxide superconducting film. If the thickness is too thick, the surface texture between the layers to be superimposed tends to vary,
The formed oxide superconducting film is likely to be inhomogeneous.

【0016】基材上に形成した展開層は、加熱処理して
その原料化合物を熱分解させる。その際、展開層の乾燥
工程を別個に設けてもよい。乾燥処理は、高温、例えば
150℃程度で行うことが好ましく、真空乾燥方式など
を併用してもよい。
The spreading layer formed on the substrate is heat-treated to thermally decompose the raw material compound. At that time, a step of drying the spreading layer may be separately provided. The drying treatment is preferably performed at a high temperature, for example, about 150 ° C., and a vacuum drying method or the like may be used together.

【0017】原料化合物の熱分解は、化合物の種類等に
応じた適宜な温度で行うことができる。一般的な熱分解
処理の条件は、200〜1500℃、就中350〜12
00℃、10分間〜2時間、就中20分間〜1時間であ
る。熱分解は、大気中や不活性ガス雰囲気など、適宜な
雰囲気で行ってよい。
The thermal decomposition of the raw material compound can be carried out at an appropriate temperature depending on the kind of the compound. The conditions for general thermal decomposition treatment are 200 to 1500 ° C., especially 350 to 12
00 ° C., 10 minutes to 2 hours, especially 20 minutes to 1 hour. The thermal decomposition may be performed in an appropriate atmosphere such as the atmosphere or an inert gas atmosphere.

【0018】本発明においては、展開液の展開、及びそ
の展開層の熱分解を複数回繰り返して、基材上に原料化
合物の熱分解処理層の重畳層を形成する。繰返し回数
は、目的とする重畳層の厚さによって決定され、一般に
は5〜15回程度である。
In the present invention, the spreading of the developing solution and the thermal decomposition of the developing layer are repeated a plurality of times to form a superposed layer of the pyrolysis-treated layer of the raw material compound on the base material. The number of repetitions is determined by the intended thickness of the superimposed layer, and is generally about 5 to 15 times.

【0019】形成した熱分解処理層の重畳層は次に、酸
化物超電導膜とすべく焼結処理する。焼結処理は、最後
の展開層の熱分解処理と一連に行ってもよい。焼結条件
は、形成目的の酸化物超電導体の種類に応じた適宜な温
度で行われる。一般的な条件は、500〜1800℃で
10分間〜30時間の処理である。なお焼結処理は、酸
素が存在する雰囲気で行う方式が一般的である。
Next, the superposed layer of the pyrolysis-treated layer is subjected to a sintering treatment to form an oxide superconducting film. The sintering process may be performed in series with the pyrolysis process of the final spreading layer. Sintering is performed at an appropriate temperature according to the type of oxide superconductor to be formed. The general condition is a treatment at 500 to 1800 ° C. for 10 minutes to 30 hours. The sintering process is generally performed in an atmosphere containing oxygen.

【0020】焼結処理により形成された酸化物超電導膜
は、必要に応じ酸素アニール処理が施されてその酸素含
有量が調節される。その処理操作は、酸素が存在する雰
囲気下、300〜600℃で、30分間〜10時間、加
熱処理する方式が一般的である。
The oxide superconducting film formed by the sintering process is subjected to an oxygen annealing process as necessary to adjust the oxygen content. The treatment operation is generally performed by heating at 300 to 600 ° C. for 30 minutes to 10 hours in an atmosphere containing oxygen.

【0021】本発明により形成しうる酸化物超電導体の
種類については特に限定はない。その例としては、YB
a2Cu3yやYBa2Cu4yの如きY系酸化物超電導体、
Ba1-xxBiO3の如きBa系酸化物超電導体、Nd2-x
exCuOyの如きNd系酸化物超電導体、Bi2Sr2CaCu2
y、Bi2-xPbxSr2Ca2Cu3yの如きBi系酸化物超
電導体、その他La系酸化物超電導体、Tl系酸化物超電
導体、Pb系酸化物超電導体などがあげられる。
There is no particular limitation on the type of oxide superconductor that can be formed by the present invention. An example is YB
Y-based oxide superconductors such as a 2 Cu 3 O y and YBa 2 Cu 4 O y ,
Ba - based oxide superconductors such as Ba 1-x K x BiO 3 , Nd 2-x C
Nd-based oxide superconductor such as e x CuO y , Bi 2 Sr 2 CaCu 2
O y, Bi 2-x Pb x Sr 2 Ca 2 Cu 3 O y such Bi-based oxide superconductor, other La-based oxide superconductor, Tl-based oxide superconductors, and Pb-based oxide superconductor mentioned Be done.

【0022】また、前記のY等の成分を他の希土類元素
で置換したものや、Ba等の成分を他のアルカリ土類金
属で置換したもの、あるいはO成分をFなどで置換した
ものなどもあげられる。さらに、ピンニングセンターを
含有させたものなどもあげられる。
Also, the above-mentioned components such as Y are substituted with other rare earth elements, the components such as Ba are substituted with other alkaline earth metals, and the O components are substituted with F and the like. can give. Furthermore, the thing containing the pinning center etc. is mentioned.

【0023】[0023]

【実施例】【Example】

実施例1 80℃に加温した水1000mlに、ヘプトン酸200g
を加えて溶解させた後、硝酸イットリウム0.07モ
ル、炭酸バリウム0.14モル、硝酸銅0.21モルを溶
解冷却させて得た水溶液(展開液)を、スピンコート方
式により厚さ50μmの銀箔上に展開して厚さ約5μmの
展開層を形成し、その展開層を自然乾燥1時間後、0.
1Torr、150℃で1時間乾燥させたのち480℃で1
時間熱分解処理した(大気中)。
Example 1 200 g of heptonic acid was added to 1000 ml of water heated to 80 ° C.
Was added and dissolved, and then an aqueous solution (developing solution) obtained by dissolving and cooling yttrium nitrate 0.07 mol, barium carbonate 0.14 mol, and copper nitrate 0.21 mol, was prepared by spin coating to a thickness of 50 μm. It is spread on a silver foil to form a spread layer having a thickness of about 5 μm, and the spread layer is naturally dried for 1 hour and then to a thickness of 0.
Dry at 1 Torr and 150 ° C for 1 hour, then at 480 ° C for 1 hour
It was pyrolyzed for an hour (in air).

【0024】次に前記に準じ、先の熱分解層の上に新た
な展開層を形成して熱分解する操作を9回繰り返して合
計10層の熱分解層からなる重畳層を形成したのち、そ
れを酸素雰囲気下、900℃で2時間焼結処理し、つい
で400℃で5時間酸素アニールして、厚さ約4μmの
YBa2Cu3y系酸化物超電導膜を密着性よく有する銀
箔を得た。
Next, in accordance with the above, the operation of forming a new spreading layer on the above pyrolysis layer and pyrolyzing it is repeated 9 times to form a superposed layer of a total of 10 pyrolysis layers, It is sintered in an oxygen atmosphere at 900 ° C. for 2 hours and then oxygen-annealed at 400 ° C. for 5 hours to obtain a silver foil having a thickness of about 4 μm and having a YBa 2 Cu 3 O y oxide superconducting film with good adhesion. Obtained.

【0025】実施例2 ヘプトン酸に代えて、グルコン酸200gを用い、かつ
塩化イットリウム0.07モル、塩化バリウム0.14モ
ル、塩化銅0.21モルを用いたほかは実施例1に準じ
てYBa2Cu3y系酸化物超電導膜を密着性よく有する
銀箔を得た。
Example 2 According to Example 1, except that 200 g of gluconic acid was used in place of heptonic acid, and 0.07 mol of yttrium chloride, 0.14 mol of barium chloride and 0.21 mol of copper chloride were used. A silver foil having a YBa 2 Cu 3 O y based oxide superconducting film with good adhesion was obtained.

【0026】実施例3 ヘプトン酸に代えて、ソルビット200gを用い、かつ
フッ化イットリウム0.07モル、フッ化バリウム0.1
4モル、フッ化銅0.21モルを用いたほかは実施例1
に準じて、YBa2Cu3y系酸化物超電導膜を密着性よ
く有する銀箔を得た。
Example 3 Instead of heptonic acid, 200 g of sorbit was used, and 0.07 mol of yttrium fluoride and 0.1 barium fluoride were used.
Example 1 except that 4 mol and 0.21 mol of copper fluoride were used.
According to the above, a silver foil having a YBa 2 Cu 3 O y based oxide superconducting film with good adhesion was obtained.

【0027】実施例4 ヘプトン酸に代えて、ヘプトン酸のアンモニウム塩20
0gを用いたほかは実施例1に準じて、YBa2Cu3y
系酸化物超電導膜を密着性よく有する銀箔を得た。
Example 4 Instead of heptonic acid, ammonium salt of heptonic acid 20
YBa 2 Cu 3 O y according to Example 1 except that 0 g was used.
A silver foil having a system oxide superconducting film with good adhesion was obtained.

【0028】実施例5 80℃に加温した水1000mlに、ヘプトン酸200g
を加えて溶解させたのち、硝酸ビスマス0.14モル、
硝酸ストロンチウム0.14モル、硝酸カルシウム0.0
7モル、硝酸銅014モルを溶解冷却させて得た水溶液
を、スピンコート方式により厚さ50μmの銀箔上に展
開して厚さ約5μmの展開層を形成し、その展開層を自
然乾燥1時間後、0.1Torr、150℃で1時間乾燥さ
せたのち400℃で1時間、熱分解処理した(大気
中)。
Example 5 200 g of heptonic acid was added to 1000 ml of water heated to 80 ° C.
After adding and dissolving, 0.14 mol of bismuth nitrate,
Strontium nitrate 0.14 mol, calcium nitrate 0.0
An aqueous solution obtained by dissolving and cooling 7 mol and 014 mol of copper nitrate was spread on a silver foil having a thickness of 50 μm by a spin coating method to form a spread layer having a thickness of about 5 μm, and the spread layer was naturally dried for 1 hour. After that, it was dried at 0.1 Torr and 150 ° C. for 1 hour and then thermally decomposed at 400 ° C. for 1 hour (in air).

【0029】次に前記に準じ、先の熱分解層の上に新た
な展開層を形成して熱分解する操作を9回繰り返して合
計10層の熱分解層からなる重畳層を形成したのち、そ
れを酸素雰囲気下、845℃で2時間焼結処理して、厚
さ約4μmのBi2Sr2CaCu2y系酸化物超電導膜を密
着性よく有する銀箔を得た。
Then, in accordance with the above, the operation of forming a new spreading layer on the previous pyrolysis layer and pyrolyzing it is repeated 9 times to form a superposed layer consisting of 10 pyrolysis layers in total. It was sintered in an oxygen atmosphere at 845 ° C. for 2 hours to obtain a silver foil having a thickness of about 4 μm and having a Bi 2 Sr 2 CaCu 2 O y based oxide superconducting film with good adhesion.

【0030】比較例1 錯化剤としてEDTAアンモニウム塩を用いたほかは実
施例1に準じてYBa2Cu3y系酸化物超電導膜を有す
る銀箔を得た。
Comparative Example 1 A silver foil having a YBa 2 Cu 3 O y type oxide superconducting film was obtained in the same manner as in Example 1 except that EDTA ammonium salt was used as a complexing agent.

【0031】比較例2 錯化剤としてトリエタノールアミンを用いたほかは実施
例1に準じてYBa2Cu3y系酸化物超電導膜を有する
銀箔を得た。
Comparative Example 2 A silver foil having a YBa 2 Cu 3 O y based oxide superconducting film was obtained in the same manner as in Example 1 except that triethanolamine was used as the complexing agent.

【0032】評価試験 粘度変化 実施例、比較例で用いた展開液を常温にて放置し、所定
時間経過後の粘度を調べた。
Evaluation Test Viscosity Change The developing solutions used in Examples and Comparative Examples were allowed to stand at room temperature, and the viscosity after a predetermined time was examined.

【0033】臨界温度 実施例、比較例で得た酸化物超電導膜について、0.1
A/cm2の電流密度下、液体窒素で冷却しながら4端子
法で電気抵抗の温度変化を測定し、電圧端子間の発生電
圧が0となったときの温度を調べた。
Critical Temperature The oxide superconducting films obtained in Examples and Comparative Examples were found to have 0.1
The temperature change of the electric resistance was measured by the four-terminal method while cooling with liquid nitrogen under a current density of A / cm 2 , and the temperature when the generated voltage between the voltage terminals became 0 was investigated.

【0034】臨界電流密度 実施例、比較例で得た酸化物超電導膜について、パワー
リードと共に液体窒素で冷却しながら徐々に電流値を上
げて、4端子法により電圧端子間の電圧の印加電流によ
る変化を測定し、X−Yレコーダにおいて1μv/cmの
電圧が出現したときの電流値を超電導膜の断面積で除し
た値を求めた。
Critical Current Density With respect to the oxide superconducting films obtained in Examples and Comparative Examples, the current value was gradually increased while cooling with liquid nitrogen together with the power leads, and the four terminals method was applied to the voltage applied between the voltage terminals. The change was measured, and a value obtained by dividing the current value when a voltage of 1 μv / cm appeared in the XY recorder by the cross-sectional area of the superconducting film was obtained.

【0035】前記の結果を表1に示した。The above results are shown in Table 1.

【表1】 [Table 1]

【0036】[0036]

【発明の効果】本発明によれば、水溶液からなる展開液
の液質が変化しにくく、ゾル・ゲル法により品質が安定
した酸化物超電導膜を形成することができ、また良質な
ゲル膜を形成できて均質で超電導特性に優れる酸化物超
電導膜を安定して得ることができる。さらに、展開液が
水溶液からなるので引火しにくく、製造設備、ないし製
造工程を簡略化できる利点なども有している。
EFFECTS OF THE INVENTION According to the present invention, the quality of the developing solution consisting of an aqueous solution is unlikely to change, and a stable quality oxide superconducting film can be formed by the sol-gel method. It is possible to stably obtain an oxide superconducting film that can be formed, is homogeneous, and has excellent superconducting properties. Further, since the developing solution is an aqueous solution, it is difficult to catch fire and has the advantage of simplifying manufacturing equipment or manufacturing process.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 単糖類の酸化物又は還元物からなる錯化
剤と、酸化物超電導体形成用の原料化合物を含有する水
溶液を基材上に展開し、その展開層を加熱処理して原料
化合物を熱分解させる操作を複数回繰り返して、基材上
に原料化合物の熱分解処理層の重畳層を形成したのち、
その重畳層を焼結処理することを特徴とする酸化物超電
導膜の製造方法。
1. A raw material obtained by spreading an aqueous solution containing a complexing agent composed of an oxide or reduced product of a monosaccharide and a raw material compound for forming an oxide superconductor on a substrate and heat-treating the developed layer. After repeating the operation of thermally decomposing the compound a plurality of times, after forming a superposed layer of the thermally decomposed layer of the raw material compound on the substrate,
A method for manufacturing an oxide superconducting film, which comprises subjecting the superposed layer to a sintering treatment.
JP3229404A 1991-08-15 1991-08-15 Production of oxide superconductive film Pending JPH0543205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3229404A JPH0543205A (en) 1991-08-15 1991-08-15 Production of oxide superconductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3229404A JPH0543205A (en) 1991-08-15 1991-08-15 Production of oxide superconductive film

Publications (1)

Publication Number Publication Date
JPH0543205A true JPH0543205A (en) 1993-02-23

Family

ID=16891683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3229404A Pending JPH0543205A (en) 1991-08-15 1991-08-15 Production of oxide superconductive film

Country Status (1)

Country Link
JP (1) JPH0543205A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160138223A (en) 2014-03-26 2016-12-02 얀마 가부시키가이샤 Autonomous travel working vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160138223A (en) 2014-03-26 2016-12-02 얀마 가부시키가이샤 Autonomous travel working vehicle
KR20200064165A (en) 2014-03-26 2020-06-05 얀마 가부시키가이샤 Autonomous travel working vehicle

Similar Documents

Publication Publication Date Title
JP3548801B2 (en) A solution composition containing a metal complex in which a specific ligand is coordinated to a specific metal species, a solution composition for producing a rare-earth superconducting film, an amorphous solid of a specific metal complex, a specific coordination to a specific metal species A method for producing a solution containing a metal complex coordinated with an atom, a method for producing a solution for producing a rare earth superconducting film, and a method for forming a superconducting thin film.
US4962088A (en) Formation of film superconductors by metallo-organic deposition
JP3725085B2 (en) Superconducting layer and manufacturing method thereof
JP2567505B2 (en) Method for producing bismuth oxide superconductor
US5192739A (en) Method of forming a tape of the high temperature oxide superconductors
EP0587326A1 (en) Method for making rare earth superconductive composite
EP0764991A1 (en) Oxide superconductor and method of producing the same
Somasundaram et al. Synthesis and characterization of superconducting YbBa2Cu3O7− δ and Y1− xLuxBa2Cu3O7− δ (0.0< x< 0.75): Lower limit of the rare-earth ion radius tolerated in the 123 cuprate system
JP2011510171A (en) Wet chemical methods for producing high temperature superconductors
JPH0543205A (en) Production of oxide superconductive film
JPH05147941A (en) Production of superconductor and superconductor
US5932524A (en) Method of manufacturing superconducting ceramics
US5162299A (en) Preparation of superconducting oxide precursor materials by pyrolysis from concentrated nitric acid solution
Ramli et al. Microstructure and superconducting properties of Ag-substituted YBa2-xAgxCu3O7-δ ceramics prepared by sol-gel method
US5081103A (en) Fluorination of superconducting YBa2 Cu3 O7-x powder
US5550104A (en) Electrodeposition process for forming superconducting ceramics
EP0310245A2 (en) Formation of film superconductors by metallo-organic deposition
US5089466A (en) Stable mixed metal superconductive oxides containing nitrogen
JP2822328B2 (en) Superconductor manufacturing method
WO1995020063A1 (en) Preparation of superconductor precursor powders
JP3053238B2 (en) Method for producing Bi-based oxide superconductor
JPH04285084A (en) Production of y-containing oxide superconducting film
JP2670362B2 (en) Method for manufacturing conductor for current lead
JP3164392B2 (en) Manufacturing method of oxide superconductor
JPH07109170A (en) Production of bi-based oxide superconductor and material for forming the same