JPH0543109B2 - - Google Patents

Info

Publication number
JPH0543109B2
JPH0543109B2 JP26598884A JP26598884A JPH0543109B2 JP H0543109 B2 JPH0543109 B2 JP H0543109B2 JP 26598884 A JP26598884 A JP 26598884A JP 26598884 A JP26598884 A JP 26598884A JP H0543109 B2 JPH0543109 B2 JP H0543109B2
Authority
JP
Japan
Prior art keywords
weight
parts
charge
photoreceptor
resins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26598884A
Other languages
Japanese (ja)
Other versions
JPS61143765A (en
Inventor
Hideaki Ueda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP26598884A priority Critical patent/JPS61143765A/en
Publication of JPS61143765A publication Critical patent/JPS61143765A/en
Publication of JPH0543109B2 publication Critical patent/JPH0543109B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0622Heterocyclic compounds
    • G03G5/0644Heterocyclic compounds containing two or more hetero rings
    • G03G5/0646Heterocyclic compounds containing two or more hetero rings in the same ring system
    • G03G5/0657Heterocyclic compounds containing two or more hetero rings in the same ring system containing seven relevant rings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は新規なペリレン顔料を含有する感光層
を有する感光体に関する。 従来の技術 感光体は感光層を構成する材料として、従来よ
りセレン、硫化カドミウム、酸化亜鉛等の無機光
導電性材料が知られている。 これらの光導電性材料は、数多くの利点例えば
暗所で適当な電位に帯電できること、暗所で電荷
の逸散が少ないこと、あるいは光照射によつて速
かに電荷を逸散できることなどの利点をもつてい
る反面、各種の欠点をもつている。例えば、セレ
ン系感光体では、製造する条件がむずかしく、製
造コストが高く、また熱や機械的な衝撃に弱いた
め取り扱いに注意を要する。硫化カドミウム系感
光体や酸化亜鉛感光体では、多湿の環境下で安定
した感度が得られない点や、増感剤として添加し
た色素がコロナ帯電による帯電劣化や露光による
光退色を生じるため長期にわたつて安定した特性
を与えることができない欠点を有している。 一方、ポリビニルカルバゾールをはじめとする
各種の有機光導電性ポリマーが提案されてきた
が、これらのポリマーは、前述の無機系光導電材
料に比べ成膜性、軽量性などの点で優れている
が、未だ十分な感度、耐久性および環境変化によ
る安定性の点で無機系光導電材料に比べ劣つてい
る。 近年、これらの感光体の欠点や問題を解決する
ため、種々の研究開発が行なわれているが、光導
電性機能の電荷発生機能と電荷輸送機能とをそれ
ぞれ別個の物質に分担させるように積層型あるい
は分散型の機能分離型の感光体が提案されてい
る。このような機能分離型感光体は各々の物質の
選択範囲が広く帯電特性、感度、残留電位、繰り
返し特性、耐刷性等の電子写真特性において、最
良の物質を組み合わせることによる高性能な感光
体を提供することができる。また、塗工で生産で
きるため、極めて生産性が高く、安価な感光体を
提供でき、しかも電荷発生材料を適当に選択する
ことにより感光波長域を自在にコントロールする
ことができる。例えば電荷発生材料としては、フ
タロシアニン顔料、シアニン染料、多環キノン顔
料、ペリレン系顔料、インジゴ染料、チオインジ
ゴ染料、あるいは、スクエアリツク酸メチン染料
などの有機顔料や染料が知られている。 しかしながら、このような感光体にあつても静
電特性全般を満足するものは容易に得られず、特
に感度特性、赤色再現性に良好なものは得がた
く、加えて電荷発生材料の溶剤溶解性に優れたも
のは少なく良質な光導電性塗膜が得られない等の
欠点がある。 発明が解決しようとする問題点 本発明は以上の事実に鑑みて成されたもので、
その目的とするところは静電特性全般に優れ、特
に光感度が高く赤色再現性が良好で、且つ電荷発
生材料の溶剤溶解性に優れた感光体を提供するこ
とにある。 本発明に係る感光体は、下記一般式〔〕で示
されるペリレン顔料を含有する感光層を有するこ
とを特徴とする。 即ち、N,N′−ビス(ジ−tert−ブチルフエニ
ル)−3,4,9,10−ペリレンジカルボキシイ
ミドである。 本発明においては、前期一般式〔〕で示され
るペリレン顔料を感光体の光導電性物質として用
いることにより、あるいは、本発明のペリレン顔
料の優れた電荷発生能のみを利用し、これを機能
分離型感光体の電荷発生層に用いることにより、
電荷保持能、感度、および残留電位等の電子写真
特性に優れかつ繰り返し使用に供した時にも安定
した特性を発揮し得る感光体を作成することがで
きる。 本発明の感光体は前記一般式で表わされるペリ
レン顔料を1種又は2種以上含有する感光層を有
する。各種の形態の感光体が知られているが、本
発明の感光体はそのいずれも感光体であつてもよ
い。たとえば、支持体上にペリレン顔料を樹脂バ
インダーあるいは電荷輸送媒体中に分散させて成
る感光層を設けた単層感光体や、支持体上にペリ
レン顔料を主成分とする電荷発生層を設け、その
上に電荷輸送層を設けたいわゆる積層型感光体等
がある本発明のペリレン顔料は光導電性物質とし
て作用し、光を吸収すると極めて高い効率で電荷
担体を発生し、発生した電荷担体はペリレン顔料
を媒体として輸送することもできるが、電荷輸送
材料を媒体として輸送させた方が更に効果的であ
る。 単層型感光体は作成するにはペリレン顔料の微
粒子を樹脂溶液もそくは、電荷輸送化合物と樹脂
を溶解した溶液中に分散せしめ、これを導電性支
持体上に塗布乾燥すればよい。この時の感光層の
厚さは3〜30μ好ましくは5〜20μがよい。使用
するペリレン顔料の量が少なすぎると感度が悪
く、多すぎると帯電性が悪くなつたり、感光層の
強度が弱くなつたりし、感光層中の顔料の占める
割合は樹脂1重量部に対して0.01〜2重量部、好
ましくは0.05〜1重量部がよく、必要に応じて添
加する電荷輸送材料の割合は樹脂1重量部に対し
0.1〜2重量部、好ましくは、0.2〜1.2重量部の範
囲が良い。またそれ自信バインダーとして使用で
きる電荷輸送材料たとえばポリビニルカルバゾー
ルなどの場合は、ペリレン顔料の添加量は電荷輸
送材料1重量部に対して0.01〜0.5重量部使用す
るのが好ましい。 積層型感光体を作成するには、導電性支持体上
にペリレン顔料を真空蒸着するが、あるいは、ア
ミン等の溶媒に溶解せしめて塗布するか、顔料を
適当な溶剤もしくは必要があればバインダー樹脂
を溶解させた溶液中に分散させて作製した塗布液
を塗布乾燥した後、その上に電荷輸送材料及びバ
インダーを含む溶液を塗布乾燥して得られる。こ
のときの電荷発生層となるペリレン顔料層の厚み
は4μ以下、好ましくは2μ以下がよく、電荷輸送
層の厚みは3〜30μ、好ましくは5〜20μがよい。
電荷輸送層中の電荷輸送材料の割合はバインダー
樹脂1重量部に対し0.2〜2重量部、好ましくは
0.3〜1.3重量部である。それ自信バインダーとし
て使用できる高分子電荷輸送材料の場合は、他の
バインダーを使用しなくても良い。 本発明の感光体はバインダー樹脂とともに、ハ
ロゲン化パラフイン、ポリ塩化ビフエニル、ジメ
チルナフタレン、ジブチルフタレート、O−タ−
フエニルなどの可塑剤やクロラニル、テトラシア
ノエチレン、2,4,7−トリニトロ、9−フル
オレノン、5,6−ジシアノベンゾキノン、テト
ラシアノキノジメタン、テトラクロル無水フタル
酸、3,5−ジニトロ安息香酸等の電子吸引性増
感剤、メチルバイオレツト、ローダミンB、シア
ニン染料、ピリリウム塩、チアピリリウム塩等の
増感剤を使用しても良い。本発明のペリレン顔料
は、他のペリレン顔料と違い、DMF等に溶解さ
せることが出来る。そのため真空蒸着などの設備
がいらず、又樹脂と分散させなくても微粒子化出
来るため、効率的に電荷を発生させることが出来
る。 本発明に用いられるペリレン顔料の一例として
は、3,4,9,10−ペリレンテトラカルボン酸
と2.5−ジタ−シヤリ−ブチルアニリンとを反応
させることによつてN−N′−ビス(2.5−ジ−
tert−ブチルフエニル)−3,4,9,10−ペリ
レンジカルボキシイミドが得られる。このような
ペリレン顔料は他の公知のペリレン顔料(例えば
CINo.71330、No.71140)と違いジメチルホルムア
ミドやアミン類に容易に溶解する。それ故、均一
に良好な塗膜を簡単に得ることができ、感光体の
特性全般が改善されるとともに、製造面でも蒸着
等と比して簡素となる。 本発明において用いられる電気絶縁性のバイン
ダ樹脂としては、電気絶縁性であるそれ自体公知
の熱可塑性樹脂あるいは熱硬化性樹脂や光硬化性
樹脂や光導電性樹脂等結着剤を使用出来る。適当
な結着剤樹脂の例は、これに限定されるものでは
ないが、飽和ポリエステル樹脂、ポリアミド樹脂
アクリル樹脂、エチレン−酢酸ビニル共重合体、
イオン架橋オレフイン共重合体(アイオノマー)
スチレン−ブタジエンブロツク共重合体、ポリカ
ーボネート 塩化ビニル−酢酸ビニル共重合体、
セルロースエステル、ポリイミド、スチロール樹
脂等の熱可塑性結着剤;エポキシ樹脂、ウレタン
樹脂、シリコーン樹脂、フエノール樹脂、メラミ
ン樹脂、キシレン樹脂、アルキツド樹脂、熱硬化
性アクリル樹脂等の熱硬化性結着剤;光硬化性樹
脂;ポリ−N−ビニルカルバゾール、ポリビニル
ピレン、ポリビニルアントラセン等の光導電性樹
脂等である。これらは単独で、又は組み合わせて
使用することが出来る。これら電気絶縁性樹脂は
単独で測定して1×1012Ω・cm以上の体積抵抗を
有することが望ましい。 更に本発明において用いることのできる電荷輸
送材料としては、例えばカルバゾール、N−エチ
ルカルバゾール、N−ビニルカルバゾール、N−
イソプロピルカルバゾール、N−フエニルカルバ
ゾール、テトラセン、クリセン、ピレン、ペリレ
ン、2−フエニルナフタレン、アザピレン、2.3
−ベンゾクリセン、3.4−ベンゾピレン、フルオ
レン、1.2−ベンゾフルオレン、2.3−ベンゾフル
オレン、4−(2−フルオレニルアゾ)レゾルシ
ノール、4−(2−フルオロニルアゾ)m−クレ
ゾール、2−P−アニソールアミノフルオレンP
−ジエチルアミノ−アゾベンゼン、1−(2−チ
アゾリルアゾ)−2−ナフトール、4−アニソー
ルアミノアゾベンゼン、カジオン、N,N−ジメ
チル−P−フエニルアゾアニリン、P−(ジメチ
ルアミノ)スチルベン、1.4−ビス(2−メチル
スチリル)ベンゼン、9−(4−ジエチルアミノ
スチリル)アントラセン、2,5−ビス(4−ジ
エチルアミノフエノール)−1.3.5−オキサジアゾ
ール、1−フエニル−3−(P−ジエチルアミノ
スチリル)−5−(P−ジエチルアミノフエニル)
ピラゾリン、1−フエニル−3−メチル−5−ピ
ラゾロンおよび2−(m−ナフチル)−3−フエニ
ルアキサゾール、P−ジエチルアミノベンズアル
デヒド−(ジフエニルヒドラゾン)等を挙げるこ
とができる。 発明の効果 本発明に係る感光体は、高感度、電荷保持能等
の静電特性全般に優れ、且つ赤色再現性も良好で
あるとともに顔料の溶剤溶液性に優れている。 以下、実施例について述べる。 実施例 1 上記式のペリレン顔料1重量部をジメチルホル
ムアミド20重量部に溶解させ、アルミニウム基体
上に約0.5μ電荷発生層を形成させた。次にポリカ
ボネート樹脂(帝人化成製)10重量部ポリエステ
ル樹脂(東洋紡製)3重量部をテトラヒドロフラ
ンおよびトルエン溶媒100重量部で混合した、溶
媒の重量比は9:1である。次にp−ジエチルア
ミノベンズアルデヒド−(ジフエニルヒドラゾン)
9部をシリコンオイル0.01重量部と共に添加し
た。この液を電荷発生層上に約15μとなるように
塗布し、80℃で乾燥して電荷輸送層を形成し、積
層型感光体を得た。 実施例 2 実施例1と同様に電荷発生層を形成させた。次
にポリカボネート樹脂20重量部をテトラヒドロフ
ラン150重量部に溶解させ、この中に1−フエニ
ル−3−(p−ジエチルアミノスチリル)−5−
(p−ジエチルアミノフエニル)−2−ピラゾリン
を12部とシリコンオイル0.02重量部と共に添加し
た。この液を電荷発生層上に約15μとなるように
塗布し、80℃で乾燥して電荷輸送層を形成し、積
層型感光体を得た。 実施例 3 実施例1と同様に電荷発生層を形成させた。次
にポリカボネート樹脂10重量部、ポリエステル樹
脂5重量部、アクリル樹脂5重量部をテトラヒド
ロフラン:トルエン(9:1)150重量部で溶解
させた。この中に9−(4−ジエチルアミノスチ
リル)アントラセン12部をシリコンオイル0.02重
量部とともに添加した。この液を電荷発生層上に
約15μとあるように塗布し、電荷発生層を形成
し、積層型感光体を得た。 実施例 4 実施例1におけるペリレン顔料2重量部とポリ
エセテル樹脂(東洋紡製)8重量部とN−フエニ
ルカルバゾール−3カルボアルデヒド−ジフエニ
ルヒドラゾン5重量部をジメチルホルムアミド50
重量部とともに500mlビーカーに入れ、超音波分
散器に5分かけて、感光製塗液を調製した。次に
この塗液をアルミニウム基体上に約15μとなるよ
うに塗布し、電荷発生層を形成し、単層型感光体
を得た。 夫々の感光体を転写型複写機(ミノルタカメラ
(株)製Ep−310)に組み込み、直流電圧−6.0KV
(実施例4は+6.0KV)を印加し、静電特性を測
定した。結果は表−1に示す通りで、表中、V0
は初期表面電位(V)、DDR1は帯電後1秒間暗所に
放置した後の電位の減衰率(%)、E1/2は初期表
面電位が1/2になるまでに要した露光量(lux・
sec)である。
INDUSTRIAL APPLICATION FIELD The present invention relates to a photoreceptor having a photosensitive layer containing a novel perylene pigment. BACKGROUND ART Inorganic photoconductive materials such as selenium, cadmium sulfide, and zinc oxide are conventionally known as materials constituting a photosensitive layer of a photoreceptor. These photoconductive materials have many advantages, such as being able to be charged to an appropriate potential in the dark, having little charge dissipation in the dark, and being able to rapidly dissipate charge when irradiated with light. On the other hand, it also has various drawbacks. For example, selenium-based photoreceptors require difficult manufacturing conditions, are expensive to manufacture, and are sensitive to heat and mechanical shock, so care must be taken when handling them. With cadmium sulfide photoreceptors and zinc oxide photoreceptors, stable sensitivity cannot be obtained in humid environments, and the dye added as a sensitizer causes charge deterioration due to corona charging and photobleaching due to exposure, so they cannot be used for a long period of time. It has the disadvantage that it cannot provide stable characteristics over time. On the other hand, various organic photoconductive polymers including polyvinylcarbazole have been proposed, but these polymers are superior to the above-mentioned inorganic photoconductive materials in terms of film formability and light weight. However, they are still inferior to inorganic photoconductive materials in terms of sufficient sensitivity, durability, and stability against environmental changes. In recent years, various research and developments have been carried out to solve the drawbacks and problems of these photoreceptors. Photoreceptors of functionally separated type or dispersion type have been proposed. These functionally separated photoreceptors have a wide range of materials to choose from, and can be made into high-performance photoreceptors by combining the best materials in terms of electrophotographic properties such as charging characteristics, sensitivity, residual potential, repeatability, and printing durability. can be provided. In addition, since it can be produced by coating, it is possible to provide a photoreceptor with extremely high productivity and at low cost, and furthermore, by appropriately selecting a charge generating material, the wavelength range to which it is sensitive can be freely controlled. For example, organic pigments and dyes such as phthalocyanine pigments, cyanine dyes, polycyclic quinone pigments, perylene pigments, indigo dyes, thioindigo dyes, and methine squaric acid dyes are known as charge-generating materials. However, even with such a photoreceptor, it is difficult to obtain one that satisfies all electrostatic properties, and in particular it is difficult to obtain one that has good sensitivity properties and red color reproduction. There are few products with excellent properties, and there are drawbacks such as the inability to obtain high-quality photoconductive coatings. Problems to be solved by the invention The present invention has been made in view of the above facts.
The purpose is to provide a photoreceptor that has excellent overall electrostatic properties, particularly high photosensitivity, good red reproducibility, and excellent solvent solubility of the charge generating material. The photoreceptor according to the present invention is characterized by having a photosensitive layer containing a perylene pigment represented by the following general formula []. That is, N,N'-bis(di-tert-butylphenyl)-3,4,9,10-perylene dicarboximide. In the present invention, by using the perylene pigment represented by the above general formula [] as a photoconductive substance of the photoreceptor, or by utilizing only the excellent charge generation ability of the perylene pigment of the present invention, it is possible to perform functional separation. By using it in the charge generation layer of a type photoreceptor,
It is possible to create a photoreceptor that has excellent electrophotographic properties such as charge retention ability, sensitivity, and residual potential, and that exhibits stable properties even when subjected to repeated use. The photoreceptor of the present invention has a photosensitive layer containing one or more perylene pigments represented by the above general formula. Various types of photoreceptors are known, and the photoreceptor of the present invention may be any of them. For example, there are single-layer photoreceptors in which a photosensitive layer consisting of a perylene pigment dispersed in a resin binder or a charge transport medium is provided on a support, and a charge generation layer containing a perylene pigment as a main component is provided on a support. The perylene pigment of the present invention, which has a so-called laminated photoreceptor with a charge transport layer thereon, acts as a photoconductive substance, and when it absorbs light, it generates charge carriers with extremely high efficiency, and the generated charge carriers are perylene. Although it is possible to transport pigments as a medium, it is more effective to transport a charge transport material as a medium. A single-layer type photoreceptor can be prepared by dispersing fine particles of perylene pigment in a resin solution, which is basically a solution containing a charge transport compound and a resin, and coating this on a conductive support and drying it. The thickness of the photosensitive layer at this time is preferably 3 to 30 microns, preferably 5 to 20 microns. If the amount of perylene pigment used is too small, the sensitivity will be poor, and if it is too large, the charging property will be poor and the strength of the photosensitive layer will be weakened.The ratio of the pigment in the photosensitive layer to 1 part by weight of resin is 0.01 to 2 parts by weight, preferably 0.05 to 1 part by weight, and the ratio of the charge transport material added as necessary is based on 1 part by weight of the resin.
The range is 0.1 to 2 parts by weight, preferably 0.2 to 1.2 parts by weight. In the case of a charge transporting material which itself can be used as a binder, such as polyvinylcarbazole, the amount of perylene pigment added is preferably 0.01 to 0.5 parts by weight per 1 part by weight of the charge transporting material. To create a laminated photoreceptor, a perylene pigment is vacuum deposited on a conductive support, or it can be dissolved in a solvent such as an amine and coated, or the pigment can be coated with a suitable solvent or a binder resin if necessary. It is obtained by applying and drying a coating liquid prepared by dispersing it in a solution in which a charge transporting material and a binder are dissolved, and then applying and drying a solution containing a charge transporting material and a binder thereon. The thickness of the perylene pigment layer serving as the charge generation layer at this time is preferably 4 μm or less, preferably 2 μm or less, and the thickness of the charge transport layer is 3 to 30 μm, preferably 5 to 20 μm.
The proportion of the charge transport material in the charge transport layer is 0.2 to 2 parts by weight, preferably 0.2 to 2 parts by weight, per 1 part by weight of the binder resin.
It is 0.3 to 1.3 parts by weight. If it is a polymeric charge transport material that can be used as a binder by itself, there is no need to use other binders. In addition to the binder resin, the photoreceptor of the present invention contains halogenated paraffin, polychlorinated biphenyl, dimethylnaphthalene, dibutyl phthalate, O-tar, etc.
Plasticizers such as phenyl, chloranil, tetracyanoethylene, 2,4,7-trinitro, 9-fluorenone, 5,6-dicyanobenzoquinone, tetracyanoquinodimethane, tetrachlorophthalic anhydride, 3,5-dinitrobenzoic acid, etc. Sensitizers such as electron-withdrawing sensitizers, methyl violet, rhodamine B, cyanine dyes, pyrylium salts, and thiapyrylium salts may also be used. The perylene pigment of the present invention, unlike other perylene pigments, can be dissolved in DMF or the like. Therefore, there is no need for equipment such as vacuum evaporation, and since it can be made into fine particles without being dispersed with a resin, it is possible to efficiently generate electric charges. An example of perylene pigment used in the present invention is N-N'-bis(2.5- G
tert-butylphenyl)-3,4,9,10-perylene dicarboximide is obtained. Such perylene pigments are similar to other known perylene pigments (e.g.
Unlike CI No. 71330, No. 71140), it easily dissolves in dimethylformamide and amines. Therefore, a uniformly good coating film can be easily obtained, the overall characteristics of the photoreceptor are improved, and the manufacturing process is simpler than vapor deposition or the like. As the electrically insulating binder resin used in the present invention, electrically insulating binders such as thermoplastic resins, thermosetting resins, photocurable resins, and photoconductive resins that are known per se can be used. Examples of suitable binder resins include, but are not limited to, saturated polyester resins, polyamide resins, acrylic resins, ethylene-vinyl acetate copolymers,
Ionically crosslinked olefin copolymer (ionomer)
Styrene-butadiene block copolymer, polycarbonate, vinyl chloride-vinyl acetate copolymer,
Thermoplastic binders such as cellulose ester, polyimide, and styrene resins; Thermosetting binders such as epoxy resins, urethane resins, silicone resins, phenolic resins, melamine resins, xylene resins, alkyd resins, and thermosetting acrylic resins; Photocurable resin; photoconductive resin such as poly-N-vinylcarbazole, polyvinylpyrene, polyvinylanthracene, etc. These can be used alone or in combination. It is desirable that these electrically insulating resins have a volume resistivity of 1×10 12 Ω·cm or more when measured alone. Furthermore, examples of charge transport materials that can be used in the present invention include carbazole, N-ethylcarbazole, N-vinylcarbazole, N-
Isopropylcarbazole, N-phenylcarbazole, tetracene, chrysene, pyrene, perylene, 2-phenylnaphthalene, azapyrene, 2.3
-Benzochrysene, 3.4-benzopyrene, fluorene, 1.2-benzofluorene, 2.3-benzofluorene, 4-(2-fluorenylazo)resorcinol, 4-(2-fluoronylazo)m-cresol, 2-P-anisoleaminofluorene P
-diethylamino-azobenzene, 1-(2-thiazolyl azo)-2-naphthol, 4-anisoleaminoazobenzene, cation, N,N-dimethyl-P-phenylazoaniline, P-(dimethylamino)stilbene, 1,4-bis( 2-methylstyryl)benzene, 9-(4-diethylaminostyryl)anthracene, 2,5-bis(4-diethylaminophenol)-1.3.5-oxadiazole, 1-phenyl-3-(P-diethylaminostyryl)- 5-(P-diethylaminophenyl)
Examples include pyrazoline, 1-phenyl-3-methyl-5-pyrazolone, 2-(m-naphthyl)-3-phenyl axazole, P-diethylaminobenzaldehyde (diphenylhydrazone), and the like. Effects of the Invention The photoreceptor according to the present invention has excellent overall electrostatic properties such as high sensitivity and charge retention ability, and also has good red reproducibility and excellent solvent solubility of the pigment. Examples will be described below. Example 1 One part by weight of the perylene pigment of the above formula was dissolved in 20 parts by weight of dimethylformamide to form an approximately 0.5 micron charge generating layer on the aluminum substrate. Next, 10 parts by weight of polycarbonate resin (manufactured by Teijin Kasei) and 3 parts by weight of polyester resin (manufactured by Toyobo) were mixed with 100 parts by weight of tetrahydrofuran and toluene solvent, the weight ratio of the solvents being 9:1. Next, p-diethylaminobenzaldehyde (diphenylhydrazone)
9 parts were added together with 0.01 part by weight of silicone oil. This liquid was applied onto the charge generation layer to a thickness of about 15μ and dried at 80° C. to form a charge transport layer to obtain a laminated photoreceptor. Example 2 A charge generation layer was formed in the same manner as in Example 1. Next, 20 parts by weight of polycarbonate resin was dissolved in 150 parts by weight of tetrahydrofuran, and 1-phenyl-3-(p-diethylaminostyryl)-5-
12 parts of (p-diethylaminophenyl)-2-pyrazoline and 0.02 parts by weight of silicone oil were added. This liquid was applied onto the charge generation layer to a thickness of about 15μ and dried at 80° C. to form a charge transport layer to obtain a laminated photoreceptor. Example 3 A charge generation layer was formed in the same manner as in Example 1. Next, 10 parts by weight of polycarbonate resin, 5 parts by weight of polyester resin, and 5 parts by weight of acrylic resin were dissolved in 150 parts by weight of tetrahydrofuran:toluene (9:1). To this was added 12 parts of 9-(4-diethylaminostyryl)anthracene along with 0.02 part by weight of silicone oil. This liquid was applied to a thickness of about 15 μm on the charge generation layer to form a charge generation layer, and a laminated photoreceptor was obtained. Example 4 2 parts by weight of the perylene pigment in Example 1, 8 parts by weight of polyester resin (manufactured by Toyobo), and 5 parts by weight of N-phenylcarbazole-3 carbaldehyde-diphenylhydrazone were mixed with 50 parts by weight of dimethylformamide.
A photosensitive coating liquid was prepared by placing the sample together with the weight part in a 500 ml beaker and using an ultrasonic disperser for 5 minutes. Next, this coating liquid was applied to an aluminum substrate to a thickness of about 15 μm to form a charge generation layer, thereby obtaining a single-layer type photoreceptor. Transfer type copying machine (Minolta camera)
Built into Ep-310 manufactured by Co., Ltd., DC voltage -6.0KV
(+6.0 KV in Example 4) was applied to measure the electrostatic properties. The results are shown in Table 1. In the table, V 0
is the initial surface potential (V), DDR 1 is the attenuation rate (%) of the potential after being left in the dark for 1 second after charging, and E1/2 is the amount of exposure required to reduce the initial surface potential to 1/2 ( lux・
sec).

【表】 これからも明らかなように、本発明に係るペリ
レン顔料を含む感光体は、高感度、電荷保持能に
優れている。また、夫々の感光体で赤色画像を複
写したところ鮮明なコピーが得られた。
[Table] As is clear from the table, the photoreceptor containing the perylene pigment according to the present invention has high sensitivity and excellent charge retention ability. Further, when a red image was copied using each photoreceptor, a clear copy was obtained.

Claims (1)

【特許請求の範囲】 1 下記一般式〔〕で示されるペリレン顔料を
含む感光層を有することを特徴とする感光体。
[Scope of Claims] 1. A photoreceptor characterized by having a photosensitive layer containing a perylene pigment represented by the following general formula [].
JP26598884A 1984-12-17 1984-12-17 Photosensitive body Granted JPS61143765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26598884A JPS61143765A (en) 1984-12-17 1984-12-17 Photosensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26598884A JPS61143765A (en) 1984-12-17 1984-12-17 Photosensitive body

Publications (2)

Publication Number Publication Date
JPS61143765A JPS61143765A (en) 1986-07-01
JPH0543109B2 true JPH0543109B2 (en) 1993-06-30

Family

ID=17424804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26598884A Granted JPS61143765A (en) 1984-12-17 1984-12-17 Photosensitive body

Country Status (1)

Country Link
JP (1) JPS61143765A (en)

Also Published As

Publication number Publication date
JPS61143765A (en) 1986-07-01

Similar Documents

Publication Publication Date Title
JPH0693127B2 (en) Photoconductor
JPH0519701B2 (en)
JPH0690523B2 (en) Photoconductor
JP2653080B2 (en) Photoconductor
JP2737205B2 (en) Photoconductor
JP2646615B2 (en) Photoconductor
JP2611209B2 (en) Photoconductor
JPH0543109B2 (en)
JP2605704B2 (en) Photoconductor
JPH0446350A (en) Photosensitive body
JP2722671B2 (en) Photoconductor
JP2556079B2 (en) Photoconductor
JP2615760B2 (en) Photoconductor
JP2969810B2 (en) Photoconductor
JPH0329957A (en) Photosensitive body
JPS62121460A (en) Electrophotographic sensitive body
JP3104243B2 (en) Photoconductor
JP2661116B2 (en) Photoconductor
JPS63266457A (en) Photosensitive body
JP2505156B2 (en) Photoconductor
JP2001215741A (en) Electrophotographic photoreceptor
JPH0446349A (en) Photosensitive body
JPH0827542B2 (en) Photoconductor
JPH0769621B2 (en) Photoconductor
JPH04188145A (en) Photosensitive body for electrophotography