JPH0542790U - Load bearing device - Google Patents

Load bearing device

Info

Publication number
JPH0542790U
JPH0542790U JP9930991U JP9930991U JPH0542790U JP H0542790 U JPH0542790 U JP H0542790U JP 9930991 U JP9930991 U JP 9930991U JP 9930991 U JP9930991 U JP 9930991U JP H0542790 U JPH0542790 U JP H0542790U
Authority
JP
Japan
Prior art keywords
axis direction
acceleration load
mounting member
acceleration
load applied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9930991U
Other languages
Japanese (ja)
Inventor
美歌 小俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP9930991U priority Critical patent/JPH0542790U/en
Publication of JPH0542790U publication Critical patent/JPH0542790U/en
Pending legal-status Critical Current

Links

Landscapes

  • Vibration Prevention Devices (AREA)

Abstract

(57)【要約】 【目的】 電力のリソースを必要とすることなく、簡単
な構造で打上げ時および帰還時の加速度荷重を支持し、
装置のハンドリング性をよくして装置全体の小型化を可
能とする。 【構成】 フランジ3に固定された実験装置1はフレー
ム6内に収納され、フレーム6内で防振用ゲル2a〜2
dによって支持されている。フレーム6の内壁には緩衝
ストッパ4a〜4dと緩衝ストッパ7a,7bと緩衝ス
トッパ8a〜8dとが取付けられている。緩衝ストッパ
4a〜4dはZ軸方向の下方側にかかる加速度荷重を緩
和し、緩衝ストッパ7a,7bはX軸方向にかかる加速
度荷重を緩和し、緩衝ストッパ8a〜8dはY軸方向に
かかる加速度荷重およびZ軸方向の上方側にかかる加速
度荷重を緩和している。
(57) [Abstract] [Purpose] Supports acceleration loads during launch and return with a simple structure without requiring power resources,
The handling of the device is improved and the entire device can be downsized. [Structure] The experimental apparatus 1 fixed to the flange 3 is housed in a frame 6, and in the frame 6, vibration-proof gels 2a-2
supported by d. Buffer stoppers 4a to 4d, buffer stoppers 7a and 7b, and buffer stoppers 8a to 8d are attached to the inner wall of the frame 6. The buffer stoppers 4a to 4d reduce the acceleration load applied to the lower side in the Z-axis direction, the buffer stoppers 7a and 7b reduce the acceleration load applied to the X-axis direction, and the buffer stoppers 8a to 8d apply the acceleration load applied in the Y-axis direction. Also, the acceleration load applied to the upper side in the Z-axis direction is reduced.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【技術分野】【Technical field】

本考案は荷重支持装置に関し、特に微小重力環境維持装置において打上げ時お よび帰還時に実験装置にかかる荷重を支持する機構に関する。 The present invention relates to a load supporting device, and more particularly to a mechanism for supporting a load applied to an experimental device during launch and return in a microgravity environment maintaining device.

【0002】[0002]

【従来技術】[Prior art]

従来、この種の荷重支持機構においては、図5に示すように、実験装置1とフ レーム9との間にコイルバネ10を設け、打上げ時および帰還時に実験装置1に かかる加速度荷重をコイルバネ10で支持するようにしている。 Conventionally, in this type of load supporting mechanism, as shown in FIG. 5, a coil spring 10 is provided between the experimental device 1 and the frame 9, and the coil spring 10 applies an acceleration load applied to the experimental device 1 during launch and return. I try to support it.

【0003】 また、加速度荷重のかかる方向に応じてクランプを電動式の駆動部によって移 動し、このクランプで実験装置を搭載するパネルを固定し、打上げ時および帰還 時に実験装置にかかる加速度荷重をクランプおよびクッション部材によって支持 する機構もある。In addition, the clamp is moved by an electric drive unit according to the direction in which the acceleration load is applied, the panel on which the experimental device is mounted is fixed by this clamp, and the acceleration load applied to the experimental device during launch and return is measured. There is also a mechanism supported by clamps and cushion members.

【0004】 このような従来の荷重支持機構では、打上げ時および帰還時に実験装置1にか かる加速度荷重をコイルバネ10で支持する場合、実験装置1の支持面のX軸、 Y軸、Z軸の3軸方向に夫々コイルバネ10を配置し、3軸方向夫々にかかる加 速度荷重をコイルバネ10各々で受け持つようにしなければならないため、装置 のハンドリングに時間がかかるとともに、装置全体が大きくなってしまうという 欠点がある。In such a conventional load supporting mechanism, when the acceleration load applied to the experimental apparatus 1 is supported by the coil spring 10 at the time of launching and returning, the X-axis, Y-axis, and Z-axis of the supporting surface of the experimental apparatus 1 are supported. Since the coil springs 10 are arranged in the three axial directions and the acceleration load applied in each of the three axial directions must be taken up by each of the coil springs 10, it takes time to handle the device and the entire device becomes large. There are drawbacks.

【0005】 また、打上げ時および帰還時に実験装置にかかる加速度荷重をクランプおよび クッション部材によって支持する場合、クランプを電動式の駆動部によって移動 させなければならないため、電力のリソースが必要になるという欠点がある。In addition, when the acceleration load applied to the experimental device at the time of launching and returning is supported by the clamp and the cushion member, the clamp must be moved by an electric drive unit, which requires a power resource. There is.

【0006】[0006]

【考案の目的】[The purpose of the device]

本考案は上記のような従来のものの欠点を除去すべくなされたもので、電力の リソースを必要とすることなく、簡単な構造で打上げ時および帰還時の加速度荷 重を支持することができ、装置のハンドリング性をよくして装置全体の小型化が 可能な荷重支持装置の提供を目的とする。 The present invention has been made to eliminate the above-mentioned drawbacks of the conventional ones, and can support the acceleration load at the time of launch and return at a simple structure without requiring power resources. An object of the present invention is to provide a load supporting device which can be easily handled and can be downsized.

【0007】[0007]

【考案の構成】[Device configuration]

本考案による荷重支持装置は、実験装置を搭載する搭載部材と、粘弾性を有し 、前記搭載部材を支持しかつ前記搭載部材に対する振動を防止する防振部材と、 前記粘弾性を有し、前記搭載部材に直交するZ軸方向のうち前記実験装置側から 前記搭載部材側への加速度荷重を緩和する第1の緩衝部材と、前記粘弾性を有し 、前記搭載部材と同一平面上のX軸方向への加速度荷重を緩和する第2の緩衝部 材と、前記粘弾性を有し、前記X軸方向に直交する前記同一平面上のY軸方向へ の加速度荷重および前記Z軸方向のうち前記搭載部材側から前記実験装置側への 加速度荷重を緩和する第3の緩衝部材とを設けたことを特徴とする。 A load supporting device according to the present invention has a mounting member for mounting an experimental device, viscoelasticity, a vibration damping member for supporting the mounting member and preventing vibration to the mounting member, and having the viscoelasticity. A first cushioning member for relaxing an acceleration load from the experimental device side to the mounting member side in the Z-axis direction orthogonal to the mounting member, and the viscoelasticity, and X on the same plane as the mounting member. Of the second cushioning member that relaxes the acceleration load in the axial direction, the viscoelasticity, the acceleration load in the Y axis direction on the same plane that is orthogonal to the X axis direction, and the Z axis direction. A third cushioning member that alleviates an acceleration load from the mounting member side to the experimental apparatus side is provided.

【0008】[0008]

【実施例】【Example】

次に、本考案の一実施例について図面を参照して説明する。 Next, an embodiment of the present invention will be described with reference to the drawings.

【0009】 図1は本考案の一実施例の断面図であり、図2は本考案の一実施例の平面図で ある。これらの図において、実験装置1はフランジ3に固定されており、フラン ジ3には振動を防止するための防振用ゲル2a〜2dが取付けられている。FIG. 1 is a sectional view of an embodiment of the present invention, and FIG. 2 is a plan view of an embodiment of the present invention. In these figures, the experimental apparatus 1 is fixed to a flange 3, and the flange 3 is attached with vibration-proof gels 2a to 2d for preventing vibration.

【0010】 フランジ3に固定された実験装置1はフレーム6内に収納され、フレーム6内 で防振用ゲル2a〜2dによって支持されている。フレーム6の内壁にはフラン ジ3の支持面に直交するZ軸方向のうち実験装置1側からフランジ3の支持面側 にかかる加速度荷重を緩和する緩衝ストッパ4a〜4dと、フランジ3の支持面 上のX軸方向にかかる加速度荷重を緩和する緩衝ストッパ7a,7bと、フラン ジ3の支持面上のY軸方向にかかる加速度荷重およびZ軸方向のうちフランジ3 の支持面側から実験装置1側にかかる加速度荷重を緩和する緩衝ストッパ8a〜 8dとが取付けられている。The experimental apparatus 1 fixed to the flange 3 is housed in a frame 6 and is supported in the frame 6 by vibration-proof gels 2 a to 2 d. On the inner wall of the frame 6, buffer stoppers 4a to 4d for relaxing the acceleration load applied from the experimental device 1 side to the supporting surface side of the flange 3 in the Z-axis direction orthogonal to the supporting surface of the flange 3, and the supporting surface of the flange 3 are provided. The buffer stoppers 7a and 7b for relaxing the acceleration load applied to the upper X-axis direction, and the acceleration load applied to the Y-axis direction on the support surface of the flange 3 and the experimental device 1 from the support surface side of the flange 3 in the Z-axis direction. Cushion stoppers 8a to 8d for relaxing the acceleration load applied to the side are attached.

【0011】 ここで、緩衝ストッパ4a〜4dの実験装置1側には緩衝材5a〜5dが取付 けられている。これらの防振用ゲル2a〜2dと緩衝材5a〜5dと緩衝ストッ パ7a,7bと緩衝ストッパ8a〜8dとは夫々粘弾性を有するシリコンゲルな どで形成されている。但し、緩衝材5a〜5dと緩衝ストッパ7a,7bと緩衝 ストッパ8a〜8dとには夫々防振用ゲル2a〜2dの材質よりもヤング率や引 張強度の大きいものが使用されている。Here, shock absorbing materials 5 a to 5 d are attached to the experimental apparatus 1 side of the shock absorbing stoppers 4 a to 4 d. The antivibration gels 2a to 2d, the cushioning materials 5a to 5d, the cushioning stoppers 7a and 7b, and the cushioning stoppers 8a to 8d are each formed of viscoelastic silicon gel or the like. However, as the cushioning materials 5a to 5d, the cushioning stoppers 7a and 7b, and the cushioning stoppers 8a to 8d, those having a larger Young's modulus and tensile strength than the materials of the vibration-proof gels 2a to 2d are used.

【0012】 図3および図4は本考案の一実施例の動作を示す図である。図3は打上げ時ま たは帰還時に実験装置1側からフランジ3の支持面側に加速度荷重がかかった場 合を示している。この場合、フランジ3の下面が緩衝ストッパ4a〜4dの緩衝 材5a〜5dに接触し、加速度荷重が緩衝材5a〜5dによって支持される。3 and 4 are diagrams showing the operation of an embodiment of the present invention. Figure 3 shows the case in which an acceleration load is applied from the experimental device 1 side to the support surface side of the flange 3 at the time of launch or return. In this case, the lower surface of the flange 3 contacts the cushioning members 5a to 5d of the cushioning stoppers 4a to 4d, and the acceleration load is supported by the cushioning members 5a to 5d.

【0013】 図4はフランジ3の支持面側から実験装置1側に加速度荷重がかかった場合を 示している。この場合、フランジ3のX軸に平行な端部の上面が緩衝ストッパ8 a〜8dに接触し、加速度荷重が緩衝ストッパ8a〜8dによって支持される。FIG. 4 shows a case where an acceleration load is applied from the supporting surface side of the flange 3 to the experimental device 1 side. In this case, the upper surface of the end portion of the flange 3 parallel to the X axis contacts the buffer stoppers 8a to 8d, and the acceleration load is supported by the buffer stoppers 8a to 8d.

【0014】 また、図示していないが、X軸方向に加速度荷重がかかる場合、実験装置1の Y軸に平行な端面が緩衝ストッパ7aまたは緩衝ストッパ7bに接触し、加速度 荷重が緩衝ストッパ7a,7bによって支持される。Although not shown, when an acceleration load is applied in the X-axis direction, the end surface of the experimental apparatus 1 parallel to the Y-axis contacts the buffer stopper 7a or the buffer stopper 7b, and the acceleration load receives the buffer stopper 7a, Supported by 7b.

【0015】 さらに、Y軸方向に加速度荷重がかかる場合、実験装置1のX軸に平行な端面 が緩衝ストッパ8a,8bまたは緩衝ストッパ8c,8dに接触し、加速度荷重 が緩衝ストッパ8a〜8dによって支持される。Further, when an acceleration load is applied in the Y-axis direction, the end surface parallel to the X-axis of the experimental apparatus 1 contacts the buffer stoppers 8a, 8b or 8c, 8d, and the acceleration load is changed by the buffer stoppers 8a-8d. Supported.

【0016】 このように、実験装置1をフランジ3上に固定してフレーム6内に収納して粘 弾性の防振用ゲル2a〜2dで支持し、Z軸方向のうち実験装置1側からフラン ジ3の支持面側にかかる加速度荷重を粘弾性の緩衝ストッパ4a〜4dで緩和し 、X軸方向にかかる加速度荷重を粘弾性の緩衝ストッパ7a,7bで緩和し、Y 軸方向にかかる加速度荷重およびZ軸方向のうちフランジ3の支持面側から実験 装置1側にかかる加速度荷重を粘弾性の緩衝ストッパ8a〜8dで緩和するよう にすることによって、簡単な構造で打上げ時および帰還時の加速度荷重を支持す ることができる。As described above, the experimental apparatus 1 is fixed on the flange 3 and housed in the frame 6 and supported by the viscoelastic vibration isolation gels 2a to 2d. The acceleration load applied to the support surface side of the dice 3 is mitigated by the viscoelastic buffer stoppers 4a to 4d, the acceleration load applied in the X-axis direction is mitigated by the viscoelastic buffer stoppers 7a and 7b, and the acceleration load applied in the Y-axis direction. In addition, in the Z-axis direction, the acceleration load applied from the support surface side of the flange 3 to the experimental apparatus 1 side is mitigated by the viscoelastic buffer stoppers 8a to 8d, so that the acceleration at the time of launching and returning at a simple structure. It can support loads.

【0017】 また、電力のリソースが不要となるとともに、実験装置1全体をフレームなど で覆わなくともよくなるため、実験装置1の設置や交換などのハンドリング性も よくなり、全体の形状も小さくすることができる。In addition, since power resources are unnecessary and the entire experimental apparatus 1 does not need to be covered with a frame or the like, handling characteristics such as installation and replacement of the experimental apparatus 1 are improved and the overall shape is reduced. You can

【0018】 尚、本考案の一実施例では防振用ゲル2a〜2dと緩衝材5a〜5dと緩衝ス トッパ7a,7bと緩衝ストッパ8a〜8dとに夫々シリコンゲルを用いている が、粘弾性を有しかつ剛性の小さいものであれば他の材質のものでもよく、これ に限定されない。In one embodiment of the present invention, silicon gel is used for the anti-vibration gels 2a to 2d, the cushioning materials 5a to 5d, the cushioning stoppers 7a and 7b, and the cushioning stoppers 8a to 8d. Other materials may be used as long as they have elasticity and low rigidity, and are not limited thereto.

【0019】[0019]

【考案の効果】[Effect of the device]

以上説明したように本考案によれば、実験装置を搭載部材に搭載して粘弾性の 防振部材によって支持するとともに、搭載部材に直交するZ軸方向のうち実験装 置側から搭載部材側への加速度荷重を粘弾性の第1の緩衝部材で緩和し、搭載部 材の支持面上のX軸方向への加速度荷重を粘弾性の第2の緩衝部材で緩和し、X 軸方向に直交するY軸方向への加速度荷重およびZ軸方向のうち搭載部材側から 実験装置側への加速度荷重を粘弾性の第3の緩衝部材で緩和することによって、 電力のリソースを必要とすることなく、簡単な構造で打上げ時および帰還時の加 速度荷重を支持することができ、装置のハンドリング性をよくして装置全体の小 型化が可能になるという効果がある。 As described above, according to the present invention, the experimental apparatus is mounted on the mounting member and supported by the viscoelastic vibration isolator, and the Z axis direction orthogonal to the mounting member is moved from the experimental device side to the mounting member side. The first viscoelastic cushioning member relaxes the acceleration load in the X-axis direction, and the viscoelastic second cushioning member relaxes the acceleration load in the X-axis direction on the support surface of the mounting member, and is orthogonal to the X-axis direction. By reducing the acceleration load in the Y-axis direction and the acceleration load from the mounting member side to the experimental device side in the Z-axis direction by the viscoelastic third buffer member, power resources are not required, and it is easy. With such a structure, it is possible to support the accelerating load during launch and return, and it is possible to improve the handling of the device and reduce the size of the entire device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の一実施例の断面図である。FIG. 1 is a sectional view of an embodiment of the present invention.

【図2】本考案の一実施例の平面図である。FIG. 2 is a plan view of an embodiment of the present invention.

【図3】本考案の一実施例の動作を示す図である。FIG. 3 is a diagram showing the operation of an embodiment of the present invention.

【図4】本考案の一実施例の動作を示す図である。FIG. 4 is a diagram showing the operation of an embodiment of the present invention.

【図5】従来例の断面図である。FIG. 5 is a sectional view of a conventional example.

【符号の説明】[Explanation of symbols]

1 実験装置 2a〜2d 防振用ゲル 3 フランジ 4a〜4d 緩衝ストッパ 5 緩衝材 6 フレーム 7a,7b 緩衝ストッパ 8a〜8d 緩衝ストッパ 1 Experimental apparatus 2a-2d Gel for vibration damping 3 Flange 4a-4d Buffer stopper 5 Buffer material 6 Frame 7a, 7b Buffer stopper 8a-8d Buffer stopper

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 実験装置を搭載する搭載部材と、粘弾性
を有し、前記搭載部材を支持しかつ前記搭載部材に対す
る振動を防止する防振部材と、前記粘弾性を有し、前記
搭載部材に直交するZ軸方向のうち前記実験装置側から
前記搭載部材側への加速度荷重を緩和する第1の緩衝部
材と、前記粘弾性を有し、前記搭載部材と同一平面上の
X軸方向への加速度荷重を緩和する第2の緩衝部材と、
前記粘弾性を有し、前記X軸方向に直交する前記同一平
面上のY軸方向への加速度荷重および前記Z軸方向のう
ち前記搭載部材側から前記実験装置側への加速度荷重を
緩和する第3の緩衝部材とを設けたことを特徴とする荷
重支持装置。
1. A mounting member on which an experimental apparatus is mounted, a vibration-proof member having viscoelasticity, which supports the mounting member and prevents vibration to the mounting member, and the mounting member having the viscoelasticity. A first cushioning member for relaxing an acceleration load from the experimental device side to the mounting member side in the Z-axis direction orthogonal to, and the viscoelasticity in the X-axis direction on the same plane as the mounting member. A second cushioning member that alleviates the acceleration load of
A viscoelastic material that reduces an acceleration load in the Y-axis direction on the same plane orthogonal to the X-axis direction and an acceleration load from the mounting member side to the experimental device side in the Z-axis direction; 3. A load supporting device, wherein the buffer member of 3 is provided.
JP9930991U 1991-11-06 1991-11-06 Load bearing device Pending JPH0542790U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9930991U JPH0542790U (en) 1991-11-06 1991-11-06 Load bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9930991U JPH0542790U (en) 1991-11-06 1991-11-06 Load bearing device

Publications (1)

Publication Number Publication Date
JPH0542790U true JPH0542790U (en) 1993-06-11

Family

ID=14244037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9930991U Pending JPH0542790U (en) 1991-11-06 1991-11-06 Load bearing device

Country Status (1)

Country Link
JP (1) JPH0542790U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020020441A (en) * 2018-08-03 2020-02-06 三菱重工機械システム株式会社 Damping device and method for modifying damping device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020020441A (en) * 2018-08-03 2020-02-06 三菱重工機械システム株式会社 Damping device and method for modifying damping device

Similar Documents

Publication Publication Date Title
JP2001500232A (en) Spring arrangement for supporting in a casing vibration- or shock-sensitive instruments fixed to a support part
JPH07263331A (en) Vibration-isolating device
JP2000050538A (en) Stator support construction and stator assembly method for rotating electric machine
JPH0542790U (en) Load bearing device
JPH0228020A (en) Supporter for drive unit of automobile
JP6871645B1 (en) Anti-vibration device for mounting precision equipment
JP5649876B2 (en) Active vibration isolator
JPS59194144A (en) Vibration-proof structure for horizontal rotary compressor
JP3026446B2 (en) Seismic isolation device
JP2002286451A (en) Vibration-proof buffer device for gyrocompass
JPS61294191A (en) Fitting device of turbo molecular pump
JPS63203942A (en) Earthquake-proof structure
JPS62200588A (en) Vibration proof constitution for audio equipment, etc.
JPS6388528U (en)
JPH1089412A (en) Vibration insulator
JP2541239Y2 (en) Vibration isolator support structure
JPH071348U (en) Dynamic Vibration Absorber for Steel Structure Using Shear Deformation Spring of Vibration Isolating Rubber
JPH0874927A (en) Vibration damping device
JPH09273597A (en) Vibro-isolating supporting device
JPS6337538Y2 (en)
JPH0680043U (en) Dynamic damper
JP2548690Y2 (en) Cargo spreader
JPH0134087Y2 (en)
JPH1096447A (en) Support structure for precise vibration resistant stand
JPH0810706Y2 (en) Vibration isolation device