JPH0542476B2 - - Google Patents

Info

Publication number
JPH0542476B2
JPH0542476B2 JP25526584A JP25526584A JPH0542476B2 JP H0542476 B2 JPH0542476 B2 JP H0542476B2 JP 25526584 A JP25526584 A JP 25526584A JP 25526584 A JP25526584 A JP 25526584A JP H0542476 B2 JPH0542476 B2 JP H0542476B2
Authority
JP
Japan
Prior art keywords
methane
distillation column
oil
distillation
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25526584A
Other languages
Japanese (ja)
Other versions
JPS61133289A (en
Inventor
Yoshiaki Ikuta
Kazumasa Ogura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP25526584A priority Critical patent/JPS61133289A/en
Priority to DE8585730158T priority patent/DE3562271D1/en
Priority to CN85108736A priority patent/CN85108736B/en
Priority to EP19850730158 priority patent/EP0186617B1/en
Publication of JPS61133289A publication Critical patent/JPS61133289A/en
Publication of JPH0542476B2 publication Critical patent/JPH0542476B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G7/00Distillation of hydrocarbon oils

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は油の分留方法の改良に関する。更に詳
しくは、原油の軽質油および重質油への分留、コ
ールタールの分留、水素化分解装置や水素化精製
装置からの生成油の分留、石炭液化油の分留、不
活性ガスを含む多成分系の分留、およびタールサ
ンド油、シエールオイルの分留等に適用できる分
留方法に関する。 (従来の技術) 従来の原油蒸留の概略のフローシートを第3図
に示す。 第3図において、ライン1からの原油101は
ライン2からの水蒸気102と混合された後加熱
炉3で350〜400℃に昇温され、蒸留塔4へ供給さ
れる。蒸留塔4の運転圧力は常圧付近である。蒸
留塔4塔底からさらにストリツピング用にライン
5から水蒸気103が注入され、原油はナフサ1
04、灯油105、軽質軽油106、重質軽油1
07および残渣油108に分留される。通常蒸留
塔4の塔頂よりナフサ、塔側より灯油、軽質軽
油、重質軽油、蒸留塔4の塔底より残渣油が取出
される。蒸留塔4の塔底より注入された水蒸気1
03は塔頂を出て、凝縮器6に入り、冷却されて
凝縮槽7で凝縮され水となる。なお蒸留塔4の塔
頂から出た留出分は凝縮器6の前流でストリーム
と熱交換する(図示せず。)。水蒸気の凝縮に先だ
つての蒸留塔4の塔頂留分の熱交換温度が水蒸気
の露点近くなると蒸留塔4の塔頂で水蒸気が凝縮
し、塔頂材料の腐食の原因となるので露点より高
い温度で運転する。なお、原油には通常メタン、
エタンなどのガス(以後メタンリツチガスと称
す)が含まれており、凝縮槽7でオフガス110
として分離され、燃料として使用される。 (発明が解決しようとする問題点) 上述のように従来の分留方法によれば、蒸留塔
の塔頂での水蒸気の凝縮による腐食を避けるた
め、塔頂での熱交換温度を露点より高い温度で運
転するので熱回収が十分出来ない欠点があり、ま
たストリツピング用に系外から水蒸気を導入しな
ければならずかつその凝縮水の排水処理を必要と
するなどの難点を有する。 本発明は上述の従来方法の欠点を改良した産業
上有用な分留方法を提案するものである。 (問題点を解決するための手段) 本発明は、例えば従来原油蒸留塔でストリツピ
ング用に使用されていた水蒸気の替りに、原油中
に含まれているメタンリツチガスを凝縮槽で分離
後蒸留塔に圧縮循環して使用するか、又はそれに
更に加えて系外からメタンを含むガスを供給して
メタン雰囲気下で分留を行い、原油を効率よく分
留する方法で、いわゆる油の分留において、油中
に含まれるメタン含有ガスを蒸留塔の塔頂から凝
縮器に導き、冷却凝縮させてメタンリツチガスを
分離した後、該メタンリツチガスを昇圧して蒸留
塔へ導入し、再循環使用することを特徴とするメ
タン雰囲気下での油の分留方法を提案するもので
ある。 なお、本発明の方法においては上記の循環メタ
ンリツチガスに更に系外からの少量のメタンを含
むガスを合流供給してもよいし、また、その供給
は蒸留塔のみならず加熱炉前流に供給しても同様
の効果を奏することができる。蒸留塔は一般に
は、圧力0〜100Kg/cm2G、温度100〜500℃で操
作される。本発明の方法を原油の蒸留に適用した
場合の1実施態様例の概略フローシートを第1図
に示す。 第1図において原油101は、ライン28から
供給された少量メタン含有ガスと凝縮槽7で分離
され圧縮機8で昇圧されたメタンリツチガス11
3との混合物とともに加熱炉3に導入され、350
〜400℃に昇温され、蒸留塔4へ供給される。蒸
留塔4の運転圧力は常圧付近である。蒸留塔4塔
底からストリツピング用に、凝縮槽7で塔頂留分
から分離され、圧縮機8で昇圧されたメタンリツ
チガス112が注入され、原油は軽質ナフサ11
5、重質ナフサ114、灯油105、軽質軽油1
06、重質軽油107および残渣油108に分留
される。蒸留塔4の塔頂からはメタンと軽質ナフ
サとを含む塔頂留分が留出し、この塔頂留分がス
トリームと熱交換した後(図示せず)凝縮器6に
入り、冷却されて凝縮し、凝縮槽7でメタンリツ
チガス111と軽質ナフサ115とに分離され
る。分離されたメタンリツチガス111は圧縮機
8で昇圧され1部メタンリツチガス112として
蒸留塔4の塔底に、また1部はメタンリツチガス
113として加熱炉3前流に供給され、再循環さ
れる。またその残部はオフガス116として系外
に取り出され燃料として使用される。なお蒸留塔
4の塔側からは重質ナフサ114、灯油105、
軽質軽油106、重質軽油107が回収され、塔
底からは残渣油108が取出される。 (作用) メタンリツチガスをストリツピング用に使用
し、蒸留塔をメタン雰囲気下で運転するため、蒸
留塔の塔頂留分の露点が低くなるので、腐食の問
題なしに、蒸留塔の塔頂での熱交換温度を下げて
運転することができる。 (実施例) 第2図は、本発明の実施例を説明するための概
略フローシートである。 第2図においてアラビアライト原油を原油導管
11により加熱炉3に送るとともに原油導管11
および蒸留塔4の塔底にメタンリツチガス導管
9,10を通じて原油1m3当り24Nm3のメタンリ
ツチガス(加熱炉前流に10%、蒸留塔に90%)を
注入し、分留する。加熱炉3の出口温度346℃、
蒸留塔4の運転圧力は0.8Kg/cm2Gである。 この蒸留塔4(段数は42段)において分留され
た成分を第1表に示す。
(Industrial Application Field) The present invention relates to an improvement in an oil fractionation method. More specifically, the fractional distillation of crude oil into light oil and heavy oil, the fractional distillation of coal tar, the fractional distillation of produced oil from hydrocrackers and hydrorefining equipment, the fractional distillation of coal liquefied oil, and inert gas. This invention relates to a fractional distillation method that can be applied to the fractional distillation of multi-component systems including tar sand oil, sierre oil, etc. (Prior Art) A schematic flow sheet of conventional crude oil distillation is shown in FIG. In FIG. 3, crude oil 101 from line 1 is mixed with steam 102 from line 2, heated to 350 to 400°C in heating furnace 3, and supplied to distillation column 4. The operating pressure of the distillation column 4 is around normal pressure. Steam 103 is further injected from the bottom of distillation column 4 through line 5 for stripping, and the crude oil is converted into naphtha 1
04, kerosene 105, light diesel oil 106, heavy diesel oil 1
07 and residual oil 108. Normally, naphtha is extracted from the top of the distillation column 4, kerosene, light gas oil, and heavy gas oil are extracted from the column side, and residual oil is extracted from the bottom of the distillation column 4. Steam 1 injected from the bottom of distillation column 4
03 exits the tower top, enters the condenser 6, is cooled, and is condensed in the condensation tank 7 to become water. Note that the distillate coming out from the top of the distillation column 4 exchanges heat with a stream upstream of the condenser 6 (not shown). If the heat exchange temperature of the top fraction of the distillation column 4, which precedes the condensation of water vapor, approaches the dew point of the water vapor, the water vapor will condense at the top of the distillation column 4, causing corrosion of the top material, so it should be higher than the dew point. Operate at temperature. Note that crude oil usually contains methane,
Contains gas such as ethane (hereinafter referred to as methane-rich gas), and the off-gas 110 is
It is separated and used as fuel. (Problems to be Solved by the Invention) As mentioned above, according to the conventional fractionation method, in order to avoid corrosion due to condensation of water vapor at the top of the distillation column, the heat exchange temperature at the top of the column is set higher than the dew point. Since it operates at high temperatures, it has the disadvantage that sufficient heat recovery is not possible, and it also has disadvantages such as having to introduce steam from outside the system for stripping and requiring drainage treatment of the condensed water. The present invention proposes an industrially useful fractional distillation method that improves the drawbacks of the above-mentioned conventional methods. (Means for Solving the Problems) The present invention provides a method for separating methane-rich gas contained in crude oil in a condensing tank and then stripping it in a distillation column instead of using water vapor, which was conventionally used for stripping in a crude oil distillation column. This is a method to efficiently fractionate crude oil by compressing and circulating it, or by supplying methane-containing gas from outside the system and performing fractional distillation in a methane atmosphere. The methane-containing gas contained in the oil is led from the top of the distillation column to the condenser, cooled and condensed to separate methane-rich gas, and then the methane-rich gas is pressurized and introduced into the distillation column for recirculation. This paper proposes a method for fractionating oil in a methane atmosphere, which is characterized by: In addition, in the method of the present invention, a gas containing a small amount of methane from outside the system may be added to the circulating methane-rich gas, and the supply may be performed not only to the distillation column but also to the upstream side of the heating furnace. The same effect can be achieved even if the water is supplied. Distillation columns are generally operated at pressures of 0 to 100 kg/cm 2 G and temperatures of 100 to 500°C. FIG. 1 shows a schematic flow sheet of an embodiment in which the method of the present invention is applied to distillation of crude oil. In FIG. 1, crude oil 101 is separated from a small amount of methane-containing gas supplied from a line 28 in a condensing tank 7 and pressurized in a compressor 8.
3 is introduced into the heating furnace 3 together with the mixture of 350
The temperature is raised to ~400°C and supplied to distillation column 4. The operating pressure of the distillation column 4 is around normal pressure. Methane rich gas 112 separated from the top fraction in the condensing tank 7 and pressurized in the compressor 8 is injected from the bottom of the distillation column 4 for stripping, and the crude oil is converted into light naphtha 11.
5. Heavy naphtha 114, kerosene 105, light diesel oil 1
06, heavy gas oil 107 and residual oil 108. A top fraction containing methane and light naphtha is distilled from the top of the distillation column 4, and after exchanging heat with the stream (not shown), it enters a condenser 6, where it is cooled and condensed. Then, it is separated into methane-rich gas 111 and light naphtha 115 in the condensation tank 7. The separated methane-rich gas 111 is pressurized by the compressor 8, and one part is supplied to the bottom of the distillation column 4 as methane-rich gas 112, and one part is supplied to the upstream side of the heating furnace 3 as methane-rich gas 113, and is recycled. Ru. The remainder is taken out of the system as off-gas 116 and used as fuel. Furthermore, from the column side of distillation column 4, heavy naphtha 114, kerosene 105,
Light gas oil 106 and heavy gas oil 107 are recovered, and residual oil 108 is taken out from the bottom of the column. (Function) Methane-rich gas is used for stripping and the distillation column is operated in a methane atmosphere, so the dew point of the top fraction of the distillation column is lowered, so there is no corrosion problem and the distillation column is operated under a methane atmosphere. can be operated at lower heat exchange temperatures. (Example) FIG. 2 is a schematic flow sheet for explaining an example of the present invention. In FIG.
Then, 24 Nm 3 of methane rich gas per 1 m 3 of crude oil (10% upstream of the heating furnace, 90% in the distillation column) is injected into the bottom of the distillation column 4 through methane rich gas conduits 9 and 10 for fractional distillation. The outlet temperature of heating furnace 3 is 346℃,
The operating pressure of the distillation column 4 is 0.8 Kg/cm 2 G. Table 1 shows the components fractionated in this distillation column 4 (the number of plates was 42).

【表】 この分離状態をASTM曲線により第4図に示
す。この実施例の結果から、塔頂留分の水蒸気露
点は従来法の95℃に対し50℃、凝縮器負荷は従来
法を100とすれば56となり、著しい凝縮器負荷の
軽減が出来た。すなわち、原油蒸留において、水
蒸気注入する事なく分留が達成され、凝縮器負荷
は従来のものの56%でしかも、腐食が抑えられる
ので通常の炭素鋼を採用出来る事が判明した。 (発明の効果) 本発明の方法によれば次の効果を奏することが
できる。 (1) メタン雰囲気下で分留することにより、蒸留
塔塔頂での腐食を防止でき、かつ塔頂温度を下
げて運転できるので熱回収を向上させることが
できる。 (2) 従来法では蒸留塔の塔底で注入した水蒸気は
塔頂で凝縮し、凝縮器の負荷が大きかつたが本
発明の方法ではメタンリツチガスの顕熱のみを
取除けばよく凝縮器負荷が著しく低減出来る。 (3) 系外からのストリツピング用の水蒸気の導入
が不要となり、かつ、凝縮水の排水処理も低減
される。 (4) 蒸留塔の塔底から注入するメタンリツチガス
を圧縮機で圧縮循環する事により、循環量を任
意に選べる利点がある。 (5) 本発明の方法を原油の蒸留に適用した場合蒸
留塔の塔底より注入するメタンリツチガスを塔
頂で分離、圧縮循環する事により、メタンリツ
チガスの循環量を任意に選ぶ事が出来、重質ナ
フサ、灯油、軽質軽油、重質軽油および残渣油
を一本の蒸留塔で分留出来、軽質ナフサは凝縮
槽で回収出来る。
[Table] This separation state is shown in FIG. 4 using an ASTM curve. From the results of this example, the steam dew point of the tower overhead fraction was 50°C compared to 95°C in the conventional method, and the condenser load was 56 compared to 100 in the conventional method, resulting in a significant reduction in the condenser load. In other words, it was found that in crude oil distillation, fractional distillation can be achieved without the injection of steam, the load on the condenser is 56% of that of conventional ones, and corrosion can be suppressed, making it possible to use ordinary carbon steel. (Effects of the Invention) According to the method of the present invention, the following effects can be achieved. (1) Fractional distillation under a methane atmosphere prevents corrosion at the top of the distillation column, and allows operation at a lower temperature at the top of the column, improving heat recovery. (2) In the conventional method, the steam injected at the bottom of the distillation column was condensed at the top, placing a large load on the condenser, but in the method of the present invention, only the sensible heat of the methane-rich gas needs to be removed. The load can be significantly reduced. (3) There is no need to introduce steam for stripping from outside the system, and the wastewater treatment of condensed water is also reduced. (4) By compressing and circulating the methane-rich gas injected from the bottom of the distillation column using a compressor, there is the advantage that the amount of circulation can be arbitrarily selected. (5) When the method of the present invention is applied to the distillation of crude oil, the methane-rich gas injected from the bottom of the distillation column is separated at the top and compressed and circulated, making it possible to arbitrarily select the amount of methane-rich gas to be circulated. After production, heavy naphtha, kerosene, light gas oil, heavy gas oil, and residual oil can be fractionated in one distillation column, and light naphtha can be recovered in a condensation tank.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を原油の蒸留に適用した
場合の実施態様例のフローシート、第2図は本発
明の実施例のフローシート、第3図は従来の方法
による原油の蒸留のフローシート第4図は本発明
の実施例の留出油のASTM曲線である。 3……加熱炉、4……蒸留塔、6……凝縮器、
7……凝縮槽、8……圧縮機。
Fig. 1 is a flow sheet of an embodiment of the method of the present invention applied to crude oil distillation, Fig. 2 is a flow sheet of an embodiment of the present invention, and Fig. 3 is a flow sheet of crude oil distillation using a conventional method. FIG. 4 of the sheet is an ASTM curve of the distillate of an example of the present invention. 3... heating furnace, 4... distillation column, 6... condenser,
7... Condensation tank, 8... Compressor.

Claims (1)

【特許請求の範囲】[Claims] 1 油の分留において、油中に含まれるメタン含
有ガスを蒸留塔の塔頂から凝縮器に導き、冷却凝
縮させ、メタンリツチガスを分離した後該メタン
リツチガスを昇圧して蒸留塔へ導入し、再循環使
用することを特徴とするメタン雰囲気下での油の
分留方法。
1 In oil fractionation, the methane-containing gas contained in the oil is led from the top of the distillation column to the condenser, cooled and condensed, and after separating the methane-rich gas, the methane-rich gas is pressurized and introduced into the distillation column. A method for fractionating oil in a methane atmosphere, which is characterized by the use of recycled oil.
JP25526584A 1984-12-03 1984-12-03 Fractionation of oil under methane atmosphere Granted JPS61133289A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP25526584A JPS61133289A (en) 1984-12-03 1984-12-03 Fractionation of oil under methane atmosphere
DE8585730158T DE3562271D1 (en) 1984-12-03 1985-12-02 Method for fractionating oil under methane atmosphere
CN85108736A CN85108736B (en) 1984-12-03 1985-12-02 Process for petroleum fractionating under methane atmosphere
EP19850730158 EP0186617B1 (en) 1984-12-03 1985-12-02 Method for fractionating oil under methane atmosphere

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25526584A JPS61133289A (en) 1984-12-03 1984-12-03 Fractionation of oil under methane atmosphere

Publications (2)

Publication Number Publication Date
JPS61133289A JPS61133289A (en) 1986-06-20
JPH0542476B2 true JPH0542476B2 (en) 1993-06-28

Family

ID=17276345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25526584A Granted JPS61133289A (en) 1984-12-03 1984-12-03 Fractionation of oil under methane atmosphere

Country Status (4)

Country Link
EP (1) EP0186617B1 (en)
JP (1) JPS61133289A (en)
CN (1) CN85108736B (en)
DE (1) DE3562271D1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699694B2 (en) * 1985-11-20 1994-12-07 三菱重工業株式会社 Crude oil distillation method
US7172686B1 (en) 2002-11-14 2007-02-06 The Board Of Regents Of The University Of Oklahoma Method of increasing distillates yield in crude oil distillation
RU2556006C1 (en) * 2014-01-10 2015-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Астраханский государственный технический университет" Gas mixture separation method
US10421917B2 (en) * 2017-11-22 2019-09-24 Meg Energy Corp. Steamless hydrocarbon processing (upgrading) facility with multiple and integrated uses of non-condensable gas for hydrocarbon processing
CN109628133B (en) * 2018-12-12 2021-04-27 中石化炼化工程(集团)股份有限公司 Atmospheric distillation method for reducing corrosion of common-roof cooling system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3996129A (en) * 1975-05-12 1976-12-07 Universal Oil Products Company Reaction product effluent separation process
SU724558A1 (en) * 1978-06-27 1980-03-30 Харьковский Ордена Ленина Политехнический Институт Им. В.И.Ленина Method of oil raw material processing

Also Published As

Publication number Publication date
DE3562271D1 (en) 1988-05-26
EP0186617B1 (en) 1988-04-20
CN85108736A (en) 1986-08-13
JPS61133289A (en) 1986-06-20
CN85108736B (en) 1988-12-07
EP0186617A1 (en) 1986-07-02

Similar Documents

Publication Publication Date Title
RU2143459C1 (en) Method and apparatus for isolation of liquid oil products from stream leaving petroleum hydroconversion reactor
US3160578A (en) Submerged combustion distillation
KR100338407B1 (en) Compound Condensation-Absorbing Method to Recover Olefin
KR100338278B1 (en) Improved recovery of olefins
JPH119940A (en) Method for separating liquefied hydrocarbon from condensable hydrocarbon-containing gas
MXPA01012525A (en) Process and installation for recovery and purification of ethylene produced by pyrolysis of hydrocarbons, and gases obtained by this process.
CA1166145A (en) Process to remove nitrogen from natural gas
US3719027A (en) Hydrocarbon stripping process
US4260476A (en) Separation of aromatic hydrocarbons from petroleum fractions
US4606816A (en) Method and apparatus for multi-component fractionation
EP0283213B1 (en) Process for the recovery of argon
JPH0542476B2 (en)
KR101171986B1 (en) Method for recovering heat quantity of Benzene Recovery Unit
US2240433A (en) Manufacture of gasolinelike hydrocarbons
US3543528A (en) Separation of low-boiling gas mixtures
US3626448A (en) Separation of low-boiling gas mixtures
US2943041A (en) Processing of steam-cracked naphtha light end products
GB2122636A (en) Separation of aromatic hydro-carbons from petroleum fractions recovery
US2895909A (en) Recovery of natural gasoline by fractionation
GB2061126A (en) Recovery of vapour from gases by absorption
JPH0613709B2 (en) Fractional distillation of oil under hydrogen atmosphere
US2913374A (en) Debenzolizing and purifying wash oil with steam
US2954341A (en) Hydrocarbon conversion process
JP3322594B2 (en) Crude oil fractionation method
US3079330A (en) Process for steam-stripping hydrocarbon fractions from rich oil