JPH0542333B2 - - Google Patents

Info

Publication number
JPH0542333B2
JPH0542333B2 JP60254683A JP25468385A JPH0542333B2 JP H0542333 B2 JPH0542333 B2 JP H0542333B2 JP 60254683 A JP60254683 A JP 60254683A JP 25468385 A JP25468385 A JP 25468385A JP H0542333 B2 JPH0542333 B2 JP H0542333B2
Authority
JP
Japan
Prior art keywords
roll
temperature
adhesion
cross
finishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60254683A
Other languages
Japanese (ja)
Other versions
JPS62116127A (en
Inventor
Nobuo Shiroishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Polyester Film Corp
Original Assignee
Mitsubishi Polyester Film Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Polyester Film Corp filed Critical Mitsubishi Polyester Film Corp
Priority to JP60254683A priority Critical patent/JPS62116127A/en
Publication of JPS62116127A publication Critical patent/JPS62116127A/en
Publication of JPH0542333B2 publication Critical patent/JPH0542333B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、熱可塑性樹脂シート、特に製造技
術、要求品質の高度化の進んでいるポリエステル
の2軸延伸フイルムの製造過程における延伸装置
の改良に関するものである。 〔従来の技術〕 従来、熱可塑性樹脂シートの縦延伸装置におい
ては、複数個の加熱ロールを用い、シートをガラ
ス転移温度以上に加熱して延伸し、場合によつて
は熱処理等も行なつている。その際延伸后の厚み
斑改良や熱処理効果の増大等を狙いとしてかなり
高温に加熱することが試みられている。しかし高
温に加熱するとロールとシートの粘着現象が発生
するために、加熱温度は樹脂の組成その他に応じ
た上限があり、所望の加熱が出来ない場合が多
い。 従来、このロールとシートとの粘着を防止する
ためにとられている方法として次のものが知られ
ている。 その一つは、ロール表面の材質を変える方法で
ある。例えば特公昭48−44666号公報にて提案さ
れている方法として、セラミツク被覆ロールがあ
る。しかし本願の発明者が検討した結果による
と、表面粗さが同じである場合には、ただ単に材
質を通常の硬質クロムメツキ仕上からセラミツク
被覆仕上に代えただけでは非粘着性は殆んど変ら
ず、セラミツク材質そのものには粘着防止効果は
認められなかつた。むしろ粘着防止効果は、硬質
クロムメツキ仕上のものもセラミツク被覆仕上の
ものも表面粗度の増大により増加し、表面粗度が
同等であれば粘着防止効果も同等である。又表面
粗度が大きい場合、シートの表面に発生する擦り
傷も両者に大きな差異は認められなかつた。又実
公昭47−27653号公報や特開昭54−8672号公報に
はフツ素系ポリマーやエラストマー被覆ロールが
提案されている。しかしこれらのものは、非粘着
性は高いものの磨耗耐久性がない上に、軟らかい
ためにロールの材質そのものに傷がつきやすいと
云う問題がある。 粘着防止効果を付与するための第2の方法は、
表面粗度を大にすることである。例えば特公昭47
−49827、特開昭48−43477号で提案されているも
のは、Rmaxが1.5μm以上のものやRmaxが0.7〜
3μmの粗面仕上のロールである。確かに粗面仕
上をしたロールでは、シートに粘着によるムラが
発生し始める温度(以下粘着開始温度と呼ぶ)を
高めることが出来、粗面化の程度を増大すればす
る程粘着ムラなしにシートをより高温に加温する
ことが出来る。しかしより高温に加温することを
可能にするために粗さを増すとシートに擦り傷が
入りそれが一層目立つようになつてくると云う二
律背反の関係にある。特に従来、通常行なわれて
いる粗面化仕上のロールではシートに傷が入り易
い。又粗面化仕上ロールで、ロツトによつては擦
り傷の入らないものもあるが、その場合は逆に粘
着開始温度が低い。 このように、従来実用化されている粗面化仕上
ロールは、粗面化仕上とは云つても実質上は粗面
化は僅かなもので、例えばポリエステル2軸延伸
フイルムの縦延伸装置で用いられているものは
高々Rmax1μm程度であり、この程度の粗面化で
は粘着開始温度の高度化は僅かなものである。 尚粘着ムラや擦り傷が発生した製品は外観不良
のみならず、特にポリエステル2軸延伸フイルム
で磁気テープ用に使用した場合はドロツプアウト
や出力変動をおこし、又感光材として用いた場合
にはハレーシヨン、露光ムラ等を惹きおこし製品
とはならない。 〔発明が解決しようとする問題点〕 本発明が解決しようとする問題点は、粘着ムラ
や擦り傷を発生させることなしに従来の粗面化ロ
ールの場合よりもシートを大幅に高温に迄加熱す
ることが可能であつてしたがつて厚み斑改良や熱
処理による特性の向上あるいは生産性の向上を計
ることの出来る縦延伸装置を提供することにあ
る。 〔問題点を解決するための手段〕 本発明の熱可塑性樹脂シートの延伸装置は、上
記の問題点を解決するために複数個のロールから
なつていて、熱可塑性樹脂をガラス転移温度以上
に加熱するロールにRmax1.0μm以上、6.0μm以
下で凹部が10個/mm以上あつて、断面曲線の中心
線より1.5μm以上高い凸部がないように表面仕上
をしたロールを用いたものである。 ここでガラス転移温度は差動走査熱量計を用い
未延伸状態のものについてサーモグラフを採りそ
の吸熱ピーク点を読みとつたものとし、Rmaxお
よび断面曲線の中心線はJIS B0601−1970に規定
されたもので曲率半径5μmの触針法により測定
したもの、凹部の数は上記断面曲線のその中心線
から最も高い点より1.0μm低くかつ中心線に平行
な線を断面曲線の抜取部分に描きその線に断面曲
線が続いて2回交叉する凹部側の2点間を1個の
凹部と定義しその凹部の数を抜取部分当り(基準
長さ当り)読取り1mm長さ当りの数に換算した値
で多数の抜取部分について求めた値の平均値であ
る。 本願発明の発明者は、或るRmax値を設定して
作成した通常の粗面化ロールがロツトにより粘着
開始温度やシートに発生する擦り傷の入り方が異
なると云う事実を発見した。更に断面曲線の種々
異なつたロールを作成してテストを繰返し、又粘
着開始温度及び擦り傷の入り方とロール表面の断
面曲線の関係を解析した。又ロール表面の材質と
粘着開始温度および擦り傷の入り方との関係も調
べた。 その結果、前述のように粘着開始温度および擦
り傷の入り方は材質が金属やセラミツクの場合、
材質よりロール表面の断面曲線の影響が極めて大
であることがわかつた。 粘着開始温度は、断面曲線においてRmax値で
はなく、凹部の数N個/mmが特に関係し、一方擦
り傷の方もRmaxではなく断面曲線の凸部の高さ
が深く関係していることがわかつた。 つまり粘着開始温度は、Nが大きい程高くなり
N≧10になると粘着開始温度を高めるのに効果的
であり、N≧15になればより好ましく、N≧20が
最も望ましい。逆にN<10の場合は粘着開始温度
を高める効果はほとんどない。 擦り傷の入り方は、断面曲線の凸部の高さの高
いもの程入り易く、その高さが断面曲線の中心線
より1.5μm以上高くなると擦り傷が入り始めた。 又Rmaxが6.0μmを越える場合は、Nが大であ
つても凹部の開口部の広がりが大になるために凹
部跡がシートに転写されるものも現われ特に2軸
延伸フイルムの製造の場合は、凹部の跡の転写が
2軸延伸により拡大されて製品フイルムに現われ
て来るので好ましくない。又Rmaxが1.0未満で
はN≧10のものは作り難い。以上の理由から
Rmaxは前述のように1.0μm≦Rmax≦6.0μmで
なければならない。 尚ロール表面の粗面化仕上の方法として従来の
ロールの場合次の第1〜第3の方法が行なわれて
いる。即ち第1の方法は、一種類のブラスト処理
方法、第2の方法は研磨処理方法、第3の方法は
第1又は第2の方法による後に更に精密仕上を行
なう方法である。 これら第1〜第3の方法は、いずれも仕上代を
大きくとり凹部の数が少なく仕上つている。 一方本発明装置で用いるロールを形成する際の
粗面化仕上方法としては次の第4〜第6の方法等
が考えられる。即ち比較的粗さの大きい砥石にて
仕上代を厳密に管理して研磨し後に小さい仕上代
で超仕上等の精密仕上を行なう第4の方法と、ブ
ラスト処理の後に上記の精密仕上を行なう第5の
方法と、両方を組合わせた第6の方法等である。 上記の説明で仕上代とは、研磨等により削り取
られる部分の量である。上記の第1〜第3の方法
は、いずれも仕上代が大きく、第1および第2の
方法では、表面が粗面のままであり、又第3の方
法は、第1又は第2の方法の後の精密仕上の仕上
代が大であるため、第1、第2の方法による深い
凹部が失消し、深い凹部の数が少ない。これに対
して第4〜第6の方法は、研磨やブラストにより
凹部を残し多くの凹部を残したまま小さい仕上代
で超仕上を行なつて凹部の高さを所望の値にす
る。したがつて第1〜第3の方法では、本発明装
置で用いるロールの要件を満たすロールは形成し
得ないが第4〜第6の方法等によればそれが可能
になる。勿論第4〜第6の仕上方法に限ることな
く前述のRmax値、凹部の数、凸部の高さ等本発
明の要件を満足する粗面が形成されるのであれば
どのような方法のものでもよい。 このようにして仕上げた本発明の装置にて用い
られるロールの断面曲線は第1図に示す通りであ
る。この図のように本発明のロールは高い凸部が
全くなく微細な凹部を多く有している。 尚第2図は従来のロールの断面曲線を示すもの
である。 〔実施例〕 次に本発明の実施例(実施例1〜3)および従
来のものの比較例(比較例1〜6)を示すと表の
通りである。
[Industrial Application Field] The present invention relates to an improvement in a stretching device used in the manufacturing process of a thermoplastic resin sheet, particularly a biaxially stretched polyester film whose manufacturing technology and quality requirements are becoming increasingly sophisticated. [Prior Art] Conventionally, in a longitudinal stretching apparatus for thermoplastic resin sheets, a plurality of heating rolls are used to heat the sheet to a temperature higher than the glass transition temperature and then stretch the sheet, and in some cases heat treatment is also performed. There is. At that time, attempts have been made to heat the material to a considerably high temperature with the aim of improving thickness unevenness after stretching and increasing the heat treatment effect. However, since heating to a high temperature causes adhesion between the roll and the sheet, there is an upper limit to the heating temperature depending on the composition of the resin and other factors, and it is often impossible to achieve the desired heating. Conventionally, the following methods have been known to prevent this roll and sheet from sticking together. One method is to change the material of the roll surface. For example, a ceramic coated roll is proposed in Japanese Patent Publication No. 48-44666. However, according to the results of the study conducted by the inventor of the present application, when the surface roughness is the same, simply changing the material from a normal hard chrome plating finish to a ceramic coating finish will hardly change the non-adhesive property. However, no anti-adhesive effect was observed in the ceramic material itself. Rather, the anti-adhesive effect increases as the surface roughness increases for both hard chrome plated and ceramic coated materials, and if the surface roughness is the same, the anti-adhesive effect is the same. Furthermore, when the surface roughness was high, there was no significant difference in scratches occurring on the surface of the sheet. In addition, rolls coated with fluorine-containing polymers or elastomers have been proposed in Japanese Utility Model Publication No. 47-27653 and Japanese Patent Application Laid-open No. 54-8672. However, although these materials have high non-adhesiveness, they lack durability against abrasion and are soft, so the roll material itself tends to be easily scratched. The second method for imparting an anti-adhesive effect is
The goal is to increase the surface roughness. For example, special public service in Showa 47
-49827, those proposed in JP-A No. 48-43477 have Rmax of 1.5 μm or more and Rmax of 0.7 to 0.7 μm.
It is a roll with a rough surface finish of 3μm. It is true that with a roll with a rough surface finish, it is possible to raise the temperature at which unevenness due to adhesion begins to occur on the sheet (hereinafter referred to as the adhesion start temperature), and the higher the degree of surface roughening, the less uneven adhesion will occur on the sheet. can be heated to a higher temperature. However, there is a trade-off between increasing the roughness in order to enable heating to a higher temperature, as this results in scratches on the sheet, which become more noticeable. In particular, the sheet is likely to be scratched when using a roll with a roughened finish, which has been conventionally commonly used. Also, some rolls with a roughened surface do not have any scratches, but in such cases, the temperature at which they start adhesion is low. In this way, although the roughened finishing rolls that have been put into practical use to date have a roughened finish, the surface roughening is actually very slight, and is used, for example, in longitudinal stretching equipment for biaxially stretched polyester films. The roughness of the surface is only about 1 μm at most, and the adhesion initiation temperature is only slightly increased by roughening the surface to this extent. Products with uneven adhesion or scratches will not only have poor appearance, but will also cause dropouts and output fluctuations when used as a polyester biaxially stretched film for magnetic tape, and will cause halation and exposure problems when used as photosensitive materials. The product will not cause unevenness or the like. [Problem to be Solved by the Invention] The problem to be solved by the present invention is to heat the sheet to a significantly higher temperature than in the case of conventional roughening rolls without causing uneven adhesion or scratches. The object of the present invention is to provide a longitudinal stretching device that can improve thickness unevenness, improve properties through heat treatment, and improve productivity. [Means for Solving the Problems] In order to solve the above-mentioned problems, the thermoplastic resin sheet stretching device of the present invention is composed of a plurality of rolls, and the thermoplastic resin sheet is heated to a temperature higher than the glass transition temperature. The roll used has a surface finish such that it has 10 or more concave portions/mm with an Rmax of 1.0 μm or more and 6.0 μm or less, and no convex portions that are 1.5 μm or more higher than the center line of the cross-sectional curve. Here, the glass transition temperature is determined by taking a thermograph of the unstretched material using a differential scanning calorimeter and reading the endothermic peak point, and Rmax and the center line of the cross-sectional curve are specified in JIS B0601-1970. The number of recesses is determined by drawing a line 1.0 μm lower than the highest point from the center line of the cross-sectional curve and parallel to the center line on the sampled part of the cross-sectional curve. The area between two points on the concave side where the cross-sectional curve intersects twice is defined as one concave part, and the number of concave parts is calculated per sampled part (per reference length) and converted to the number per 1 mm length. This is the average value of the values obtained for a large number of sampled parts. The inventor of the present invention discovered the fact that the temperature at which adhesion starts and the manner in which scratches occur on the sheet differ depending on the lot of ordinary roughening rolls made with a certain Rmax value set. Furthermore, rolls with various cross-sectional curves were prepared and the tests were repeated, and the relationship between the temperature at which adhesion started, the manner in which scratches were formed, and the cross-sectional curve of the roll surface was analyzed. We also investigated the relationship between the material of the roll surface, the temperature at which adhesion started, and the occurrence of scratches. As a result, as mentioned above, the starting temperature of adhesion and the appearance of scratches are different when the material is metal or ceramic.
It was found that the cross-sectional curve of the roll surface has a much greater influence than the material. It was found that the adhesion onset temperature is particularly related to the number of recesses N/mm rather than the Rmax value in the cross-sectional curve, and that scratches are also deeply related to the height of the convex parts in the cross-sectional curve rather than Rmax. Ta. That is, the adhesion start temperature increases as N increases, and N≧10 is effective in increasing the adhesion start temperature, N≧15 is more preferable, and N≧20 is most desirable. Conversely, when N<10, there is almost no effect of increasing the adhesion start temperature. The higher the height of the convex part of the cross-sectional curve, the easier it is for scratches to appear, and when the height is 1.5 μm or more higher than the center line of the cross-sectional curve, scratches begin to appear. Furthermore, if Rmax exceeds 6.0 μm, even if N is large, the openings of the recesses will expand so that some recess marks will be transferred to the sheet, especially when manufacturing biaxially stretched films. This is not preferable because the transfer of the recessed portions is enlarged by biaxial stretching and appears on the product film. Furthermore, if Rmax is less than 1.0, it is difficult to produce a material with N≧10. For the above reasons
Rmax must be 1.0 μm≦Rmax≦6.0 μm as described above. In the case of conventional rolls, the following methods 1 to 3 are used to roughen the surface of the roll. That is, the first method is one type of blasting method, the second method is a polishing method, and the third method is a method in which further precision finishing is performed after the first or second method. These first to third methods all allow a large finishing allowance and are finished with a small number of recesses. On the other hand, the following fourth to sixth methods can be considered as surface roughening finishing methods when forming the roll used in the apparatus of the present invention. In other words, the fourth method is to perform precision finishing such as super finishing with a small finishing margin after polishing with a grindstone with relatively large roughness while strictly controlling the finishing margin, and the fourth method is to perform the above-mentioned precision finishing after blasting. 5, and a 6th method that is a combination of both methods. In the above explanation, the finishing allowance is the amount of the portion to be removed by polishing or the like. The above-mentioned first to third methods all have a large finishing allowance, the first and second methods leave the surface as rough, and the third method is different from the first or second method. Since the finishing allowance for precision finishing after step 2 is large, the deep recesses created by the first and second methods are lost, and the number of deep recesses is small. On the other hand, in the fourth to sixth methods, the height of the recesses is made to a desired value by performing super finishing with a small finishing allowance while leaving many recesses by polishing or blasting. Therefore, with the first to third methods, it is not possible to form a roll that satisfies the requirements for the roll used in the apparatus of the present invention, but with the fourth to sixth methods, etc., it is possible to form a roll. Of course, the finishing methods are not limited to the fourth to sixth finishing methods, and any method may be used as long as it forms a rough surface that satisfies the requirements of the present invention, such as the above-mentioned Rmax value, number of recesses, height of convex parts, etc. But that's fine. The cross-sectional curve of the roll finished in this manner and used in the apparatus of the present invention is as shown in FIG. As shown in this figure, the roll of the present invention has no high protrusions and many fine concave parts. Incidentally, FIG. 2 shows a cross-sectional curve of a conventional roll. [Example] Next, examples of the present invention (Examples 1 to 3) and comparative examples of conventional products (Comparative Examples 1 to 6) are shown in the table.

〔発明の効果〕〔Effect of the invention〕

本発明の熱可塑性樹脂シートの延伸装置によれ
ば樹脂のガラス転移温度以上にロールを加熱して
もロールとシート又はフイルムとの粘着現象が発
生することなく又擦り傷が生ずることもない。し
たがつて厚み斑のない粘着によるムラのない擦り
傷もない2軸延伸フイルムが得られる。
According to the thermoplastic resin sheet stretching apparatus of the present invention, even if the roll is heated above the glass transition temperature of the resin, no adhesion phenomenon occurs between the roll and the sheet or film, and no scratches occur. Therefore, a biaxially stretched film with no uneven thickness, no unevenness due to adhesion, and no scratches can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の延伸装置に用いる粗面化仕上
ロールの断面曲線を示す図、第2図は従来のロー
ルの断面曲線を示す図である。
FIG. 1 is a diagram showing a cross-sectional curve of a roughened finishing roll used in the stretching apparatus of the present invention, and FIG. 2 is a diagram showing a cross-sectional curve of a conventional roll.

Claims (1)

【特許請求の範囲】[Claims] 1 複数個のロールからなる熱可塑性樹脂シート
の延伸装置において、該樹脂のガラス転移温度以
上に加熱するロールに、Rmaxが1.0μm以上6.0μ
m以下であり凹部が10個/mm以上でかつ断面曲線
の中心線より1.5μm以上高い凸部がないように表
面仕上されたロールを用いたことを特徴とする熱
可塑性樹脂シートの延伸装置。
1. In a thermoplastic resin sheet stretching device consisting of a plurality of rolls, the rolls that are heated above the glass transition temperature of the resin have an Rmax of 1.0 μm or more and 6.0 μm.
1. A thermoplastic resin sheet stretching device characterized by using a roll whose surface is finished so that the diameter is 1.5 μm or less, the number of concave portions is 10 or more per mm, and there are no convex portions that are higher than the center line of the cross-sectional curve by 1.5 μm or more.
JP60254683A 1985-11-15 1985-11-15 Stretching device of thermo-plastic resin sheet Granted JPS62116127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60254683A JPS62116127A (en) 1985-11-15 1985-11-15 Stretching device of thermo-plastic resin sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60254683A JPS62116127A (en) 1985-11-15 1985-11-15 Stretching device of thermo-plastic resin sheet

Publications (2)

Publication Number Publication Date
JPS62116127A JPS62116127A (en) 1987-05-27
JPH0542333B2 true JPH0542333B2 (en) 1993-06-28

Family

ID=17268413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60254683A Granted JPS62116127A (en) 1985-11-15 1985-11-15 Stretching device of thermo-plastic resin sheet

Country Status (1)

Country Link
JP (1) JPS62116127A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4548083B2 (en) * 2003-10-09 2010-09-22 東レ株式会社 Production method of polyester film
JP2019018373A (en) * 2017-07-12 2019-02-07 株式会社栗本鐵工所 Lining core, and manufacturing method of lining core

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843477A (en) * 1971-10-04 1973-06-23

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843477A (en) * 1971-10-04 1973-06-23

Also Published As

Publication number Publication date
JPS62116127A (en) 1987-05-27

Similar Documents

Publication Publication Date Title
CA2044117A1 (en) Method of manufacturing thermoplastic sheet of film
JPS6056101B2 (en) Manufacturing method of polyester film
EP1640818B1 (en) Tubular fluororesin article, fixing roll, fixing belt and image fixing device
JPH0542333B2 (en)
US6565787B1 (en) Non-glossing thermoformed film
JPS6360726A (en) Manufacture of highly transparent plastic film or sheet
EP0390191B1 (en) Biaxially stretched polyester film and process for producing the same
JP2634991B2 (en) Manufacturing method of surface treated stainless steel sheet
JPH08258142A (en) Manufacture of biaxially drawn film,and device to perform said method
JPH11156988A (en) Composite film for fiber-reinforced plastic molding
JPH11207817A (en) Molding roll
US5080954A (en) Surface covering with inverse spherulite patterns
JPH1158512A (en) Stretching nip roll and manufacture of stretched film
JPH07121528B2 (en) Ceramic roll for heating synthetic resin sheet
JP4655381B2 (en) Production method of polyester film
US5153047A (en) Release carrier with spherulite formations
JPH10235734A (en) Method of manufacturing embossed sheet
JPS5838302B2 (en) Polyolefin in film
JPH09164592A (en) Manufacture of embossed sheet
JP2010099911A (en) Method of manufacturing optical film
JPH10151662A (en) Roll for molding extruded sheet
JP4273827B2 (en) Method for producing thermoplastic resin film and thermoplastic resin film
JPH0588655B2 (en)
JPS61173916A (en) Method for longitudinal re-stretching of biaxially stretched polyester film
JPH10100228A (en) Method for molding sheet with thin mat

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees