JPH0542144A - Ultrasonic probe - Google Patents

Ultrasonic probe

Info

Publication number
JPH0542144A
JPH0542144A JP3208104A JP20810491A JPH0542144A JP H0542144 A JPH0542144 A JP H0542144A JP 3208104 A JP3208104 A JP 3208104A JP 20810491 A JP20810491 A JP 20810491A JP H0542144 A JPH0542144 A JP H0542144A
Authority
JP
Japan
Prior art keywords
electrodes
ultrasonic
transmitting
receiving
transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3208104A
Other languages
Japanese (ja)
Inventor
Kinya Takamizawa
欣也 高見沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3208104A priority Critical patent/JPH0542144A/en
Publication of JPH0542144A publication Critical patent/JPH0542144A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

PURPOSE:To collect three-dimensional information by a simple constitution and at a low cost in a short time by arranging transmitting electrodes and receiving electrodes on one face and the other face opposed to each other, respectively of a transducer so that they are roughly orthogonal to each other. CONSTITUTION:On the surface 21a side and the reverse side 21b of a plate-like transducer 21, strip-like transmitting electrodes 22-1-22-4 of an array shape, and receiving electrodes 23-1-23-4 are attached, respectively. In this case, the transmitting electrodes 22-1-22-4 are arranged in the horizontal direction by aligning the longitudinal direction with the vertical direction, and the receiving electrodes 23-1-23-4 are arranged in the vertical direction by aligning the longitudinal direction with the horizontal direction, that is, so as to be orthogonal to the transmitting electrodes 22-1-22-4. Subsequently, the transmitting electrodes 22 and the receiving electrodes 23 are connected to transmitting circuits 27-1-27-4 and receiving circuits 28-1-28-4 through signal lines 26a, 26b, respectively. In such a way, three-dimensional information can be obtained by a small number of electrodes and the number of transmitting/receiving channels.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複数個の電気−音響変
換素子(圧電素子、トランスデューサ)を配列して構成
され、様々な分野での超音波診断に使用される超音波探
触子に係り、特に3次元デ−タの取得ができる超音波探
触子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic probe used for ultrasonic diagnosis in various fields, which is constituted by arranging a plurality of electro-acoustic conversion elements (piezoelectric elements, transducers). In particular, the present invention relates to an ultrasonic probe capable of acquiring three-dimensional data.

【0002】[0002]

【従来の技術】超音波パルスを生体内に放射し、各組織
からの反射波により生体情報を得る超音波診断法は、X
線のような照射障害がなく、しかも造影剤なしで軟部組
織の診断ができるという利点を有する。そして、近年に
おける超音波診断法は、特に電子走査型の診断装置の実
用化によって飛躍的な普及をみるに至った。
2. Description of the Related Art An ultrasonic diagnostic method for radiating an ultrasonic pulse into a living body and obtaining biological information by a reflected wave from each tissue is known as an X-ray diagnostic method.
It has an advantage that there is no irradiation obstacle such as a line and the soft tissue can be diagnosed without a contrast agent. Then, the ultrasonic diagnostic method in recent years has come to see a dramatic spread particularly by the practical application of an electronic scanning type diagnostic apparatus.

【0003】この電子走査型の超音波診断装置に用いら
れる超音波探触子は、超音波プローブ内で一般には複数
個のトランスデューサを一次元に配列した配列形(アレ
イ型)であり、それぞれのトランスデューサに掛かる駆
動信号および受信信号に所定の遅延時間を与えることに
よって超音波ビームを偏向させたり、所望の位置に集束
させて方位分解能を高め、解像度の優れた断層像を得て
いる。
The ultrasonic probe used in this electronic scanning type ultrasonic diagnostic apparatus is generally of an array type in which a plurality of transducers are arranged one-dimensionally in an ultrasonic probe. By giving a predetermined delay time to a drive signal and a received signal applied to a transducer, an ultrasonic beam is deflected or focused at a desired position to improve lateral resolution, and a tomographic image with excellent resolution is obtained.

【0004】図6は、このような超音波探触子を備える
セクタ電子走査型超音波診断装置のブロック図である。
FIG. 6 is a block diagram of a sector electronic scanning type ultrasonic diagnostic apparatus provided with such an ultrasonic probe.

【0005】装置本体側に装備される基準信号発生器1
は、バスBを介してN個の送信用遅延回路2-1 〜2-N と
接続し、各送信用遅延回路はまたパルサ(送信回路)3-
1 〜3-N と接続する。そして、各パルサはプローブ内で
超音波探触子を構成する一次元に配列されたN個のトラ
ンスデューサ4-1 〜4-N とそれぞれ接続する。
Reference signal generator 1 mounted on the apparatus main body side
Is connected to N transmission delay circuits 2-1 to 2-N via the bus B, and each transmission delay circuit is also a pulser (transmission circuit) 3-.
Connect with 1 to 3-N. Then, each pulser is connected to each of N transducers 4-1 to 4-N arranged in a one-dimensional manner, which constitutes an ultrasonic probe in the probe.

【0006】トランスデューサ4-1 〜4-N は、さらに装
置本体側のプリアンプ5-1 〜5-N とも接続する。そして
各プリアンプは受信用遅延回路6-1 〜6-N と接続し、各
受信回路は加算器7と接続する。そして、加算器7から
は順次、対数増幅器8、検波回路9、A/D変換器1
0、画像メモリ11およびCRT12が接続していく。
The transducers 4-1 to 4-N are further connected to the preamplifiers 5-1 to 5-N on the apparatus main body side. Each preamplifier is connected to the receiving delay circuits 6-1 to 6-N, and each receiving circuit is connected to the adder 7. The logarithmic amplifier 8, the detection circuit 9, and the A / D converter 1 are sequentially output from the adder 7.
0, the image memory 11 and the CRT 12 are connected.

【0007】さて、セクタ電子走査においては、まず超
音波の送波に当たり、基準信号発生器1が生体内に放射
される超音波パルスの間隔を決定し、その決定したパル
ス間隔の下に、繰返しパルスが送信用遅延回路2-1 〜2-
N に送られる。そして、各送信用遅延回路2-1 〜2-N で
は、セクタスキャンに伴う送信超音波の放射方向と集束
点から決定される所定の遅延時間が与えられる。超音波
ビームを集束させるのは、超音波画像の解像度を高める
ためである。
In the sector electronic scanning, first, when transmitting ultrasonic waves, the reference signal generator 1 determines the intervals of the ultrasonic pulses radiated into the living body, and the intervals are repeated under the determined pulse intervals. Delay circuit for pulse transmission 2-1 to 2-
Sent to N. Then, each of the transmission delay circuits 2-1 to 2-N is given a predetermined delay time determined by the radiation direction of the transmitted ultrasonic waves and the focusing point accompanying the sector scan. Focusing the ultrasonic beam is to increase the resolution of the ultrasonic image.

【0008】遅延時間が与えられた繰返しパルスはつい
でパルサ3-1 〜3-N に送られ、駆動パルスが形成され
る。そして、この駆動パルスによってN個のトランスデ
ューサ4-1 〜4-N が駆動され、生体内に超音波が放射さ
れる。
The repetitive pulse provided with the delay time is then sent to the pulsers 3-1 to 3-N to form a drive pulse. Then, the N pulses of transducers 4-1 to 4-N are driven by this drive pulse, and ultrasonic waves are radiated into the living body.

【0009】一方、生体各組織からの超音波の反射波
は、同じくN個のトランスデューサ4-1 〜4-N で受波さ
れ、受信信号に変換された後、装置本体側のプリアンプ
5-1 〜5-N に入力する。そして、受信信号は各プリアン
プで増幅されてから、受信用遅延回路6-1 〜6-N に入力
する。
On the other hand, the reflected wave of the ultrasonic wave from each tissue of the living body is similarly received by the N transducers 4-1 to 4-N, converted into the received signal, and then the preamplifier on the apparatus main body side.
Enter in 5-1 to 5-N. The received signal is amplified by each preamplifier and then input to the receiving delay circuits 6-1 to 6-N.

【0010】受信信号は、各受信回路で送信時とほぼ同
様の遅延時間が与えられた後、加算器7に送られ、すべ
ての受信信号が加算される。ところで、加算器7の出力
信号は、実際には先に説明したブロックを含む断層像表
示用処理回路と血流情報算出用処理回路の二手に別れる
のであるが、ここでは断層像表示用処理回路での信号処
理のみを述べる。
The received signal is sent to the adder 7 after each receiving circuit is given a delay time substantially similar to that at the time of transmission, and all the received signals are added. By the way, the output signal of the adder 7 is actually divided into a tomographic image display processing circuit including the block described above and a blood flow information calculation processing circuit. Only the signal processing in the above will be described.

【0011】加算器7の出力信号は、まず対数増幅器8
で信号振幅が対数変換により増幅された後、検波回路9
で包絡線検波が行われる。その後はA/D変換器10で
A/D変換が行われた後、一旦画像メモリ11に入力さ
れる。そして必要なデータがCRT12に送られて超音
波断層像が表示される。
The output signal of the adder 7 is the logarithmic amplifier 8 first.
After the signal amplitude is amplified by logarithmic conversion at, the detection circuit 9
Envelope detection is performed at. After that, after A / D conversion is performed by the A / D converter 10, it is once input to the image memory 11. Then, necessary data is sent to the CRT 12 and an ultrasonic tomographic image is displayed.

【0012】[0012]

【発明が解決しようとする課題】ところで、医療診断に
おいて必要なのは体内の3次元的情報であるが、今まで
実用化されている超音波診断装置で得られる画像はあく
までも生体のある断面の表示(2次元的情報)にすぎな
い。このため、検者(医師、検査士)は、超音波画像を
複数枚得て、これを基に脳裏で生体の3次元構造を構築
している。
By the way, what is necessary for medical diagnosis is three-dimensional information in the body, but the images obtained by the ultrasonic diagnostic apparatuses that have been put into practical use are displayed only on the cross section of the living body ( It is only two-dimensional information). Therefore, the examiner (doctor, examiner) obtains a plurality of ultrasonic images, and builds a three-dimensional structure of the living body in the brain based on the obtained ultrasonic images.

【0013】ところが、複数枚の2次元画像を得るには
時間がかかるし、また3次元画像を脳裏で構築するに
は、それなりの経験を積まねばならない。さらに、2次
元表示では、臓器の形状に疾患に伴う微妙な変化があっ
ても、見逃す危険性がある。
However, it takes time to obtain a plurality of two-dimensional images, and some experience must be gained to construct a three-dimensional image in the brain. Furthermore, in the two-dimensional display, even if there is a subtle change in the shape of an organ due to a disease, there is a risk of overlooking.

【0014】そこで、このような背景から3次元の超音
波画像が直接得られる診断装置の実用化が期待されてい
るが、これまでそのニーズに応える技術として、(1)
機械的な3次元走査方式、(2)1次元アレイを回転な
いしこれと直交する方向に移動する方式、(3)2次元
アレイによる電子走査方式などが提案され、すでに研究
開発の段階にある。
Under such circumstances, it is expected that a diagnostic device that can directly obtain a three-dimensional ultrasonic image will be put into practical use. As a technique to meet the needs, (1)
A mechanical three-dimensional scanning method, (2) a method of rotating a one-dimensional array or moving it in a direction orthogonal thereto, and (3) an electronic scanning method using a two-dimensional array have been proposed, and they are already at the stage of research and development.

【0015】しかし、(1)、(2)の機械走査による
ものは超音波探触子が大型で重くなり、操作性に難点が
ある。また複数方向の並列同時受信が不可能であるた
め、3次元情報の収集に多くの時間がかかり、3次元画
像をリアルタイムで表示することができないという欠点
がある。
However, in the mechanical scanning of (1) and (2), the ultrasonic probe is large and heavy, and there is a difficulty in operability. Further, since parallel simultaneous reception in a plurality of directions is impossible, it takes a lot of time to collect three-dimensional information, and there is a drawback that a three-dimensional image cannot be displayed in real time.

【0016】他方、(3)の2次元アレイによるもの
は、トランスデューサの数が多くなって、信号線を極め
て狭い間隔で引き出さなければならなくなるなど、超音
波探触子の製造が困難になる。またトランスデューサ数
と同じ数の送受信回路が必要になりコストパフォーマン
スが低下する。
On the other hand, in the two-dimensional array (3), the number of transducers increases and the signal lines have to be drawn out at extremely narrow intervals, making it difficult to manufacture an ultrasonic probe. Moreover, the same number of transmitting / receiving circuits as the number of transducers are required, which lowers cost performance.

【0017】本発明は上記事情に鑑みてなされたもので
あり、簡単な構成、良好なコストパフォーマンスの下に
3次元情報を短時間で収集できる超音波探触子を提供す
ることを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an ultrasonic probe capable of collecting three-dimensional information in a short time with a simple structure and good cost performance. ..

【0018】[0018]

【課題を解決するための手段】本発明は上記課題を解決
するために、トランスデューサと、それぞれ超音波送信
回路と超音波受信回路に信号線を介して接続し、このト
ランスデューサの相対向する面にそれぞれ配列される複
数個の短冊状送信用電極と受信用電極を備え、これら送
信用電極と受信用電極は互いにほぼ直交するように配列
される超音波探触子を提供する。
In order to solve the above-mentioned problems, the present invention connects a transducer and an ultrasonic transmitting circuit and an ultrasonic receiving circuit, respectively, via signal lines, and connects them to opposite surfaces of the transducer. An ultrasonic probe is provided that includes a plurality of strip-shaped transmission electrodes and reception electrodes that are respectively arranged, and these transmission electrodes and reception electrodes are arranged so as to be substantially orthogonal to each other.

【0019】[0019]

【作用】本発明の超音波探触子は、電極を設置するのに
トランスデューサの相対向する2つの面を用い、一方の
面には送信用電極を、そしてもう一方の面には受信用電
極を互いにほぼ直交するように配列する。したがって、
この超音波探触子は、送信超音波ビームと受信超音波ビ
ームが電極の配列に応じてほぼ直交することになり、少
ない数の電極でも、両者の一致する方向において3次元
情報を取得できる。
The ultrasonic probe of the present invention uses two opposite surfaces of a transducer to install electrodes, one surface for transmitting electrodes and the other surface for receiving electrodes. Are arranged so as to be substantially orthogonal to each other. Therefore,
In this ultrasonic probe, the transmitted ultrasonic beam and the received ultrasonic beam are substantially orthogonal to each other according to the arrangement of the electrodes, and even with a small number of electrodes, three-dimensional information can be acquired in the directions in which the two coincide.

【0020】本発明によれば、各電極と送信回路および
受信回路を結ぶ信号線は、電極を配置した2つの面にお
いて従来の1次元アレイ超音波探触子と同じ間隔で設置
でき、また送受信用チャネルも電極数に応じて少なくす
ませることができる。
According to the present invention, the signal line connecting each electrode to the transmitting circuit and the receiving circuit can be installed at the same interval as the conventional one-dimensional array ultrasonic probe on the two surfaces on which the electrodes are arranged, and the transmitting / receiving The number of channels can be reduced according to the number of electrodes.

【0021】[0021]

【実施例】以下図1ないし図5を参照して本発明の実施
例を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIGS.

【0022】図1は、本発明の第1実施例に係る超音波
探触子20の斜視図である。平板状のトランスデューサ
21は、表面21a側(生体側あるいはイメージングし
ようとする媒質側)と裏面21b側(生体と反対側)
に、それぞれアレイ形の4個の短冊状送信用電極22-1〜
22-4と受信用電極23-1〜23-4が4個づつ取り付けられ
る。ここで4個の送信用電極22-1〜22-4は長手方向を縦
方向に合わせて横方向に配列され、また4個の受信用電
極23-1〜23-4は長手方向を横方向に合わせて縦方向に、
すなわち送信用電極22-1〜22-4と直交して、配列され
る。
FIG. 1 is a perspective view of an ultrasonic probe 20 according to the first embodiment of the present invention. The plate-shaped transducer 21 has a front surface 21a side (living body side or a medium side to be imaged) and a back surface 21b side (opposite the living body).
In addition, four strip-shaped transmission electrodes 22-1 to 22-
Four pieces of 22-4 and four pieces of receiving electrodes 23-1 to 23-4 are attached. Here, the four transmitting electrodes 22-1 to 22-4 are arranged in the horizontal direction with the longitudinal direction aligned with the vertical direction, and the four receiving electrodes 23-1 to 23-4 are aligned in the longitudinal direction. Vertically according to
That is, they are arranged orthogonally to the transmission electrodes 22-1 to 22-4.

【0023】そして、送信用電極22-1〜22-4と受信用電
極23-1〜23-4のトランスデューサ21の反対側には、そ
れぞれ生体とトランスデューサの音響インピーダンスを
整合させるマッチング層24、および生体の反対方向に
放射される不要な超音波を吸収するバッキング材25が
張り合わされる。また、送信用電極22-1〜22-4と受信用
電極23-1〜23-4からは、それぞれ信号線26a,26b
が引き出され、各信号線26aは送信回路(パルサ)27
-1〜27-4に、信号線26bは受信回路(プリアンプ)28
-1〜28-4に接続する。
On the opposite side of the transducers 21 to 22-4 and the receiving electrodes 23-1 to 23-4 from the transducer 21, a matching layer 24 for matching the acoustic impedances of the living body and the transducer, and A backing material 25 that absorbs unnecessary ultrasonic waves emitted in the direction opposite to the living body is attached. Further, from the transmission electrodes 22-1 to 22-4 and the reception electrodes 23-1 to 23-4, the signal lines 26a and 26b are respectively connected.
Are drawn out, and each signal line 26a is connected to the transmission circuit (pulsar) 27.
-1 to 27-4, the signal line 26b is the receiving circuit (preamplifier) 28
-1 to 28-4.

【0024】本実施例においてはトランスデューサを分
離せず、電極のみを分離するが、この際トランスデュー
サの各電極の間の部位に溝を切り込んだり、あるいはト
ランスデューサとして既に実用化されている複合圧電体
を用いれば、隣接信号間での音響カップリングによるク
ロストーク(cross talk) を抑えることができる。
In this embodiment, the transducer is not separated, but only the electrodes are separated. At this time, a groove is cut in a portion between the electrodes of the transducer, or a composite piezoelectric body already put into practical use as a transducer is used. If used, it is possible to suppress cross talk due to acoustic coupling between adjacent signals.

【0025】一方、図2は、本実施例の超音波探触子2
0を用いて電子セクタ走査を行う3次元イメージング装
置のブロック図である。
On the other hand, FIG. 2 shows an ultrasonic probe 2 of this embodiment.
FIG. 3 is a block diagram of a three-dimensional imaging device that uses 0 for electronic sector scanning.

【0026】装置本体側に装備される基準信号発生器3
1は、バスBを介して4個の送信用遅延回路32-1〜32-4
と接続し、各送信用遅延回路はまたパルサ(送信回路)
27-1〜27-4と接続する。そして、各パルサはプローブ内
で超音波探触子を構成する一次元に配列された4個のト
ランスデューサ(すなわち4個の送信用電極22-1〜22-
4)とそれぞれ接続する。
Reference signal generator 3 mounted on the apparatus main body side
Reference numeral 1 denotes four transmission delay circuits 32-1 to 32-4 via the bus B.
Connected with, each transmission delay circuit is also a pulsar (transmission circuit)
Connect with 27-1 to 27-4. Each pulser has four transducers (that is, four transmitting electrodes 22-1 to 22-) which are one-dimensionally arranged in the probe and constitute an ultrasonic probe.
4) Connect with each.

【0027】4個のトランスデューサ(すなわち4個の
受信用電極23-1〜23-4)は、さらに装置本体側のプリア
ンプ28-1〜28-4とも接続する。そして各プリアンプは受
信用遅延回路39-1〜39-4と接続し、各受信回路は加算器
40と接続する。そして、加算器40からは順次、対数
増幅器41、検波回路42、A/D変換器43、画像メ
モリ44およびTVモニタ45が接続していく。
The four transducers (that is, the four receiving electrodes 23-1 to 23-4) are further connected to the preamplifiers 28-1 to 28-4 on the apparatus main body side. Each preamplifier is connected to the receiving delay circuits 39-1 to 39-4, and each receiving circuit is connected to the adder 40. Then, the logarithmic amplifier 41, the detection circuit 42, the A / D converter 43, the image memory 44, and the TV monitor 45 are sequentially connected from the adder 40.

【0028】さて、セクタ電子走査においては、まず超
音波の送波に当たり、基準信号発生器31が生体(ある
いは一般的に媒質)内に放射される超音波パルスの間隔
を決定し、その決定したパルス間隔の下に、繰返しパル
スが送信用遅延回路32-1〜32-4に送られる。そして、各
送信用遅延回路32-1〜32-4では、セクタスキャンに伴う
送信超音波の放射方向と集束点から決定される所定の遅
延時間が与えられる。超音波ビームを集束させるのは、
超音波画像の解像度を高めるためである。
In the sector electronic scanning, the reference signal generator 31 first determines the interval of the ultrasonic pulse radiated in the living body (or the medium in general) when transmitting the ultrasonic wave, and the determination is made. Repeated pulses are sent to the delay circuits for transmission 32-1 to 32-4 under the pulse interval. Then, each of the transmission delay circuits 32-1 to 32-4 is given a predetermined delay time determined by the emission direction of the transmitted ultrasonic waves and the focal point accompanying the sector scan. Focusing the ultrasonic beam is
This is to increase the resolution of the ultrasonic image.

【0029】遅延時間が与えられた繰返しパルスは、つ
いでパルサ27-1〜27-4に送られ、駆動パルスが形成され
る。そして、この駆動パルスによって4個のトランスデ
ューサが駆動され、生体内に超音波が放射される。
The repetitive pulse provided with the delay time is then sent to the pulsers 27-1 to 27-4 to form a drive pulse. Then, four transducers are driven by this drive pulse, and ultrasonic waves are radiated into the living body.

【0030】一方、生体各組織からの超音波の反射波
は、同じく4個のトランスデューサで受波され、トラン
スデューサを透過して生体と反対側の受信用電極23-1〜
23-4で受信信号に変換された後、装置本体側のプリアン
プ28-1〜28-4に入力する。そして、受信信号は各プリア
ンプで増幅されてから、受信用遅延回路39-1〜39-4に入
力する。
On the other hand, the reflected wave of the ultrasonic wave from each tissue of the living body is similarly received by the four transducers, passes through the transducers, and the receiving electrodes 23-1 to 23-3 on the side opposite to the living body.
After being converted into a reception signal by 23-4, it is input to the preamplifiers 28-1 to 28-4 on the apparatus main body side. Then, the reception signal is amplified by each preamplifier and then input to the reception delay circuits 39-1 to 39-4.

【0031】受信信号は、各受信回路で送信時とほぼ同
様の遅延時間が与えられた後、加算器40に送られ、す
べての受信信号が加算される。加算器40の出力信号
は、まず対数増幅器41で信号圧縮された後、検波回路
42で包絡線検波が行われる。その後はA/D変換器4
3でA/D変換が行われた後、一旦画像メモリ44に入
力される。そして必要なデータがTVモニタ45に送ら
れて超音波断層像が表示される。
The received signals are given a delay time in each receiving circuit similar to that at the time of transmission, and then sent to the adder 40 to add all the received signals. The output signal of the adder 40 is first subjected to signal compression by the logarithmic amplifier 41 and then subjected to envelope detection by the detection circuit 42. After that, A / D converter 4
After A / D conversion is performed in 3, the image is temporarily input to the image memory 44. Then, necessary data is sent to the TV monitor 45 and an ultrasonic tomographic image is displayed.

【0032】この場合、図3に示すように、z方向に進
む送信超音波ビーム50は、x方向に偏向および集束が
可能であるが、y方向には強い指向性は有しない。特に
トランスデューサ21の近傍では、トランスデューサ2
1の素子幅にほぼ等しいビーム幅になる。
In this case, as shown in FIG. 3, the transmitted ultrasonic beam 50 traveling in the z direction can be deflected and focused in the x direction, but has no strong directivity in the y direction. Especially in the vicinity of the transducer 21, the transducer 2
The beam width is almost equal to the element width of 1.

【0033】これに対してz方向から得られる受信超音
波ビーム51は、送信超音波ビーム50とは逆に、y方
向に偏向および集束が可能であるが、x方向には強い指
向性は有しない。そしてトランスデューサ21の近傍で
は、同じくトランスデューサ21の素子幅にほぼ等しい
ビーム幅になる。
On the other hand, the reception ultrasonic beam 51 obtained from the z direction can be deflected and focused in the y direction contrary to the transmission ultrasonic beam 50, but has a strong directivity in the x direction. do not do. In the vicinity of the transducer 21, the beam width is almost equal to the element width of the transducer 21.

【0034】よって、送受信超音波ビーム52により得
られる媒質内の反射情報は、送信超音波ビーム50と受
信超音波ビーム51が交わった方向から得られ、3次元
情報となる。そして、この交わった方向は、送信ビーム
のx方向ビーム偏向角と受信ビームのy方向ビーム偏向
角によって決定され、任意の方向にとることができる。
Therefore, the reflection information in the medium obtained by the transmission / reception ultrasonic beam 52 is obtained from the direction in which the transmission ultrasonic beam 50 and the reception ultrasonic beam 51 intersect, and becomes three-dimensional information. The intersecting direction is determined by the x-direction beam deflection angle of the transmission beam and the y-direction beam deflection angle of the reception beam, and can be any direction.

【0035】このように、本実施例によれば、トランス
デューサの裏表で送信用の電極と受信用の電極を交差し
て配置するという交差電極型の超音波探触子を採用する
ことにより、簡単な構成で3次元走査が可能になる。す
なわち、この超音波探触子は、それぞれNチャネル(本
実施例では4チャネル)の送信回路と受信回路(すなわ
ちチャネル総数はN+N個)があればよいため、これま
で2次元アレイ超音波探触子で考えられていたようなN
×N個のトランスデューサと電極および信号線は不要
で、従来の超音波(2次元)断層装置とほぼ同程度です
み、コストパーフォーマンスに優れた超音波3次元装置
が実現できる。そして、この場合、信号線の間隔も従来
の1次元アレイ超音波探触子と同じにできる。
As described above, according to the present embodiment, by adopting the crossed electrode type ultrasonic probe in which the transmission electrode and the reception electrode are arranged to cross each other on the front and back sides of the transducer, With such a configuration, three-dimensional scanning becomes possible. That is, since this ultrasonic probe only needs to have N-channel (four channels in this embodiment) transmitting circuits and receiving circuits (that is, the total number of channels is N + N), the two-dimensional array ultrasonic probe has been used so far. N as thought by the child
No need for × N transducers, electrodes and signal lines, it is almost the same as a conventional ultrasonic (two-dimensional) tomography device, and an ultrasonic three-dimensional device with excellent cost performance can be realized. In this case, the distance between the signal lines can be made the same as in the conventional one-dimensional array ultrasonic probe.

【0036】図4は、先の超音波探触子20を用いて電
子セクタ走査を行う他の3次元イメージング装置50の
ブロック図である。送信に係る系統は第1実施例と同じ
であるため省き、また第1実施例と対応する箇所には同
一の符号を付して詳しい説明は省略する。
FIG. 4 is a block diagram of another three-dimensional imaging apparatus 50 that performs electronic sector scanning using the ultrasonic probe 20 described above. The transmission system is the same as that in the first embodiment, and is therefore omitted. The parts corresponding to those in the first embodiment are designated by the same reference numerals and detailed description thereof will be omitted.

【0037】媒質中からの反射波は、トランスデューサ
でとらえられた後、4個の受信用電極23-1〜23-4で電気
信号(受信信号)に変換されてプリアンプ28-1〜28-4に
送られる。受信信号は、つづいて各プリアンプに接続す
るA/D変換器43-1〜43-4でそれぞれディジタル化され
た後一旦記憶回路51-1〜51-2に格納される。
The reflected wave from the medium is captured by the transducer and then converted into an electric signal (received signal) by the four receiving electrodes 23-1 to 23-4 to be preamplifiers 28-1 to 28-4. Sent to. The received signal is subsequently digitized by the A / D converters 43-1 to 43-4 connected to the respective preamplifiers and then temporarily stored in the storage circuits 51-1 to 51-2.

【0038】そして、受信超音波ビームに掛かる4つの
受信信号は、整相加算器52でy方向において所定の偏
向角で偏向されるように遅延時間が与えられて合成(加
算)される。本実施例においては、整相加算器52に入
力した受信信号はすでにディジタル化されているため、
整相加算器52が例えばmチャネルあれば、m個の方向
の信号を同時に受信することができる(これを「並列同
時受信」という)。
Then, the four reception signals applied to the reception ultrasonic beam are combined (added) with a delay time so as to be deflected by a phasing adder 52 at a predetermined deflection angle in the y direction. In this embodiment, the received signal input to the phasing adder 52 is already digitized,
If the phasing adder 52 has, for example, m channels, it is possible to simultaneously receive signals in m directions (this is called “parallel simultaneous reception”).

【0039】したがって、いまx方向にn個の走査、ま
たy方向にm個の走査をして3次元画像を構成する場合
は、この整相加算器52をmチャネル分設けて並列信号
処理をするならば、3次元走査はX方向のn回の超音波
送信で完了することになる。この送信回数は、従来3次
元走査で考えられていた、(x方向のn回の送信)×
(y方向のm回の送信)に比べて大幅な減少であり、従
来の2次元断層法における送信回数とほぼ同じである。
Therefore, in the case where a three-dimensional image is formed by scanning n scans in the x direction and m scans in the y direction, the phasing adder 52 is provided for m channels to perform parallel signal processing. If so, the three-dimensional scanning will be completed by transmitting ultrasonic waves n times in the X direction. This number of transmissions has been considered in the conventional three-dimensional scanning, (n transmissions in the x direction) ×
This is a significant decrease compared to (m transmissions in the y direction), which is almost the same as the number of transmissions in the conventional two-dimensional tomography.

【0040】よって、本実施例においては、整相加算器
52の出力は一旦画像メモリ44に蓄積された後、必要
なデ−タが画像処理回路53で所定のフォーマットに従
って画像処理され、TVモニタ45に3次元のイメージ
が表示されるが、この3次元イメージング装置50のシ
ステム構成によれば、3次元情報をリアルタイムで表示
することが可能になる。
Therefore, in this embodiment, the output of the phasing adder 52 is once stored in the image memory 44, and then the necessary data is image-processed by the image processing circuit 53 according to a predetermined format, and the TV monitor is displayed. Although a three-dimensional image is displayed on 45, the system configuration of the three-dimensional imaging device 50 enables three-dimensional information to be displayed in real time.

【0041】なお、消費電力、装置サイズ等ハードウェ
アの観点から、整相加算器をy方向の走査分のmチャネ
ル設置して並列信号処理を行うことが困難なときは、チ
ャネル数を減らし記憶回路からの出力をそのチャネル分
だけ順次整相加算していってもよい。
From the viewpoint of hardware such as power consumption and device size, when it is difficult to perform parallel signal processing by installing the phasing adder in m channels for scanning in the y direction, reduce the number of channels and store. The output from the circuit may be sequentially phased and added for that channel.

【0042】図5は、本発明の第2実施例に係る超音波
探触子60の斜視図である。x方向に凸の湾曲板形状の
トランスデューサ61には、表面61a側に5個の送信
用電極62-1〜62-5が、また裏面61b側に4個の受信用
電極63-1〜63-4が取り付けられる。5個の送信用電極62
-1〜62-5は長手方向を縦方向に合わせて横方向に配列さ
れ、4個の受信用電極63-1〜63-4は長手方向を横方向に
合わせて縦方向に配列される。そして、送信用電極62-1
〜62-5と受信用電極63-1〜63-4からは、それぞれ信号線
64a,64bが引き出され、各信号線64aは送信回
路65-1〜65-5に、信号線64bは受信回路66-1〜66-4に
接続する。
FIG. 5 is a perspective view of an ultrasonic probe 60 according to the second embodiment of the present invention. In the curved plate-shaped transducer 61 convex in the x direction, five transmitting electrodes 62-1 to 62-5 are provided on the front surface 61a side, and four receiving electrodes 63-1 to 63- are provided on the rear surface 61b side. 4 is attached. 5 transmitter electrodes 62
-1 to 62-5 are arranged in the horizontal direction with the longitudinal direction aligned with the vertical direction, and the four reception electrodes 63-1 to 63-4 are arranged in the vertical direction with the longitudinal direction aligned with the horizontal direction. Then, the transmitting electrode 62-1
To 62-5 and the receiving electrodes 63-1 to 63-4, signal lines 64a and 64b are respectively drawn out. Connect to 66-1 to 66-4.

【0043】先に図3に示したように、平面形状のトラ
ンスデューサにおいては、トランスデューサ近傍でのx
方向あるいはy方向のビーム幅はトランスデューサの素
子幅に等しく、これがまたそのxあるいはy方向の3次
元表示幅を決定する。
As shown in FIG. 3, in the planar transducer, x in the vicinity of the transducer
The beam width in the direction or the y direction is equal to the element width of the transducer, which also determines its three-dimensional display width in the x or y direction.

【0044】ところが、本実施例においては、トランス
デューサはx方向に凸であるため、x方向のビーム幅は
トランスデューサの素子幅よりも広くなり、より多くの
3次元情報を取得することができる。トランスデューサ
をy方向にも凸となるようにすれば、y方向のビーム幅
もトランスデューサの素子幅より広がり、さらに多くの
3次元情報を収集できる。
However, in this embodiment, since the transducer is convex in the x direction, the beam width in the x direction becomes wider than the element width of the transducer, and more three-dimensional information can be acquired. By making the transducer convex also in the y direction, the beam width in the y direction also becomes wider than the element width of the transducer, and more three-dimensional information can be collected.

【0045】なお、上記実施例においてはセクタ電子走
査による3次元情報の収集について述べたが、本発明の
超音波探触子は、リニア走査、コンベックス走査、ある
いはこれらを組合せた走査方法(例えば送信時はコンベ
ックスル走査、受信時はセクタ走査など)も行うことが
できる。
Although the above embodiment has described the collection of three-dimensional information by sector electronic scanning, the ultrasonic probe of the present invention employs a linear scanning method, a convex scanning method, or a scanning method combining these methods (for example, transmission). It is also possible to perform convex scanning at the time, sector scanning at the time of reception, etc.).

【0046】また、本発明の超音波探触子は医用診断だ
けでなく、海洋開発、非破壊検査等にも用いることがで
きる。
The ultrasonic probe of the present invention can be used not only for medical diagnosis but also for ocean development, nondestructive inspection and the like.

【0047】[0047]

【発明の効果】以上説明したように、本発明の超音波探
触子は、電極数と送受信のチャネル数が少ない簡単な構
成、良好なコストパーフォーマンスで3次元情報を取得
できる。また電子走査であるため、並列同時受信も可能
でリアルタイムの3次元表示も可能になる。
As described above, the ultrasonic probe of the present invention can acquire three-dimensional information with a simple structure having a small number of electrodes and channels for transmission and reception, and with good cost performance. Further, since it is electronic scanning, parallel simultaneous reception is possible and real-time three-dimensional display is also possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る超音波探触子の斜視
図。
FIG. 1 is a perspective view of an ultrasonic probe according to a first embodiment of the present invention.

【図2】上記超音波探触子を用いる電子セクタ走査型3
次元イメージング装置のブロック図。
FIG. 2 is an electronic sector scanning type 3 using the ultrasonic probe.
FIG. 3 is a block diagram of a three-dimensional imaging apparatus.

【図3】上記超音波探触子による送受信超音波ビームの
模式図。
FIG. 3 is a schematic diagram of a transmission / reception ultrasonic beam by the ultrasonic probe.

【図4】上記超音波探触子を用いる他の電子セクタ走査
型3次元イメージング装置のブロック図。
FIG. 4 is a block diagram of another electronic sector scanning type three-dimensional imaging apparatus using the ultrasonic probe.

【図5】本発明の第2実施例に係る超音波探触子の斜視
図。
FIG. 5 is a perspective view of an ultrasonic probe according to a second embodiment of the present invention.

【図6】従来の超音波探触子を備えるセクタ電子走査型
超音波診断装置のブロック図。
FIG. 6 is a block diagram of a sector electronic scanning ultrasonic diagnostic apparatus including a conventional ultrasonic probe.

【符号の説明】[Explanation of symbols]

21 トランスデューサ 22-1〜22-4 送信用電極 23-1〜23-4 受信用電極 24 マッチング層 25 バッキング材 26a,26b 信号線 21 Transducer 22-1 to 22-4 Transmitting electrode 23-1 to 23-4 Receiving electrode 24 Matching layer 25 Backing material 26a, 26b Signal line

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 トランスデューサと、それぞれ超音波送
信回路と超音波受信回路に信号線を介して接続し、この
トランスデューサの相対向する面にそれぞれ配列される
複数個の短冊状送信用電極と受信用電極を備え、これら
送信用電極と受信用電極は互いにほぼ直交するように配
列される超音波探触子。
1. A transducer, a plurality of strip-shaped transmission electrodes and a plurality of strip-shaped transmission electrodes, which are connected to an ultrasonic transmission circuit and an ultrasonic reception circuit, respectively, through signal lines, and are arranged on opposite surfaces of the transducer, respectively. An ultrasonic probe including electrodes, and the transmitting electrodes and the receiving electrodes are arranged so as to be substantially orthogonal to each other.
JP3208104A 1991-08-20 1991-08-20 Ultrasonic probe Pending JPH0542144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3208104A JPH0542144A (en) 1991-08-20 1991-08-20 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3208104A JPH0542144A (en) 1991-08-20 1991-08-20 Ultrasonic probe

Publications (1)

Publication Number Publication Date
JPH0542144A true JPH0542144A (en) 1993-02-23

Family

ID=16550705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3208104A Pending JPH0542144A (en) 1991-08-20 1991-08-20 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JPH0542144A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999044074A1 (en) * 1998-02-25 1999-09-02 Honda Giken Kogyo Kabushiki Kaisha Radar
JP2010171872A (en) * 2009-01-26 2010-08-05 Nec Tokin Corp Ultrasonic phased array transceiver

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999044074A1 (en) * 1998-02-25 1999-09-02 Honda Giken Kogyo Kabushiki Kaisha Radar
US6335789B1 (en) 1998-02-25 2002-01-01 Honda Giken Kogyo Kabushiki Kaisha Optical radar system
EP1416292A1 (en) * 1998-02-25 2004-05-06 Honda Giken Kogyo Kabushiki Kaisha Optical scanning radar system
JP2010171872A (en) * 2009-01-26 2010-08-05 Nec Tokin Corp Ultrasonic phased array transceiver

Similar Documents

Publication Publication Date Title
JP5174010B2 (en) Method and transducer array with integrated beaming
US7927280B2 (en) Curved 2-D array ultrasound transducer and method for volumetric imaging
US6464638B1 (en) Ultrasound imaging system and method for spatial compounding
US6926672B2 (en) Electret acoustic transducer array for computerized ultrasound risk evaluation system
WO2006134686A1 (en) Ultrasonographic device
JP2008514264A (en) Method and apparatus for performing ultrasonic diagnostic imaging of breast with high accuracy
US20140180111A1 (en) Remote controlled telemedical ultrasonic diagnostic device
CN1894598A (en) Volumetric ultrasound imaging system using two-dimensional array transducer
JP2008229096A (en) Ultrasonic diagnostic apparatus
KR20140132811A (en) Ultrasound imaging apparatus and control method for the same
Hemmsen et al. Tissue harmonic synthetic aperture ultrasound imaging
US6258030B1 (en) Ultrasonic diagnostic apparatus
US20100081936A1 (en) Ultrasonic diagnosis apparatus and ultrasonic transmission/reception method
KR100769546B1 (en) Method and ultrasound diagnostic system for forming 3d ultrasound images using 2d ultrasound images
JP2005342194A (en) Ultrasonic diagnostic apparatus
KR20140137037A (en) ultrasonic image processing apparatus and method
JP2001157677A (en) Ultrasonic diagnostic apparatus
JPH0542144A (en) Ultrasonic probe
JPH0581141B2 (en)
JP4601743B2 (en) Ultrasonic diagnostic equipment
JP3256698B2 (en) Ultrasound diagnostic equipment
JP2006218089A (en) Ultrasonic diagnostic apparatus
JP3101301B2 (en) Ultrasound diagnostic equipment
US20230240650A1 (en) Mapping of cavitation activity
JPH0399645A (en) Ultrasonic diagnosis apparatus