JPH0541868A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPH0541868A
JPH0541868A JP3196410A JP19641091A JPH0541868A JP H0541868 A JPH0541868 A JP H0541868A JP 3196410 A JP3196410 A JP 3196410A JP 19641091 A JP19641091 A JP 19641091A JP H0541868 A JPH0541868 A JP H0541868A
Authority
JP
Japan
Prior art keywords
signal
horizontal
color filter
noise
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3196410A
Other languages
Japanese (ja)
Other versions
JP3156282B2 (en
Inventor
Hideko Hase
英子 長谷
Tatsuki Ide
達樹 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19641091A priority Critical patent/JP3156282B2/en
Publication of JPH0541868A publication Critical patent/JPH0541868A/en
Application granted granted Critical
Publication of JP3156282B2 publication Critical patent/JP3156282B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Color Television Image Signal Generators (AREA)

Abstract

PURPOSE:To eliminate only a pulsive noise selectively generated from a solid- state image pickup element. CONSTITUTION:The device consists of 1st, 2nd delay circuits 4, 5 delaying a digital signal by one horizontal scanning period, 1st, 2nd, 3rd low pass filters 6, 7, 8 using a half of the clock frequency of the digital signal as a node frequency, a noise elimination device 9 eliminating a defect noise signal from a luminance signal with correlation between signals outputted from the low pass filters 6, 7, 8 in the horizontal and vertical directions, a horizontal aperture circuit 10 correcting contour in the vertical direction with the signal whose noise is eliminated, and a vertical aperture circuit 11 correcting contour in the vertical direction with the signal whose noise is eliminated, to detect a picture defect caused by the defect of a light receiving element of the solid-state image pickup element 1 or ununiformity of the light receiving characteristic based on the correlation characteristic in the horizontal and vertical direction of the picture and to correct automatically a defective picture element signal with the horizontal and vertical signals.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、色差順次方式の固体撮
像素子において、欠陥画素信号を自動的に補正する固体
撮像装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state image pickup device for automatically correcting a defective pixel signal in a color-difference sequential type solid-state image pickup device.

【0002】[0002]

【従来の技術】近年ビデオカメラ等の撮像装置において
は、光電変換の手段として固体撮像素子を用いることが
多くなっている。しかし、固体撮像素子の受光素子の欠
陥あるいは受光面の不均一性により生じる画素欠陥が存
在する。そのために、固体撮像素子より出力された信号
をローパスフィルタに通すことにより得られる輝度信号
中に白点(白キズ)、黒点(黒キズ)と呼ばれる画像欠
陥が起こる。このような画像欠陥は小さなものでも非常
に目立ち、画像欠陥のある撮像素子は製品として使用す
ることができないために歩留りの低下を招くことになる
上、製品出荷後にも画像欠陥が生ずることがある。これ
らの問題は固体撮像素子特有の欠点であり、固体撮像素
子を使用する上での大きな障害となっている。
2. Description of the Related Art In recent years, solid-state image pickup devices are often used as photoelectric conversion means in image pickup devices such as video cameras. However, there is a defect in the light receiving element of the solid-state imaging device or a pixel defect caused by nonuniformity of the light receiving surface. Therefore, image defects called white spots (black spots) and black spots (black spots) occur in the luminance signal obtained by passing the signal output from the solid-state image sensor through a low-pass filter. Such image defects are very conspicuous even if they are small, and an image pickup device having an image defect cannot be used as a product, which leads to a decrease in yield and may cause an image defect even after the product is shipped. .. These problems are disadvantages peculiar to the solid-state image pickup device, and are major obstacles in using the solid-state image pickup device.

【0003】従来、前記問題点を解決する手段として、
特開昭61−261974号公報に示されるように、注
目画素と隣接する画素群との単純な比較により注目画素
の画素欠陥を検出し除去する手法が知られている。
Conventionally, as means for solving the above problems,
As disclosed in Japanese Unexamined Patent Publication No. 61-261974, there is known a method of detecting and removing a pixel defect of a target pixel by a simple comparison between the target pixel and an adjacent pixel group.

【0004】[0004]

【発明が解決しようとする課題】従来の技術において、
注目画素とその近傍画素群との比較により画像欠陥を取
り除くことが可能であるのは、第一の前提条件として、
注目画素とその近傍画素群は同種の信号であり(例えば
輝度信号であれば輝度信号同士の比較)、第二の前提の
条件として、画素欠陥は単発的に発生し、欠陥画素と近
傍画素間の相関性は低いという前提に基づいている。と
ころが色フィルタ配列に関する考察がなされておらず、
固体撮像素子の出力を直接従来技術による装置に入力し
ても近傍画素間には別種の色差情報が含まれており、第
一の前提条件が成立せず、ノイズを除去することは困難
であるため、固体撮像素子の出力から輝度信号を抽出し
ておく必要がある。輝度信号を得るためにはローパスフ
ィルタを通すが、フィルタを通すことで欠陥画素の持つ
ノイズ成分は隣接画素に拡散してしまい、第二の前提条
件が成立せず従来の技術ではノイズを除去することは困
難であった。
SUMMARY OF THE INVENTION In the prior art,
It is possible to remove the image defect by comparing the pixel of interest and its neighboring pixel group.
The pixel of interest and its neighboring pixel group are of the same type of signal (for example, if the luminance signal is a comparison of luminance signals), the second precondition is that a pixel defect occurs sporadically and It is based on the premise that the correlation of is low. However, no consideration has been given to the color filter array,
Even if the output of the solid-state image sensor is directly input to the device according to the conventional technique, different types of color difference information are included between neighboring pixels, the first precondition is not satisfied, and it is difficult to remove noise. Therefore, it is necessary to extract the luminance signal from the output of the solid-state image sensor. Although a low-pass filter is used to obtain the luminance signal, the noise component of the defective pixel is diffused to adjacent pixels by passing the filter, and the second precondition is not satisfied, and noise is removed by the conventional technique. It was difficult.

【0005】本発明はかかる点に鑑み、有意な画像情報
を損なうことなく、フィルタ処理により複数の画素に拡
散されたものであっても、白キズ又は黒キズのようにパ
ルシブな画像欠陥を良好に除去する装置の提供にある。
In view of the above points, the present invention favors a pulsative image defect such as a white flaw or a black flaw even if it is diffused into a plurality of pixels by a filter process without impairing significant image information. It is in the provision of a device for removal.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に本発明の固体撮像装置は、デジタル信号のクロック周
波数の1/2を極周波数とする第一,第二,第三のロー
パスフィルタと、ローパスフィルタから出力される信号
の水平及び垂直方向の相関により輝度信号の欠陥雑音信
号を除去する雑音除去装置と、雑音除去された信号によ
り水平方向の輪郭補正を行う水平アパーチャ回路と、更
に雑音除去された信号により垂直方向の輪郭補正を行う
垂直アパーチャ回路により構成されることを特徴とす
る。
In order to solve the above-mentioned problems, a solid-state image pickup device of the present invention comprises a first low-pass filter, a second low-pass filter, and a third low-pass filter whose pole frequency is 1/2 of the clock frequency of a digital signal. , A noise eliminator that removes a defective noise signal of a luminance signal by the correlation of the signal output from the low-pass filter in the horizontal and vertical directions, a horizontal aperture circuit that performs horizontal contour correction using the denoised signal, and further noise It is characterized by being constituted by a vertical aperture circuit which performs contour correction in a vertical direction by the removed signal.

【0007】[0007]

【作用】上記構成により、固体撮像素子の受光素子の欠
陥あるいは受光特性の不均一性によって生じる画像欠陥
を、画像の水平及び垂直方向の相関特性により検出し、
欠陥画素信号を水平及び垂直信号により自動的に補正す
ることを特徴とする。
With the above structure, the image defect caused by the defect of the light receiving element of the solid-state image pickup device or the nonuniformity of the light receiving characteristic is detected by the horizontal and vertical correlation characteristics of the image,
A feature is that the defective pixel signal is automatically corrected by the horizontal and vertical signals.

【0008】また、画像欠陥を除去する際に、画像信号
の中からぞの画素に画像欠陥を含まれているか判定する
必要があるが、除去すべき画像欠陥の判定基準をいたず
らに広げてしまうと、画像信号中のディテール成分など
有意な画像情報が失われてしまう可能性があるので、本
発明はフィルタにより周囲の画素に拡散された白(黒)
キズを選択的に除去する作用を持つことを特徴とする。
Further, when removing an image defect, it is necessary to determine whether or not each pixel in the image signal contains the image defect, but the criterion for determining the image defect to be removed is unnecessarily widened. However, since significant image information such as detail components in the image signal may be lost, the present invention uses white (black) diffused to surrounding pixels by the filter.
It is characterized by having an action of selectively removing scratches.

【0009】固体撮像素子の出力から輝度信号を生成す
るためには一般的にデジタル信号のクロック周波数の1
/2を極周波数とするデジタルローパスフィルタ(1+
-1)を施すことで生成するため、キズ成分も走査線方
向に拡散される。前記フィルタにより拡散される画素の
範囲は走査線方向に隣接する1画素のみであるので、注
目画素の1画素前後のうちキズを含む隣接画素を除いた
近傍画素群を元に判定する必要がある。キズを含む隣接
画素を除くためには、注目画素が白(黒)キズのとき、
前後1画素のうち画素値の大きな(小さな)ものを除く
ことで実現できる。言い換えると、前後1画素のうち画
素値の小さな(大きな)画素とそれ以外の近傍画素群を
注目画素と比較する。
In order to generate a luminance signal from the output of the solid-state image sensor, generally, one of the clock frequencies of the digital signal is used.
Digital low-pass filter (1+
Since it is generated by applying Z −1 ), the flaw component is also diffused in the scanning line direction. Since the range of pixels diffused by the filter is only one pixel adjacent to each other in the scanning line direction, it is necessary to make a determination based on a neighboring pixel group excluding adjacent pixels including scratches before and after one pixel of the target pixel. .. In order to remove adjacent pixels that contain scratches, when the pixel of interest is a white (black) scratch,
It can be realized by excluding one having a large (small) pixel value from one pixel before and after. In other words, the pixel having the smaller (larger) pixel value and the neighboring pixel group other than the preceding and following one pixel are compared with the target pixel.

【0010】次に、ある画素がキズと判定されたなら
ば、その画素値を周囲の画素値と置き換えるよう作用す
ることで、キズを消し去ることができる。但しここで、
周囲の画素間に相関性が認められる場合には、相関性を
保った上でキズを消し去る必要がある。ここで相関性に
関しては、走査線に対し水平方向のみでなく、鉛直方向
あるいは斜方向も考慮する必要がある。これを実現する
には、注目画素が白(黒)キズと判定されたならば、注
目画素の画素値を二次元的な近傍画素値群の中からキズ
を含む画素値を除いた画素値群のうち最大(小)の画素
値を持つものと置き換えるよう作用することにより達成
される。
Next, if a pixel is determined to be a flaw, the flaw can be erased by acting to replace the pixel value with the surrounding pixel values. But here,
If a correlation is found between surrounding pixels, it is necessary to eliminate the flaw after maintaining the correlation. Here, regarding the correlation, it is necessary to consider not only the horizontal direction with respect to the scanning line but also the vertical direction or the oblique direction. To achieve this, if the pixel of interest is determined to be a white (black) flaw, the pixel value group of the pixel of interest is the pixel value group excluding the pixel value including the flaw from the two-dimensional neighboring pixel value group. Of the maximum (small) pixel value of the sub-pixel.

【0011】垂直方向の輪郭補正を行う垂直アパーチャ
回路の入力信号は、回路規模を大きくすることなく二水
平走査期間信号での信号の相関により欠陥信号を検出、
置き換えを行う。
In the input signal of the vertical aperture circuit for performing contour correction in the vertical direction, a defect signal is detected by correlation of signals in the two horizontal scanning period signals without increasing the circuit scale.
Replace.

【0012】[0012]

【実施例】以下に本発明の一実施例について図面を参照
しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0013】図1は、本発明における概略ブロック図で
ある。図1において、1は固体撮像素子、2は固体撮像
素子1より出力された信号(a)レベルを一定にするた
めの自動利得制御回路、3は自動利得制御回路2から出
力されたアナログ信号(b)をデジタル信号に変換する
ためのAD変換器、4,5はAD変換器3より出力され
たデジタル信号(c)を一水平走査期間遅延させる第
1,第2の遅延回路、6,7,8はデジタル信号のクロ
ック周波数の1/2を極周波数とする第1,第2,第3
のデジタルローパスフィルタ、9はローパスフィルタ
6,7,8から出力される信号(e)の水平及び垂直の
相関により輝度信号の欠陥雑音信号を除去する雑音除去
回路、10は雑音除去回路9により雑音除去された信号
(h1〜h3)より水平方向の輪郭補正を行う水平アパ
ーチャ回路、11は水平アパーチャ回路10により更に
雑音除去された信号より垂直方向の輪郭補正を行う垂直
アパーチャ回路、12は輝度信号処理部、13は加算器
である。
FIG. 1 is a schematic block diagram of the present invention. In FIG. 1, 1 is a solid-state image sensor, 2 is an automatic gain control circuit for making the signal (a) level output from the solid-state image sensor 1 constant, and 3 is an analog signal output from the automatic gain control circuit 2 ( AD converters for converting b) into digital signals, 4, 5 are first and second delay circuits for delaying the digital signal (c) output from the AD converter 3 by one horizontal scanning period, 6, 7 , 8 are the first, second, and third whose pole frequency is 1/2 of the clock frequency of the digital signal.
, A noise removing circuit 9 for removing the defective noise signal of the luminance signal by the horizontal and vertical correlation of the signals (e) output from the low pass filters 6, 7, 8; A horizontal aperture circuit that performs horizontal contour correction from the removed signals (h1 to h3), a vertical aperture circuit 11 that performs vertical contour correction from the signal from which noise has been further removed by the horizontal aperture circuit 10, and a luminance signal. The processing unit 13 is an adder.

【0014】図2は、本発明に使用する固体撮像素子の
色フィルタ配列を示している。二次元に配された受光素
子上に設けた緑色光透過の第一の色フィルタと緑光阻止
の第二の色フィルタを水平方向に繰り返す第一の色フィ
ルタ列と、黄色光透過の第三の色フィルタとシアン色透
過の第四の色フィルタとを水平方向に繰り返す第二の色
フィルタ列と、前記第一,第二の色フィルタを前記第一
の色フィルタと反転させて繰り返す第三の色フィルタ列
と、第二の色フィルタ列と同一の繰り返しの色フィルタ
列とを垂直方向に繰り返す色フィルタであり、一水平走
査期間に前記第一から第四の色フィルタの内、垂直方向
に隣接する二列の色フィルタ列の信号を順次読み出す駆
動構造である。
FIG. 2 shows a color filter array of the solid-state image pickup device used in the present invention. A first color filter row that repeats in the horizontal direction a first color filter that transmits green light and a second color filter that blocks green light provided on a two-dimensionally arranged light receiving element, and a third color filter that transmits yellow light. A second color filter row in which a color filter and a cyan color transmitting fourth color filter are repeated in the horizontal direction, and a third color filter row in which the first and second color filters are inverted and repeated with respect to the first color filter. A color filter row and a color filter row that repeats the same repeating color filter row as the second color filter row in the vertical direction, and among the first to fourth color filters in one horizontal scanning period, in the vertical direction. This is a drive structure for sequentially reading out signals from two adjacent color filter columns.

【0015】図3は、輝度信号雑音除去回路である。A
D変換された信号(c)を遅延させ、LPFを通した後
の信号(f)を各々のラインにおいて雑音を除去した信
号(h)を得る。各々のブロックについては、以下図4
〜図7の説明において行う。
FIG. 3 shows a luminance signal noise elimination circuit. A
The D-converted signal (c) is delayed, and the signal (f) after passing through the LPF is subjected to noise removal in each line to obtain a signal (h). Each block is shown in Fig. 4 below.
~ It demonstrates in description of FIG.

【0016】図4は、画素遅延の構成図である。これ
は、走査線メモリの動作説明の中で、M=N=3とした
ときの構成例を示しており、2台のライン遅延器4,5
と6台の画素遅延器24〜29により構成される。画素
遅延器は入力信号を一画素分の走査時間だけ遅延させた
信号を出力するものであり、ライン遅延器は入力信号を
一水平走査期間だけ遅延させた信号を出力するものであ
る。また、図8〜図10は走査線上の注目画素と近傍画
素群の配置例を示しており、f1〜f9の数字を付して
ある。
FIG. 4 is a block diagram of the pixel delay. This shows an example of the configuration when M = N = 3 in the explanation of the operation of the scanning line memory, and shows two line delay units 4, 5
And six pixel delay devices 24 to 29. The pixel delay device outputs a signal obtained by delaying the input signal by a scanning time of one pixel, and the line delay device outputs a signal obtained by delaying the input signal by one horizontal scanning period. Further, FIGS. 8 to 10 show examples of the arrangement of the target pixel and the neighboring pixel group on the scanning line, which are denoted by the numbers f1 to f9.

【0017】図4の入力端子より入力される画像信号c
を、(1+Z-1)のLPF6を通すことにより得られる
信号(e1)は、画素遅延器24に接続され、画素遅延
器24の出力は画素遅延器25に接続される。画素遅延
器24の入力端と画素遅延器24の出力端と画素遅延器
25の出力端の3箇所より信号を取り出せば、それぞれ
図8〜図10のf1,f2,f3に相当する位置の画素
値が得られる。又、図4の入力端子より入力される画像
信号(c)は、ライン遅延器4にも接続され、ライン遅
延器4の出力信号(d2)を上記同様(1+Z-1)のL
PF7を通すことにより得られる信号(c2)に画素遅
延器26,27を直列に接続すれば、同様に図8〜図1
0のf4,f5,f6の位置の画素値が得られる。さら
に、図4のライン遅延器4の出力端にはライン遅延器5
が接続され、ライン遅延器5の出力信号(d3)を(1
+Z-1)のLPF8を通すことにより得られる信号を画
素遅延器28,29に直列に接続すれば、同様に図8〜
図10のf7,f8,f9に相当する位置の画素値が得
られる。以上のような構成による走査線メモリであれ
ば、注目画素及び近傍画素群を複数の出力端子より同時
に出力することができる。
Image signal c input from the input terminal of FIG.
The signal (e1) obtained by passing (1 + Z −1 ) of the LPF 6 is connected to the pixel delay device 24, and the output of the pixel delay device 24 is connected to the pixel delay device 25. If signals are taken out from the input end of the pixel delay unit 24, the output end of the pixel delay unit 24, and the output end of the pixel delay unit 25, the pixels at the positions corresponding to f1, f2, and f3 in FIGS. The value is obtained. The image signal (c) input from the input terminal of FIG. 4 is also connected to the line delay unit 4, and the output signal (d2) of the line delay unit 4 is L (1 + Z -1 ) as described above.
If the pixel delay devices 26 and 27 are connected in series to the signal (c2) obtained by passing the signal through the PF 7, then similarly to FIGS.
Pixel values at positions 0, f4, f5, and f6 are obtained. Further, the line delay unit 5 is connected to the output terminal of the line delay unit 4 of FIG.
Are connected, and the output signal (d3) of the line delay device 5 is changed to (1
If the signal obtained by passing the LPF 8 of + Z −1 ) is connected in series to the pixel delay units 28 and 29, similarly, as shown in FIG.
Pixel values at positions corresponding to f7, f8, and f9 in FIG. 10 are obtained. With the scanning line memory configured as described above, the target pixel and the neighboring pixel group can be simultaneously output from the plurality of output terminals.

【0018】図3において置換候補画素値検出器18
は、走査線メモリより同時に出力される近傍画素群の画
素値群f1〜f3,f7〜f9より、f4とf6のうち
画素値の小さなものと残りの近傍画素値群との中から最
大の画素値をYmax、さらに、f4とf6のうち画素
値の大きなものと残りの近傍画素値群との中から最小の
画素値をYminとして出力する。このYmaxとYm
inが置換候補画素値群となる。
In FIG. 3, the replacement candidate pixel value detector 18
Is the largest pixel among the pixel value groups f1 to f3 and f7 to f9 of the neighboring pixel group that are simultaneously output from the scanning line memory, among the pixel values of f4 and f6 having the smallest pixel value and the remaining neighboring pixel value group. The value is output as Ymax, and the minimum pixel value out of f4 and f6 having a larger pixel value and the remaining neighboring pixel value group is output as Ymin. This Ymax and Ym
in is the replacement candidate pixel value group.

【0019】図5は置換候補画素値検出器の詳細な第1
の構成例である。図5においては走査線メモリの説明に
合わせ、注目画素をf5とし、近傍画素群が8画素(f
1〜f3,f7〜f9)で構成される場合の置換候補画
素値検出器の構成例を示しており、2個の入力端子群を
持つ大選択回路30及び小選択回路31と、7個の入力
端子群を持つ最小値回路32及び最大値回路33とから
構成される。小選択回路31は入力される近傍画素値群
の中から注目画素の1画素前号に位置するf4及びf6
のうち画素値の小さなものを出力し、最大値回路33
は、残りの近傍画素値群f1〜f3,f7〜f9と小選
択回路31の出力の中から最大の画素値(Ymax(g
4))を抽出し出力する。大選択回路30は入力される
近傍画素値群の中から注目画素の1画素前後に位置する
f4及びf6のうち画素値の大きなものを出力し、最小
値回路32は、残りの近傍画素値群f1〜f3,f7〜
f9と大選択回路30の出力の中から最小の画素値(Y
min(g3))を抽出し出力する。
FIG. 5 is a detailed first diagram of the replacement candidate pixel value detector.
It is a configuration example of. In FIG. 5, in accordance with the description of the scanning line memory, the target pixel is set to f5, and the neighboring pixel group has 8 pixels (f
1 to f3, f7 to f9), a configuration example of a replacement candidate pixel value detector is shown, in which a large selection circuit 30 and a small selection circuit 31 having two input terminal groups and seven It is composed of a minimum value circuit 32 and a maximum value circuit 33 having an input terminal group. The small selection circuit 31 selects f4 and f6 located one pixel before the target pixel from the input neighboring pixel value group.
The one with the smallest pixel value is output, and the maximum value circuit 33
Is the maximum pixel value (Ymax (g) from the remaining neighboring pixel value groups f1 to f3, f7 to f9 and the output of the small selection circuit 31.
4)) is extracted and output. The large selection circuit 30 outputs the one having a larger pixel value out of f4 and f6 located one pixel before and after the pixel of interest from the input neighboring pixel value group, and the minimum value circuit 32 outputs the remaining neighboring pixel value group. f1-f3, f7-
The minimum pixel value (Y
min (g3)) is extracted and output.

【0020】図3においてノイズ検出器19は、走査線
メモリより出力される注目画素の画素値f5と、置換候
補画素値検出器18より出力されるYmax(g4)及
びYmin(g3)とから、注目画素にノイズが含まれ
ているか否かを判定し判定結果を制御信号として出力す
る。制御信号はYmaxを選択する信号であるSELm
axとYminを選択する信号であるSELminより
構成される。
In FIG. 3, the noise detector 19 uses the pixel value f5 of the pixel of interest output from the scanning line memory and Ymax (g4) and Ymin (g3) output from the replacement candidate pixel value detector 18, It is determined whether or not the target pixel contains noise, and the determination result is output as a control signal. The control signal is SELm which is a signal for selecting Ymax.
It is composed of SELmin which is a signal for selecting ax and Ymin.

【0021】図7はノイズ検出器19と画素値選択器2
0の詳細な構成例であり、ノイズ検出器19は、2台の
減算器38,41と、2台の比較器40,43と、2台
の或値設定器39,42から構成される。減算器38は
Ymin(g3)から注目画素(f5)の画素値を減
じ、その差(以下DIFminとする)を生成する。比
較器40はDIFminと或値生成器39より出力され
る或値(以下THminとする)とを比較し、条件1と
してDIFmin>THminであればYminを選択
する信号SELmin(11)をアクティブにし、条件
1が成立しない場合にはSELmin(11)をインア
クティブにし出力する。また、減算器41は注目画素
(f5)の画素値からYmax(g4)を減じ、その差
(以下DIFmaxとする)を生成する。比較器43は
DIFmaxと或値生成器42より出力される或値(以
下THmaxとする)とを比較し、条件2としてDIF
max>THmaxであればYmaxを選択する信号S
ELmax(12)をアクティブにし、条件2が成立し
ない場合にはSELmax(12)をインアクティブに
し出力する。一般的に、レンズ系及び光電変換部の開口
率等による空間的ローパスフィルタ効果により、光電変
換素子の出力である画像信号の高域成分(ディテール)
の振幅は小さくなるため、注目画素にパルスノイズが含
まれていなければ、注目画素に対する近傍画素群の差分
も小さくなると言える。従って、THmax及びTHm
inは、画素値の最大値に対して過剰に小さく設定する
と画像信号のディテール成分が失われる恐れがあり、過
剰に大きく設定するとキズそのものが検出できなくなる
ため、適切な値に設定する必要がある。
FIG. 7 shows a noise detector 19 and a pixel value selector 2
0 is a detailed configuration example of 0, and the noise detector 19 includes two subtractors 38 and 41, two comparators 40 and 43, and two constant value setters 39 and 42. The subtractor 38 subtracts the pixel value of the target pixel (f5) from Ymin (g3) to generate the difference (hereinafter referred to as DIFmin). The comparator 40 compares DIFmin with a certain value (hereinafter THmin) output from the certain value generator 39, and activates a signal SELmin (11) for selecting Ymin if DIFmin> THmin as condition 1. If the condition 1 is not satisfied, SELmin (11) is made inactive and output. Further, the subtractor 41 subtracts Ymax (g4) from the pixel value of the target pixel (f5) and generates the difference (hereinafter referred to as DIFmax). The comparator 43 compares DIFmax with a certain value (hereinafter THmax) output from the certain value generator 42, and as a condition 2, DIFmax is set.
A signal S for selecting Ymax if max> THmax
ELmax (12) is activated, and when the condition 2 is not satisfied, SELmax (12) is inactivated and output. Generally, the high-frequency component (detail) of the image signal output from the photoelectric conversion element is produced by the spatial low-pass filter effect due to the aperture ratio of the lens system and the photoelectric conversion unit.
Since the amplitude of is small, if the pixel of interest does not include pulse noise, it can be said that the difference between the pixel of interest and the neighboring pixel group is also small. Therefore, THmax and THm
If in is set too small with respect to the maximum pixel value, the detail component of the image signal may be lost, and if set too large, the flaw itself cannot be detected, so it must be set to an appropriate value. ..

【0022】画素値選択器20は、1台のマルチプレク
サ44から構成される。マルチプレクサ44は注目画素
の画素値、Ymax、Yminの3信号を入力し、SE
LmaxとSELminが共にインアクティブであれば
注目画素の画素値を出力端子(h2)に出力し、SEL
maxがアクティブでSELminがインアクティブで
あればYmaxを出力端子(h2)に出力し、SELm
axがインアクティブでSELminがアクティブであ
ればYminを出力端子(h2)に出力する。ここで、
ノイズ検出器19の説明から解るように、SELmax
及びSELminを出力する条件から、SELmaxと
SELminが共にアクティブとなることは有り得な
い。
The pixel value selector 20 is composed of one multiplexer 44. The multiplexer 44 inputs the pixel value of the pixel of interest, three signals of Ymax and Ymin, and SE
If both Lmax and SELmin are inactive, the pixel value of the target pixel is output to the output terminal (h2), and SEL
If max is active and SELmin is inactive, Ymax is output to the output terminal (h2) and SELm
If ax is inactive and SELmin is active, Ymin is output to the output terminal (h2). here,
As can be seen from the description of the noise detector 19, SELmax
From the condition of outputting SELmin and SELmin, it is impossible that SELmax and SELmin are both active.

【0023】図3において、出力信号(h1)は、垂直
アパーチャ回路11への入力信号である。置換候補画素
値検出器15は、走査線メモリより同時に出力される近
傍画素群の画素値群f1,f3〜f6より、f1とf3
のうち画素値の小さなものと残りの近傍画素群との中か
ら最大の画素値をYmax、さらに、f1とf3のうち
画素値の大きなものと残りの近傍画素値群との中から最
小の画素値をYminとして出力する。このYmaxと
Yminが置換候補画素値群となる。
In FIG. 3, the output signal (h1) is an input signal to the vertical aperture circuit 11. The replacement candidate pixel value detector 15 uses f1 and f3 from the pixel value groups f1 and f3 to f6 of the neighboring pixel group that are simultaneously output from the scanning line memory.
Ymax of the maximum pixel value from the one having the smaller pixel value and the remaining neighboring pixel group, and the smallest pixel from the one having the larger pixel value of f1 and f3 and the remaining neighboring pixel value group. The value is output as Ymin. The Ymax and Ymin form a replacement candidate pixel value group.

【0024】図6は置換候補画素値検出器18の詳細な
第2の構成例である。図6においては走査線メモリの説
明に合わせ、注目画素をf2とし、近傍画素群が5画素
(f1,f3〜f6)で構成される場合(図9参照)の
置換候補画素値検出器の構成例を示しており、2個の入
力端子群を持つ大選択回路34及び小選択回路35と、
7個の入力端子群を持つ最小値回路36及び最大値回路
37とから構成される。小選択回路35は入力される近
傍画素値群の中から注目画素の1画素前後に位置するf
1及びf3のうち画素値の小さなものを出力し、最大値
回路37は、残りの近傍画素値群f4〜f6と小選択回
路35の出力の中から最大の画素値(Ymax(g
2))を抽出し出力する。大選択回路34は入力される
近傍画素値群の中から注目画素の1画素前後に位置する
f1及びf3のうち画素値の大きなものを出力し、最小
値回路36は、残りの近傍画素値群f4〜f6と大選択
回路34の出力の中から最小の画素値(Ymin(g
1))を抽出し出力する。
FIG. 6 is a detailed second configuration example of the replacement candidate pixel value detector 18. In FIG. 6, in accordance with the description of the scanning line memory, the configuration of the replacement candidate pixel value detector in the case where the pixel of interest is f2 and the neighboring pixel group is composed of 5 pixels (f1, f3 to f6) (see FIG. 9) An example is shown, and a large selection circuit 34 and a small selection circuit 35 having two input terminal groups,
It is composed of a minimum value circuit 36 and a maximum value circuit 37 having a group of seven input terminals. The small selection circuit 35 is positioned f before and after the pixel of interest from the input neighborhood pixel value group.
The maximum value circuit 37 outputs the one having the smallest pixel value out of 1 and f3, and the maximum value circuit 37 outputs the maximum pixel value (Ymax (g) from the remaining neighboring pixel value groups f4 to f6 and the output of the small selection circuit 35.
2)) is extracted and output. The large selection circuit 34 outputs one of the input neighboring pixel value groups having a larger pixel value out of f1 and f3 located one pixel before and after the pixel of interest, and the minimum value circuit 36 outputs the remaining neighboring pixel value group. From among the outputs of the large selection circuit 34 and f4 to f6, the minimum pixel value (Ymin (g
1)) is extracted and output.

【0025】図3においてノイズ検出器16は、走査線
メモリより出力される注目画素の画素値f2と、置換候
補画素値検出器15より出力されるYmax(g2)及
びYmin(g1)とから、注目画素にノイズが含まれ
ているか否かを判定し判定結果を制御信号として出力す
る。制御信号はYmaxを選択する信号であるSELm
axとYminを選択する信号であるSELminより
構成される。図3において画素選択器17は、画素選択
器20と同様に構成され出力信号(h1)を得る。
In FIG. 3, the noise detector 16 uses the pixel value f2 of the pixel of interest output from the scanning line memory and Ymax (g2) and Ymin (g1) output from the replacement candidate pixel value detector 15. It is determined whether or not the target pixel contains noise, and the determination result is output as a control signal. The control signal is SELm which is a signal for selecting Ymax.
It is composed of SELmin which is a signal for selecting ax and Ymin. In FIG. 3, the pixel selector 17 is configured similarly to the pixel selector 20 to obtain the output signal (h1).

【0026】図3において、出力信号(h3)も(h
1)と同様に、垂直アパーチャ回路11への入力信号で
ある。置換候補画素値検出器21は、走査線メモリより
同時に出力される信号のf8を注目画素とし、近傍画素
群の画素値群f4〜f7,f9より、f7とf9のうち
画素値の小さなものと残りの近傍画素値群との中から最
大の画素値をYmax、さらに、f7とf9のうち画素
値の大きなものと残りの近傍画素値群との中から最小の
画素値をYminとして出力する。このYmaxとYm
inが置換候補画素値群となる。(図10参照)図3に
おいてノイズ検出器22,画素値選択器23は、ノイズ
検出器16,画素選択器17と同様に構成され出力信号
(h3)を得る。
In FIG. 3, the output signal (h3) is also (h3
Similar to 1), it is an input signal to the vertical aperture circuit 11. The replacement candidate pixel value detector 21 sets f8 of the signals simultaneously output from the scanning line memory as a pixel of interest, and determines that the pixel value of f7 and f9 is smaller than the pixel value groups f4 to f7 and f9 of the neighboring pixel group. The maximum pixel value out of the remaining neighboring pixel value group is output as Ymax, and the minimum pixel value out of the remaining pixel value group of f7 and f9 having a large pixel value is output as Ymin. This Ymax and Ym
in is the replacement candidate pixel value group. (See FIG. 10) In FIG. 3, the noise detector 22 and the pixel value selector 23 are configured similarly to the noise detector 16 and the pixel selector 17, and obtain the output signal (h3).

【0027】図1において、輝度信号雑音除去回路9に
より雑音除去された信号により水平方向の輪郭補正を行
う水平アパーチャ回路10、更に雑音除去された信号に
より垂直方向の輪郭補正を行う垂直アパーチャ回路11
により構成され、固体撮像素子1の受光素子の欠陥ある
いは受光特性の不均一性によって生じる画像欠陥を、画
像の水平及び垂直方向の相関特性により検出し、欠陥画
素信号を水平及び垂直信号により自動的に補正する。
In FIG. 1, a horizontal aperture circuit 10 which performs horizontal contour correction by the signal from which noise has been removed by the luminance signal noise removal circuit 9, and a vertical aperture circuit 11 which performs vertical contour correction by the signal from which noise has been removed.
The image defect caused by the defect of the light receiving element of the solid-state image sensor 1 or the nonuniformity of the light receiving characteristic is detected by the correlation characteristic in the horizontal and vertical directions of the image, and the defective pixel signal is automatically detected by the horizontal and vertical signals. Correct to.

【0028】また、本発明においては、画像の二次元的
または、疑似的な二次元的な相関性のみに着目して処理
を行い時間軸は関知しないため、被写体の動きによる影
響を受けることはない。
Further, in the present invention, since the processing is performed by focusing on only the two-dimensional or pseudo two-dimensional correlation of the image and the time axis is not concerned, it is not affected by the movement of the subject. Absent.

【0029】[0029]

【発明の効果】以上の発明から明らかなように、本発明
によれば、被写体の動きに無関係に、有意な画像情報を
損なうことなく、従来の技術では困難であったフィルタ
により拡散された画像欠陥を良好に除去することが可能
となり、その実用的効果は大きい。
As is apparent from the above-described invention, according to the present invention, an image diffused by a filter, which is difficult by the conventional technique, can be obtained without impairing significant image information regardless of the movement of the object. It becomes possible to satisfactorily remove the defect, and the practical effect thereof is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の概略ブロック図FIG. 1 is a schematic block diagram of an embodiment of the present invention.

【図2】本発明の一実施例に使用する色フィルタの配置
FIG. 2 is a layout diagram of a color filter used in an embodiment of the present invention.

【図3】本発明の一実施例の輝度信号雑音除去回路の構
成を示すブロック図
FIG. 3 is a block diagram showing a configuration of a luminance signal noise elimination circuit according to an embodiment of the present invention.

【図4】本発明の一実施例の画素遅延の構成を示すブロ
ック図
FIG. 4 is a block diagram showing a pixel delay configuration according to an embodiment of the present invention.

【図5】本発明の一実施例の置換候補画素値検出器の第
一の構成を示すブロック図
FIG. 5 is a block diagram showing a first configuration of a replacement candidate pixel value detector according to an embodiment of the present invention.

【図6】本発明の一実施例の置換候補画素値検出器の第
二の構成を示すブロック図
FIG. 6 is a block diagram showing a second configuration of a replacement candidate pixel value detector according to an embodiment of the present invention.

【図7】本発明の一実施例の画素値選択器の構成を示す
ブロック図
FIG. 7 is a block diagram showing the configuration of a pixel value selector according to an embodiment of the present invention.

【図8】本発明の一実施例の注目画素と近傍画素群の第
一の配置例を示す配置図
FIG. 8 is a layout diagram showing a first layout example of a target pixel and a neighboring pixel group according to an embodiment of the present invention.

【図9】本発明の一実施例の注目画素と近傍画素群の第
二の配置例を示す配置図
FIG. 9 is a layout diagram showing a second layout example of a target pixel and a neighboring pixel group according to an embodiment of the present invention.

【図10】本発明の一実施例の注目画素と近傍画素群の
第3の配置例を示す配置図
FIG. 10 is a layout diagram showing a third layout example of a target pixel and a neighboring pixel group according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 固体撮像素子 2 自動利得制御回路 3 AD変換器 4 1ライン遅延器 5 1ライン遅延器 6 デジタルローパスフィルタ 7 デジタルローパスフィルタ 8 デジタルローパスフィルタ 9 輝度信号雑音除去回路 10 水平アパーチャ処理回路 11 垂直アパーチャ処理回路 12 輝度信号処理回路 13 アパーチャミックス回路 14 画素遅延器 15 置換候補画素値検出器 16 ノイズ検出器 17 画素値選択器 18 置換候補画素値検出器 19 ノイズ検出器 20 画素値検出器 21 置換候補画素値検出器 22 ノイズ検出器 23 画素値選択器 24 画素遅延器 25 画素遅延器 26 画素遅延器 27 画素遅延器 28 画素遅延器 29 画素遅延器 30 大選択回路 31 小選択回路 32 最大値選択回路 33 最小値選択回路 34 大選択回路 35 小選択回路 36 最大値選択回路 37 最小値選択回路 38 減算器 39 或値設定器 40 比較器 41 減算器 42 或値設定器 43 比較器 44 マルチプレクサ 1 Solid-state image sensor 2 Automatic gain control circuit 3 AD converter 4 1 line delay device 5 1 line delay device 6 Digital low pass filter 7 Digital low pass filter 8 Digital low pass filter 9 Luminance signal noise elimination circuit 10 Horizontal aperture processing circuit 11 Vertical aperture processing Circuit 12 Luminance signal processing circuit 13 Aperture mix circuit 14 Pixel delay device 15 Replacement candidate pixel value detector 16 Noise detector 17 Pixel value selector 18 Replacement candidate pixel value detector 19 Noise detector 20 Pixel value detector 21 Replacement candidate pixel Value detector 22 Noise detector 23 Pixel value selector 24 Pixel delay device 25 Pixel delay device 26 Pixel delay device 27 Pixel delay device 28 Pixel delay device 29 Pixel delay device 30 Large selection circuit 31 Small selection circuit 32 Maximum value selection circuit 33 Minimum value selection circuit 34 Large selection circuit 3 Small selection circuit 36 the maximum value selection circuit 37 the minimum value selection circuit 38 subtractor 39 Arne setter 40 comparator 41 subtractor 42 Arne setter 43 comparator 44 multiplexer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 二次元的に配された受光素子上に設けた
緑色光透過の第一の色フィルタと緑色光阻止の第二の色
フィルタを水平方向に繰り返す第一の色フィルタ列と、
黄色光透過の第三の色フィルタとシアン色光透過の第四
の色フィルタとを水平方向に繰り返す第二の色フィルタ
列と、前記第一,第二の色フィルタを前記第一の色フィ
ルタ列と反転させて繰り返す第三の色フィルタ列と、前
記第二の色フィルタ列と同一の繰り返しの色フィルタ列
とを垂直方向に繰り返す色フィルタを有し、一水平走査
期間に前記第一から第四の色フィルタ列の内、垂直方向
に隣接する二列の色フィルタ列の信号を順次読み出す駆
動構造の固体撮像素子と、前記固体撮像素子より出力さ
れた信号レベルを一定にするための自動利得制御回路
と、前記自動利得制御回路からのアナログ信号をデジタ
ル信号に変換するAD変換器と、デジタル信号を一水平
走査期間遅延させる第1,第2の遅延回路と、デジタル
信号のクロック周波数の1/2を極周波数とする第一,
第二,第三のローパスフィルタと、前記ローパスフィル
タから出力される信号の水平及び垂直方向の相関により
輝度信号の欠陥雑音信号を除去する雑音除去回路、前記
雑音除去回路により雑音除去された信号により水平方向
の輪郭補正を行う水平アパーチャ回路と、前記水平アパ
ーチャ回路と同様に雑音除去された信号により垂直方向
の輪郭補正を行う垂直アパーチャ回路とを構成し、前記
固体撮像素子の受光素子の欠陥あるいは受光特性の不均
一性によって生じる画像欠陥を、画像の水平及び垂直方
向の相関特性により検出し、欠陥画素信号を水平及び隣
接する垂直色信号により自動的に補正することを特徴と
する固体撮像装置。
1. A first color filter row in which a first color filter for transmitting green light and a second color filter for blocking green light, which are provided on a two-dimensionally arranged light receiving element, are repeated in a horizontal direction,
A second color filter row in which a third color filter that transmits yellow light and a fourth color filter that transmits cyan light are horizontally repeated, and the first and second color filters are the first color filter row. And a third color filter row that is repeated by being inverted, and a color filter that vertically repeats the same repeated color filter row as the second color filter row, and has a color filter that repeats in the vertical direction. Of the four color filter arrays, a solid-state image sensor having a driving structure for sequentially reading out signals of two color filter arrays that are vertically adjacent to each other, and an automatic gain for making the signal level output from the solid-state image sensor constant. A control circuit, an AD converter that converts an analog signal from the automatic gain control circuit into a digital signal, first and second delay circuits that delay the digital signal by one horizontal scanning period, and a clock frequency of the digital signal First of 1/2 and the pole frequency of,
A second and a third low-pass filter, a noise removing circuit for removing the defective noise signal of the luminance signal by the correlation of the signal output from the low-pass filter in the horizontal and vertical directions, and a signal from which the noise is removed by the noise removing circuit. A horizontal aperture circuit that performs horizontal contour correction and a vertical aperture circuit that performs vertical contour correction by a noise-removed signal, similar to the horizontal aperture circuit, are configured, and a defect of the light receiving element of the solid-state imaging device or An image defect caused by non-uniformity of the light receiving characteristic is detected by the horizontal and vertical correlation characteristics of the image, and the defective pixel signal is automatically corrected by the horizontal and adjacent vertical color signals. ..
【請求項2】 垂直アパーチャ回路への入力信号は、A
D変換器及び第一,第二の水平走査期間遅延回路から出
力される連続した三水平走査期間の各々二水平走査期間
信号での信号の相関により欠陥画素信号を検出する第一
及び第二のノイズ検出回路と、前記回路により検出した
信号により隣接する二水平走査期間信号の水平及び垂直
相関を利用してノイズ成分を補正する第一及び第二の補
正回路とにより構成される雑音除去回路を介して入力さ
れることを特徴とする請求項1記載の固体撮像装置。
2. The input signal to the vertical aperture circuit is A
The first and second detecting D-converter and the first and second horizontal scanning period delay circuits detect defective pixel signals by correlation of signals in two horizontal scanning period signals in each of three consecutive horizontal scanning periods. A noise removal circuit comprising a noise detection circuit and first and second correction circuits for correcting noise components by utilizing horizontal and vertical correlations of two horizontal scanning period signals adjacent to each other by the signal detected by the circuit. The solid-state imaging device according to claim 1, wherein the solid-state imaging device is input via
JP19641091A 1991-08-06 1991-08-06 Solid-state imaging device Expired - Fee Related JP3156282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19641091A JP3156282B2 (en) 1991-08-06 1991-08-06 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19641091A JP3156282B2 (en) 1991-08-06 1991-08-06 Solid-state imaging device

Publications (2)

Publication Number Publication Date
JPH0541868A true JPH0541868A (en) 1993-02-19
JP3156282B2 JP3156282B2 (en) 2001-04-16

Family

ID=16357397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19641091A Expired - Fee Related JP3156282B2 (en) 1991-08-06 1991-08-06 Solid-state imaging device

Country Status (1)

Country Link
JP (1) JP3156282B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7280142B2 (en) 2001-09-28 2007-10-09 Matsushita Electric Industrial Co., Ltd. Defective pixel detection and correction apparatus using target pixel and adjacent pixel data
US8089537B2 (en) 2005-08-23 2012-01-03 Nikon Corporation Image processing system and image processing program for defective pixel correction
US9722404B2 (en) 2013-02-14 2017-08-01 Beele Engineering B.V. System for sealingly holding cables which extend through an opening
US10422427B2 (en) 2010-05-25 2019-09-24 Beele Engineering B.V. Assembly and a method for providing in an opening sealing system
US10544884B2 (en) 2012-08-30 2020-01-28 Beele Engineering B.V. Sealing system for an annular space

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7280142B2 (en) 2001-09-28 2007-10-09 Matsushita Electric Industrial Co., Ltd. Defective pixel detection and correction apparatus using target pixel and adjacent pixel data
US8089537B2 (en) 2005-08-23 2012-01-03 Nikon Corporation Image processing system and image processing program for defective pixel correction
US10422427B2 (en) 2010-05-25 2019-09-24 Beele Engineering B.V. Assembly and a method for providing in an opening sealing system
US10544884B2 (en) 2012-08-30 2020-01-28 Beele Engineering B.V. Sealing system for an annular space
US9722404B2 (en) 2013-02-14 2017-08-01 Beele Engineering B.V. System for sealingly holding cables which extend through an opening

Also Published As

Publication number Publication date
JP3156282B2 (en) 2001-04-16

Similar Documents

Publication Publication Date Title
US20080278609A1 (en) Imaging apparatus, defective pixel correcting apparatus, processing method in the apparatuses, and program
US7970231B2 (en) Image processing method
US20080298716A1 (en) Solid-State Imaging Device and Pixel Correction Method
US20080030600A1 (en) Defective pixel correction device
KR20080078044A (en) Method and apparatus for image noise reduction
US6950133B2 (en) Method of detecting defective pixels of a solid-state image-pickup device and image-pickup apparatus using the same
JP3991011B2 (en) Image signal processing device
JP3544304B2 (en) Pixel defect correction device and pixel defect correction method
JP4679174B2 (en) Image processing apparatus and digital camera equipped with the image processing apparatus
JP2005101829A (en) Signal processing apparatus
US8922684B2 (en) Imaging device, control method for imaging device, and storage medium storing a control program for imaging device
US7667748B2 (en) Method and apparatus of defective pixel correction for a solid-state imaging device
JP3156282B2 (en) Solid-state imaging device
JP3257131B2 (en) Automatic defect detection device for solid-state imaging device and solid-state imaging device
JP3156281B2 (en) Solid-state imaging device
JP2010068329A (en) Imaging apparatus
JPH07336605A (en) Picture element defect correction device
JP2008177724A (en) Image input device, signal processor, and signal processing method
JPH10189930A (en) Solid-state image sensor
JPH04239886A (en) Picture noise removing device
JP3420341B2 (en) Imaging method and imaging apparatus
JP2924250B2 (en) Image noise removal device
JP2550007B2 (en) Defect detection device for solid-state image sensor
JP3114717B2 (en) Video signal processing device and storage medium storing program
JPH1127584A (en) Circuit and method for detecting defect in solid-state image-pickup element and camera employing them

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees