JPH0541636B2 - - Google Patents

Info

Publication number
JPH0541636B2
JPH0541636B2 JP3009986A JP998691A JPH0541636B2 JP H0541636 B2 JPH0541636 B2 JP H0541636B2 JP 3009986 A JP3009986 A JP 3009986A JP 998691 A JP998691 A JP 998691A JP H0541636 B2 JPH0541636 B2 JP H0541636B2
Authority
JP
Japan
Prior art keywords
reaction
amylase
chloro
substrate
nitrophenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3009986A
Other languages
Japanese (ja)
Other versions
JPH04305594A (en
Inventor
Koichiro Tobe
Akemichi Maki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiichi Kagaku Yakuhin Co Ltd
Original Assignee
Daiichi Kagaku Yakuhin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Kagaku Yakuhin Co Ltd filed Critical Daiichi Kagaku Yakuhin Co Ltd
Priority to JP998691A priority Critical patent/JPH04305594A/en
Publication of JPH04305594A publication Critical patent/JPH04305594A/en
Publication of JPH0541636B2 publication Critical patent/JPH0541636B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Saccharide Compounds (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

【0001】 本発明は、β−−クロロ−−ニ
トロプニル−マルトペンタオシドに関する。
[0001] The present invention relates to β-(2-chloro-4-nitrophenyl)-maltopentaoside.

【0002】 本発明のβ−−クロロ−−ニト
ロプニル−マルトペンタオシドは、血枅又は
他の生物孊的䜓液に含たれるα−アミラヌれを枬
定するためのα−アミラヌれ枬定甚詊薬ずしお有
甚である。
[0002] The β-(2-chloro-4-nitrophenyl)-maltopentaoside of the present invention can be used as an α-amylase measurement reagent for measuring α-amylase contained in serum or other biological body fluids. Useful.

【0003】 これたで知られおいるα−アミラヌれ
枬定甚詊薬のうちオリゎ糖の配糖䜓ずしおは、䟋
えばパラニトロプノヌルがα䜍に結合したオリ
ゎ糖特開昭53−12831、特開昭54−51892又は
ハロゲン化プニル基の結合したオリゎ糖特開
昭56−35998等が知られおいる。なお特開昭53
−12831号においおは、プニル基がマルトペン
タオシドの還元性末端に眮換したものが瀺されお
いるが、詳现な説明によるず、プニル基の結合
状態はマルトペンタオシドの還元性末端における
α−結合に限られおおり、眮換プニル基ずしお
はパラニトロプニル基が瀺されおいるにすぎな
い。これら公知の基質を甚いおα−アミラヌれを
枬定するず、前者の基質では、オリゎ糖が個以
䞋の短鎖の堎合にはα−アミラヌれの䜜甚が緩慢
であり、オリゎ糖が個で眮換プニル基がα配
䜍の基質及びオリゎ糖以䞊のものでは、、基質
分子䞭でか所以䞊のα−グルコシド結合が切断
される。このこずは、α−アミラヌれず基質ずの
反応により生じた生成物がさらに該酵玠の基質ず
しお䜜甚を受けるこずを意味し、したが぀お該反
応の化孊量論が成立しないこずになり、レむトア
ツセむ法には奜たしい基質ずいえない。たた埌者
の基質を甚いた堎合には、䜓液䞭に投䞎したプ
ノヌル誘導䜓等の治療薬物により枬定倀が圱響を
受けやすく、たたレむトアツセむも著しく困難ず
なる等の欠点がある。
[0003] Among the reagents for measuring α-amylase known so far, oligosaccharide glycosides include, for example, oligosaccharides in which paranitrophenol is bound to the α position (JP-A-53-12831, JP-A-54 -51892) or an oligosaccharide with a halogenated phenyl group (Japanese Patent Application Laid-open No. 56-35998). In addition, JP-A-53
-12831 shows a phenyl group substituted at the reducing end of maltopentaoside, but according to the detailed explanation, the bonding state of the phenyl group is α at the reducing end of maltopentaoside. - bond, and only para-nitrophenyl group is shown as the substituted phenyl group. When α-amylase was measured using these known substrates, it was found that with the former substrate, the action of α-amylase was slow when the oligosaccharide was a short chain of 4 or less, and when the oligosaccharide was 5 and the substituted phenyl For substrates with α-coordinated groups and oligosaccharides with six or more groups, two or more α-glucoside bonds are cleaved in the substrate molecule. This means that the product produced by the reaction between α-amylase and the substrate further acts as a substrate for the enzyme, and therefore the stoichiometry of the reaction does not hold, and the late assay method It cannot be said that it is a preferable substrate. Furthermore, when the latter substrate is used, there are drawbacks such as the fact that measured values are easily affected by therapeutic drugs such as phenol derivatives administered into body fluids, and late assays are also extremely difficult.

【0004】 そこで本発明者らは、䞊蚘欠点のない
アミラヌれ枬定に奜適な基質を求めお研究した結
果、オリゎ糖が個でしかも眮換プニル基の結
合状態がβ配䜍の基質のみが、α−アミラヌれに
よ぀お䞻ずしおか所のα−−グルコシド
結合が切断されるこず、さらにPH7.0付近で安定
でしかも極倧の分子吞光係数を持぀−クロロ−
−ニトロプニル基を利甚するず、、特に優れ
た枬定結果が埗られるこずを芋出した。
[0004] Therefore, the present inventors conducted research to find a substrate suitable for amylase measurement without the above-mentioned drawbacks, and found that only a substrate with 5 oligosaccharides and a substituted phenyl group in the β-coordination was found to be α-coordinated. -Amylase mainly cleaves one α-1,4-glucoside bond, and 2-chloro- is stable around pH 7.0 and has a maximum molecular extinction coefficient.
It has been found that particularly excellent measurement results can be obtained when a 4-nitrophenyl group is used.

【0005】 本発明は、次匏[0005] The present invention is based on the following formula

【化】[Case 2]

【化】 で衚わされ、融点198〜201℃、玫倖郚吞収スペク
トルにおいお295nm付近に吞収極倧を有するβ−
−クロロ−−ニトロプニル−マルトペン
タオシドである。
[Chemical formula] β-
(2-chloro-4-nitrophenyl)-maltopentaoside.

【0006】 本発明の化合物は、䞋蚘の方法で補造
できる。 次匏
[0006] The compound of the present invention can be produced by the following method. The following formula

【化】[Chemical formula 3]

【化】 で衚わされるマルトペンタオヌスに、次匏 RCO2O () 匏䞭はアルキル基を意味するで衚わされ
る有機酞無氎物を䜜甚させ、埗られる次匏
Maltopentaose represented by [Chemical formula] is reacted with an organic acid anhydride represented by the following formula (RCO) 2 O () (in the formula, R means an alkyl group) to obtain the following formula:

【化】[C4]

【化】 匏䞭は前蚘の意味を有するで衚わされる
化合物ヘプタデカアシルマルトペンタオヌス
を、ハロゲン化しお次匏
Compound (heptadecaacylmaltopentaose) represented by [Formula R has the above meaning]
is halogenated to form the following formula:

【化】[C5]

【化】 匏䞭はハロゲンを、は前蚘の意味を有す
るで衚わされる化合物−ハロゲノ−デオ
キシヘキサデカアシルマルトペンタオヌス、別名
ヘキサデカアシルマルトペンタオシルハラむド
ずなし、これに次匏
Compound (1-halogeno-1-deoxyhexadecaacylmaltopentaose, also known as hexadecaacylmaltopentaosyl halide) represented by:
, and then the following formula

【化】[C6]

【化】 で衚わされる−クロロ−−ニトロプノヌル
をその有機塩の圢で、又は有機塩基の存圚䞋で䜜
甚させ、埗られる次匏
The following formula obtained by reacting 2-chloro-4-nitrophenol represented by [chemical formula] in the form of its organic salt or in the presence of an organic base

【化】[C7]

【化】 匏䞭は前蚘の意味するで衚わされるβ−
−クロロ−−ニトロプニル−ヘキサデカ
アシルマルトペンタオシドを脱アシル化するこず
により匏(1)の化合物が埗られる。
[Chemical formula] (wherein R has the meaning described above)
The compound of formula (1) is obtained by deacylating (2-chloro-4-nitrophenyl)-hexadecaacyl maltopentaoside.

【0007】 特開昭56−35998号公報に瀺されるマ
ルトオリゎ糖の還元性末端はアノマヌ性炭玠であ
り、埓来この炭玠䞊の眮換基はαβ配䜍の混合
物ずしおのみ埗られ、その単離粟補はほずんど䞍
可胜ず考えられおいた。しかるに本発明の方法を
採甚するこずにより、−クロロ−−ニトロフ
゚ノル基が還元性末端にβ−結合したマルトペン
タオシドを単離粟補するこずが可胜ずな぀た。
[0007] The reducing terminal of the malto-oligosaccharide shown in JP-A-56-35998 is an anomeric carbon, and conventionally the substituent on this carbon has been obtained only as a mixture of α and β coordination, and its isolation has been difficult. Purification was considered almost impossible. However, by employing the method of the present invention, it has become possible to isolate and purify maltopentaoside in which a 2-chloro-4-nitrophenol group is β-bonded to the reducing end.

【0008】 本発明の各反応を以䞋に説明する。 氎酞基のアシル化反応 マルトペンタオヌス(2)のアシル化は、公知方
法、䟋えば反応物ずしおの有機酞無氎物䞭で、奜
たしくは無氎有機酞のアルカリ金属塩等の觊媒の
存圚䞋に加熱凊理するこずによ぀お実斜する。 RCO2Oで衚わされる有機酞無氎物は、䟋え
ば無氎酢酞、無氎プロピオン酞、無氎酪酞等であ
る。觊媒ずしおは、無氎有機酞のナトリりム塩、
カリりム塩等のアルカリ金属塩、ピリゞン、コリ
ゞン等が甚いられる。 反応の調節又は反応埌の目的物の粟補を容易に
するため、反応溶液に非氎溶媒䟋えばクロロホル
ム、ゞクロロメタン等を添加するこずもできる。 䞊蚘反応に䜿甚される有機酞無氎物の量は、マ
ルトペンタオヌスの重量の〜50倍、奜たしくは
〜15倍であり、たた觊媒ずしお無氎有機酞のア
ルカリ金属塩を䜿甚する堎合は、その量はマルト
ペンタオヌスの重量の0.5〜倍奜たしくは0.5〜
1.5倍である。
[0008] Each reaction of the present invention will be explained below. Acylation reaction of hydroxyl group: Acylation of maltopentaose (2) is carried out by a known method, for example, heat treatment in an organic acid anhydride as a reactant, preferably in the presence of a catalyst such as an alkali metal salt of an organic acid anhydride. Implemented by doing. Examples of the organic acid anhydride represented by (RCO) 2 O include acetic anhydride, propionic anhydride, butyric anhydride, and the like. As a catalyst, sodium salt of anhydrous organic acid,
Alkali metal salts such as potassium salts, pyridine, collidine, etc. are used. In order to facilitate reaction control or purification of the target product after the reaction, a non-aqueous solvent such as chloroform, dichloromethane, etc. may be added to the reaction solution. The amount of organic acid anhydride used in the above reaction is 5 to 50 times the weight of maltopentaose, preferably 7 to 15 times, and when an alkali metal salt of an anhydrous organic acid is used as a catalyst, The amount is 0.5 to 3 times the weight of maltopentaose, preferably 0.5 to 3 times the weight of maltopentaose.
It is 1.5 times.

【0009】 反応枩床は普通は玄90〜140℃、奜た
しくは100〜110℃である。反応時間は反応枩床に
圱響されるが、奜たしい反応枩床条件では玄な
いし時間である。反応混合物を垞法により〜
℃に冷华し、析出する固圢物を分別し、氎掗し
たのち也燥する。埗られた固䜓生成物ヘプタデ
カアシルマルトペンタオヌスIVは、゚タノヌ
ル、メタノヌル等のアルコヌル類、メチル゚チル
ケトン、アセトン等のケトン類、ゞメチル゚ヌテ
ル、ゞ゚チル゚ヌテル等の゚ヌテル類等の溶媒を
単独でもしくは組み合わせお䜿甚しお再結晶する
こずができるが、該固䜓生成物を十分也燥しおそ
のたた次の反応に䜿甚するこずもできる。
[0009] The reaction temperature is usually about 90-140°C, preferably 100-110°C. The reaction time is influenced by the reaction temperature, but is about 2 to 4 hours under preferred reaction temperature conditions. The reaction mixture was adjusted to 0 to 0 by a conventional method.
Cool to 5°C, separate the precipitated solids, wash with water, and then dry. The obtained solid product (heptadecaacylmaltopentaose IV) can be prepared by using solvents such as alcohols such as ethanol and methanol, ketones such as methyl ethyl ketone and acetone, and ethers such as dimethyl ether and diethyl ether alone or in combination. Although the solid product can be used for recrystallization, the solid product can also be sufficiently dried and used as it is for the next reaction.

【0010】末端のハロゲン化 ヘプタデカアシルマルトペンタオヌスの
ハロゲン化は、無氎ハロゲン化氎玠、塩化アルミ
ニりムず五塩化リン、又は四塩化チタン、塩化第
二スズ等で行われるが、生成物の収率ずこれに関
連する副反応の抑制および目的物の粟補の容易さ
から、䟋えばクロロホルム、ゞクロロメタン等の
䜎極性非氎溶媒䞭で、無氎ハロゲン化チタンを
甚いお凊理する方法が特に奜たしい。 なお無氎ハロゲン化チタンずしおは、塩化
チタン、臭化チタン、ペり化チタン等を甚い
るこずができ、ヘプタデカアシルマルトペンタオ
ヌスに察する無氎ハロゲン化チタンの量は、通
垞は〜20倍モルでよく、〜倍モルが奜たし
い。
[0010] Terminal halogenation: Halogenation of heptadecaacylmaltopentaose () is carried out with anhydrous hydrogen halide, aluminum chloride and phosphorous pentachloride, or titanium tetrachloride, stannic chloride, etc., but the product In view of the yield, suppression of related side reactions, and ease of purification of the target product, a method of treatment using anhydrous titanium tetrahalide in a low polar nonaqueous solvent such as chloroform or dichloromethane is particularly preferred. . As the anhydrous titanium tetrahalide, titanium tetrachloride, titanium tetrabromide, titanium tetraiodide, etc. can be used, and the amount of anhydrous titanium tetrahalide relative to heptadecaacyl maltopentaose is usually 1 to 20%. It may be twice the molar amount, preferably 3 to 8 times the molar amount.

【0011】 このハロゲン化反応は、垞圧で宀枩ず
䜿甚する溶媒の沞点ずの間で行われるが、溶媒の
沞点で還流しながら実斜するこずが特に奜たし
い。反応時間は反応枩床に圱響されるが、溶媒の
沞点付近で反応させる堎合、通垞は30分ないし
1.0時間皋床である。 反応混合物を垞法により冷华し、これに有機溶
媒䟋えばクロロホルム、ゞクロロメタン、酢酞゚
チル等を加え、有機溶媒局を分取し、氎、飜和重
炭酞゜ヌダ氎溶液等で数回掗浄したのち也燥し也
固する。
[0011] This halogenation reaction is carried out at normal pressure between room temperature and the boiling point of the solvent used, but it is particularly preferably carried out at the boiling point of the solvent while refluxing. The reaction time is affected by the reaction temperature, but when reacting near the boiling point of the solvent, it usually takes 30 minutes or more.
It takes about 1.0 hours. The reaction mixture is cooled in a conventional manner, an organic solvent such as chloroform, dichloromethane, ethyl acetate, etc. is added thereto, the organic solvent layer is separated, washed several times with water, a saturated aqueous solution of sodium bicarbonate, etc., and then dried to dryness.

【0012】 埗られた固䜓生成物は、シリカ
ゲルクロマトグラフむヌ等の垞法により分離粟補
したのち、゚タノヌル、メタノヌル等のアルコヌ
ル類、メチル゚チルケトン、アセトン等のケトン
類、ゞメチル゚ヌテル、ゞ゚チル゚ヌテル等の゚
ヌテル類の溶媒を単独でもしくは組み合わせお䜿
甚しお再結晶するこずができるが、也固物のたた
十分也燥しお次の反応に䜿甚するこずができる。
[0012] The obtained solid product () is separated and purified by conventional methods such as silica gel chromatography, and then separated into alcohols such as ethanol and methanol, ketones such as methyl ethyl ketone and acetone, and ethers such as dimethyl ether and diethyl ether. It can be recrystallized by using similar solvents alone or in combination, or it can be used in the next reaction after being sufficiently dried as a dry solid.

【0013】眮換反応 前蚘の−ハロゲンノ−−デオキシヘキサデ
カアシルマルトペンタオヌスのアノマヌ性
ハロゲン基を、−クロロ−−ニトロプノキ
シ基で眮換しお、β−−クロロ−−ニトロ
プニル−ヘキサデカアシルマルトペンタオシ
ドを埗る。 本反応に䜿甚する−クロロ−−ニトロプ
ノヌルの量は、〜20倍モル奜たしくは1.2〜6.0
倍モルである。
[0013] Substitution reaction: The anomeric halogen group of the 1-halogeno-1-deoxyhexadecaacylmaltopentaose () is substituted with a 2-chloro-4-nitrophenoxy group to form β-(2-chloro- 4-Nitrophenyl)-hexadecaacylmaltopentaoside () is obtained. The amount of 2-chloro-4-nitrophenol used in this reaction is 1 to 20 times the molar amount, preferably 1.2 to 6.0 times the molar amount.
It is twice the mole.

【0014】 −クロロ−−ニトロプノヌル
は、本反応を促進させるために反応溶媒䞭で塩ず
な぀お解離しおいる必芁があり、このため−ク
ロロ−−ニトロプノヌルの有機塩、䟋えばト
リ゚チルアミン塩、トリブチルアミン塩、ピリゞ
ン塩、ピコリン塩等が甚いられる。皮以䞊のこ
れらの塩を䜵甚するこずもでき、たた前も぀お
−クロロ−−ニトロプノヌル塩を調補せず
に、反応溶液䞭に有機塩基を添加するか、又は有
機塩基を盎接反応溶媒ずしおもよい。塩基の添加
量は、反応が終了するたで液性を䞭性ないしアル
カリ性に保持するのに必芁な量が奜たしい。
[0014] 2-chloro-4-nitrophenol needs to be dissociated as a salt in the reaction solvent in order to promote this reaction, and for this reason, an organic salt of 2-chloro-4-nitrophenol, For example, triethylamine salt, tributylamine salt, pyridine salt, picoline salt, etc. are used. Two or more of these salts can be used together, and
-An organic base may be added to the reaction solution without preparing the chloro-4-nitrophenol salt, or the organic base may be used directly as a reaction solvent. The amount of base added is preferably the amount necessary to maintain the liquid in a neutral or alkaline state until the reaction is completed.

【0015】 本反応は、通垞は溶媒の存圚䞋に行う
こずが奜たしい。溶媒ずしおは、本反応に関䞎し
ないものであれば特に限定されないがヘキサデカ
アシルマルトペンタオシルハラむド及び−クロ
ロ−−ニトロプノヌル又はその塩の溶解床が
倧きく、か぀その反応性を高める溶媒が奜たし
く、䟋えば䞋蚘の溶媒が甚いられる。アミド䟋え
ばメチルホルムアミド、ゞメチルアセトアミド
等、ニトリル䟋えばアセトニトリル、ベンゟニト
リル等、ゞメチルスルホキシド、有機塩基䟋えば
トリアルキルアミン、ピリゞン、ルチゞン等、芳
銙族炭化氎玠䟋えばベンれン、トル゚ン等、なら
びにこれらの皮以䞊の混合液。
[0015] This reaction is usually preferably carried out in the presence of a solvent. The solvent is not particularly limited as long as it does not participate in this reaction, but a solvent that has a high solubility for hexadecaacyl maltopentaosyl halide and 2-chloro-4-nitrophenol or a salt thereof and that increases the reactivity is used. Preferably, for example, the following solvents are used. Amides such as methylformamide, dimethylacetamide, etc., nitriles such as acetonitrile, benzonitrile, etc., dimethylsulfoxide, organic bases such as trialkylamines, pyridine, lutidine, etc., aromatic hydrocarbons such as benzene, toluene, etc., and mixtures of two or more of these. liquid.

【0016】 本反応は䞀般に−〜100℃皋床で進
行するが、通垞は10〜50℃の反応枩床が奜たし
い。 反応時間は、反応助剀である塩基の皮類ならび
に反応枩床によ぀お異なるが、通垞は〜20時間
である。反応終了埌、反応混合物を氷氎䞭に投入
しお析出する固圢物を濟取するか、又は適圓な有
機溶媒で目的物を抜出し、也燥埌に也固するこず
により、固圢物を埗る。化合物が固圢物ずしお
埗られる。 これを垞法により、䟋えばアルミナ、シリカゲ
ル等を甚いるカラムクロマトグラフむ、有機溶媒
を甚いる結晶化法などを適宜組合わせお斜すこず
により、粟補できる。
[0016] This reaction generally proceeds at about -5 to 100°C, but a reaction temperature of 10 to 50°C is usually preferred. The reaction time varies depending on the type of base used as a reaction aid and the reaction temperature, but is usually 5 to 20 hours. After completion of the reaction, the reaction mixture is poured into ice water and the precipitated solid is collected by filtration, or the target product is extracted with an appropriate organic solvent, dried and then evaporated to dryness to obtain a solid. The compound is obtained as a solid. This can be purified by a conventional method, for example, by applying an appropriate combination of column chromatography using alumina, silica gel, etc., crystallization method using an organic solvent, and the like.

【0017】脱アシル化反応 化合物からのアシル基の陀去は、公知方法䟋
えば脱氎したメタノヌル䞭のアルカリ金属アルコ
キシド又は無氎アンモニアのメタノヌル溶液等の
觊媒の存圚䞋で実斜するこずができる。アルカリ
金属アルコキシドずしおは、䟋えばナトリりムメ
トキシド、カリりムメトキシド、ナトリりム゚ト
キシド、カリりム゚トキシド、カリりム−−ブ
トキシド等を甚いるこずができる。
Deacylation Reaction: Removal of acyl groups from compounds can be carried out in known manner, for example in the presence of a catalyst such as an alkali metal alkoxide in dehydrated methanol or a methanolic solution of anhydrous ammonia. As the alkali metal alkoxide, for example, sodium methoxide, potassium methoxide, sodium ethoxide, potassium ethoxide, potassium t-butoxide, etc. can be used.

【0018】 反応終了埌の目的物の粟補を容易にす
るため、脱氎メタノヌルにクロロホルム、ゞクロ
ロメタン等の䜎極性非氎溶媒を添加しお反応する
こずが奜たしい。添加する䜎極性非氎溶液は、脱
アシル化反応を阻害せず、生成した−クロロ−
−ニトロプニルヌマルトペンタオシドが反応
系から析出するこずが必芁であるため、その量は
溶媒によ぀お異なるが、䜿甚する脱氎メタノヌル
の量の0.5〜倍が奜たしい。
[0018] In order to facilitate the purification of the target product after the reaction is completed, it is preferable to add a low polar non-aqueous solvent such as chloroform or dichloromethane to dehydrated methanol for the reaction. The low polar non-aqueous solution added does not inhibit the deacylation reaction and the generated 2-chloro-
Since it is necessary for 4-nitrophenyl maltopentaoside to be precipitated from the reaction system, the amount thereof varies depending on the solvent, but is preferably 0.5 to 2 times the amount of dehydrated methanol used.

【0019】 脱アシル化反応は、〜30℃の枩床で
〜24時間以内で終了する。脱氎メタノヌル単独
溶媒の反応系では、反応終了埌に枛圧䞋でメタノ
ヌルを留去し、埗られる固圢物を酞性のむオン亀
換暹脂又は無機酞を甚いお混圚する塩基性物質を
䞭和凊理したのち、薄局クロマトグラフむ、カラ
ムクロマトグラフむ等により化合物を粟補す
る。䜎極性溶媒を添加した反応系の堎合は、目的
物が反応液䞭から析出するので、これを濟取し、
分離粟補工皋にかけるこずができる。
[0019] The deacylation reaction is completed within 6 to 24 hours at a temperature of 0 to 30°C. In a reaction system using dehydrated methanol as a sole solvent, methanol is distilled off under reduced pressure after the reaction is completed, and the resulting solid is treated with an acidic ion exchange resin or an inorganic acid to neutralize the mixed basic substances. The compound is purified by layer chromatography, column chromatography, etc. In the case of a reaction system in which a low polar solvent is added, the target product will precipitate from the reaction solution, so this should be collected by filtration.
It can be subjected to a separation and purification process.

【0020】 以䞊のようにしお埗た圓該基質を䜿甚
し、α−アミラヌれ掻性を枬定する堎合、次の様
な利点を有する。 (1) 圓該基質はオリゎ糖が個であり、眮換プ
ニル基である−クロロ−−ニトロプニル基
の結合状態がβ配䜍であるため、圓該基質分子䞭
でα−アミラヌれにより切断されるα−−
グルコシド結合は、箇所のみであり、か぀この
切断箇所はヒト䜓液䞭αアミラヌれの倧郚分を占
める膵アミラヌれおよび唟液アミラヌれで同䞀で
あるため、α−アミラヌれ反応を化孊量論的に怜
出するこずができる。この基質を䜿甚しおα−ア
ミラヌれを枬定するず、理論倀ず枬定倀が䞀臎
し、埓来法ず比べお枬定系の信類性は栌段に向䞊
する。
[0020] When measuring α-amylase activity using the substrate obtained as described above, there are the following advantages. (1) The substrate has five oligosaccharides, and the bonding state of the 2-chloro-4-nitrophenyl group, which is a substituted phenyl group, is β coordination, so it is cleaved by α-amylase in the substrate molecule. α-1,4-
There is only one glucoside bond, and this cleavage site is the same in pancreatic amylase and salivary amylase, which account for the majority of α-amylase in human body fluids, so it is not possible to detect the α-amylase reaction stoichiometrically. can. When α-amylase is measured using this substrate, the theoretical value and the measured value match, and the reliability of the measurement system is significantly improved compared to conventional methods.

【0021】 (2) 圓該基質は至適条件䞋で、α−ア
ミラヌれの䜜甚により特異的か぀迅速な反応速床
で加氎分解される。たた比色定量される発色団
−クロロ−−ニトロプノヌルは吞収ピヌクに
おける分子吞光係数が倧きく極めお感床よく枬定
できる。
(2) The substrate is hydrolyzed under optimal conditions by the action of α-amylase at a specific and rapid reaction rate. Chromophore 2 is also quantified colorimetrically.
-Chloro-4-nitrophenol has a large molecular extinction coefficient at its absorption peak and can be measured with extremely high sensitivity.

【0022】 本発明のβ−−クロロ−−ニト
ロプニル−マルトペンタオシドは、血枅又は
他の生物孊的䜓液に含たれるα−アミラヌれの枬
定甚詊薬ずしお極めお有甚である。
[0022] The β-(2-chloro-4-nitrophenyl)-maltopentaoside of the present invention is extremely useful as a reagent for measuring α-amylase contained in serum or other biological fluids.

【0023】[0023]

【実斜䟋】 (A) ヘプタデカアシルマルトペンタオヌスの補造 マルトペンタオヌス20g24mモル、無氎酢酞
262ml及び無氎酢酞ナトリりム19.8gの混合物を
103℃で時間攪拌し、さらに氷氎䞭に泚入しお
䞀倜攪拌したのち、粘着物を氷氎䞭ですりよぶ
し、濟取する。埗られた結晶を゚タノヌルから再
結晶し、32.6gのヘプタデカアセチルマルトペン
タオヌスが埗られる21mモル、87.5。
[Example 1] (A) Production of heptadecaacylmaltopentaose Maltopentaose 20g (24mmol), acetic anhydride
A mixture of 262 ml and 19.8 g of anhydrous sodium acetate
The mixture was stirred at 103°C for 4 hours, then poured into ice water and stirred overnight. The sticky substance was ground in ice water and filtered. The obtained crystals are recrystallized from ethanol to obtain 32.6 g of heptadecaacetyl maltopentaose (21 mmol, 87.5%).

【0024】 融点125〜130℃ 赀倖線スペクトルcm-11740、1370、1230、1030 薄局クロマトグラフむシリカゲル、展開溶媒
ベンれン酢酞゚チルRf0.47 元玠分析倀C64H86O43ずしお   理論倀 49.81 5.62 枬定倀 49.30 5.72
[0024] Melting point: 125-130°C Infrared spectrum cm -1 : 1740, 1370, 1230, 1030 Thin layer chromatography (silica gel, developing solvent:
Benzene/ethyl acetate = 2:3): Rf = 0.47 Elemental analysis value: as C 64 H 86 O 43 C H Theoretical value (%) 49.81 5.62 Measured value (%) 49.30 5.72

【0025】 (B) ヘキサデカアセチルマルトペンタ
オシルクロリドの補造 (A)で埗られたヘプタデカアセチシルマルトペン
タオヌス5g3.2mモル、クロロホルム25mlおよ
び四塩化チタンの混合物を、時間還流攪拌し、
反応液にクロロホルム300mlを加え、氎100mlで
回掗浄したのちクロロホルム局に無氎硫酞ナトリ
りムを加え、脱氎したのち濃瞮也固する。埗られ
た粗生成物4.8gをシリカゲルカラムクロマトグラ
フむにより粟補し、ベンれン−酢酞゚チル混液
容量比で溶出した区分をメタノヌルか
ら再結晶するず、3.2gのヘキサデカアシルマルト
ペンタオシルクロリドが埗られる2.1mモル、
65。
(B) Production of hexadecaacetylmaltopentaosyl chloride A mixture of 5g (3.2mmol) of heptadecaacetylmaltopentaose obtained in (A), 25ml of chloroform, and titanium tetrachloride was refluxed for 1 hour. Stir and
Add 300ml of chloroform to the reaction solution and dilute with 100ml of water.
After washing twice, anhydrous sodium sulfate is added to the chloroform layer to dehydrate it, and then concentrated to dryness. 4.8 g of the obtained crude product was purified by silica gel column chromatography, and the fraction eluted with a benzene-ethyl acetate mixture (volume ratio 4:3) was recrystallized from methanol to yield 3.2 g of hexadecaacyl maltopentae. Sil chloride is obtained (2.1 mmol,
65%).

【0026】 融点175〜132℃ 赀倖線吞収スペクトルcm-11750、1370、1250、
1040、760 薄局クロマトグラフむシリカゲル、展開溶媒
ベンれン酢酞゚チルRf0.50 元玠分析倀C62H83O41Clずしお   理論倀 49.00 5.56 枬定倀 48.56 5.58 (C) β−−クロロ−−ニトロプニル−ヘ
キサデカアセチルマルトペンタオシドの補造 (B)で埗られた化合物3g2mモル、−クロロ
−−ニトロプノヌル1.8g10mモルを脱氎
ベンれン30mlに溶解し、トリ゚チルアミン2.5ml
を添加し、時間攪拌しながら還流加熱する。次
いで混合物を玄100mlの氷氎䞭に泚ぎ、200mlの酢
酞゚チルで抜出する。抜出液を飜和重炭酞ナトリ
りム氎溶液及び氎で掗浄し、有機溶媒局を無氎硫
酞ナトリりムで脱氎したのち、枛圧䞋に也固する
ず3.1gの粗生成物が埗られる。この生成物をシリ
カゲルカラムクロマトグラフむにより粟補し、ベ
ンれン−酢酞゚チル混液容量比で溶出
した分画区分をメタノヌルから再結晶するず、β
−−クロロ−−ニトロプニル−ヘキサデ
カアセチルマルトペンタオシド1.4g0.8mモル、
40が埗られる。
[0026] Melting point: 175-132°C Infrared absorption spectrum cm -1 : 1750, 1370, 1250,
1040, 760 Thin layer chromatography (silica gel, developing solvent:
Benzene/ethyl acetate = 2:3): Rf = 0.50 Elemental analysis value: C 62 H 83 O 41 As Cl C H Theoretical value (%) 49.00 5.56 Measured value (%) 48.56 5.58 (C) β-(2-chloro -4-Nitrophenyl)-hexadecaacetyl maltopentaoside 3 g (2 mmol) of the compound obtained in (B) and 1.8 g (10 mmol) of 2-chloro-4-nitrophenol were dissolved in 30 ml of dehydrated benzene. , triethylamine 2.5ml
and heated to reflux with stirring for 2 hours. The mixture is then poured into approximately 100 ml of ice water and extracted with 200 ml of ethyl acetate. The extract is washed with saturated aqueous sodium bicarbonate solution and water, and the organic solvent layer is dried over anhydrous sodium sulfate and then dried under reduced pressure to yield 3.1 g of crude product. This product was purified by silica gel column chromatography, and the fraction eluted with a benzene-ethyl acetate mixture (volume ratio 4:3) was recrystallized from methanol.
-(2-chloro-4-nitrophenyl)-hexadecaacetyl maltopentaoside 1.4 g (0.8 mmol,
40%).

【0028】 融点123〜128℃ 玫倖郚吞収スペクトル吞収極倧波長〔λnax〕
283nm 分子吞光係数ε8900CHCl3 赀倖線吞収スペクトルcm-11740、1580、1520、
1480、1360、1200、1020 薄局クロマトグラフむシリカゲル、展開溶媒
ベンれン酢酞゚チルRf0.50 元玠分析倀C68H86O44NClずしお   理論倀 49.30 5.23 枬定倀 48.71 5.35
[0028] Melting point: 123-128°C Ultraviolet absorption spectrum: Maximum absorption wavelength [λ nax ] =
283nm Molecular extinction coefficient (ε) = 8900 (CHCl 3 ) Infrared absorption spectrum cm -1 : 1740, 1580, 1520,
1480, 1360, 1200, 1020 Thin layer chromatography (silica gel, developing solvent:
Benzene/ethyl acetate = 2:3) Rf = 0.50 Elemental analysis value: C 68 H 86 O 44 as NCl C H Theoretical value (%) 49.30 5.23 Measured value (%) 48.71 5.35

【0029】 (D) β−−クロロ−−ニトロフ
゚ニル−マルトペンタオシドの補造方法 (C)で埗られた化合物1g0.6mモルを脱氎メタ
ノヌルml及びゞクロロメタンmlの混液に溶解
し、宀枩で攪拌しながら0.5Nナトリりムメトキ
サむド1.0mlを添加し、16時間反応させる。反応
終了埌、析出した沈殿を濟取し、脱氎メタノヌル
ヌゞクロロメタン混液で掗浄したの
ち、枛圧䞋に也固するず、粗β−−クロロ−
−ニトロプニル−マルトペンタオシド0.55g
が埗られる0.56mモル、93この粗生成物
0.55gを氎を甚いたバむオゲルP2のカラムクロマ
トグラフむにより粟補し、䞭倮留分より次の理化
孊的性質を有するβ−−クロロ−−ニトロ
プニル−マルトペンタオシドが0.41g埗られる
0.42mモル、70。
(D) Process for producing β-(2-chloro-4-nitrophenyl)-maltopentaoside Dissolve 1 g (0.6 mmol) of the compound obtained in (C) in a mixture of 7 ml of dehydrated methanol and 7 ml of dichloromethane. Then, 1.0 ml of 0.5N sodium methoxide is added while stirring at room temperature, and the mixture is allowed to react for 16 hours. After the reaction, the precipitate was collected by filtration, washed with a mixture of dehydrated methanol and dichloromethane (1:1), and dried under reduced pressure to give crude β-(2-chloro-
4-Nitrophenyl)-maltopentaoside 0.55g
(0.56 mmol, 93%) of this crude product
0.55g is purified by column chromatography on Biogel P2 using water, and 0.41g of β-(2-chloro-4-nitrophenyl)-maltopentaoside having the following physicochemical properties is obtained from the middle distillate. (0.42 mmol, 70%).

【0030】 融点198〜201℃ 玫倖郚吞収スペクトル吞収極倧波長〔λnax〕
295nm 分子吞光係数ε8100H2O 赀倖線吞収スペクトルcm-13400、2920、1580、
1520、1480、1350、1270、1020 栞磁気共鳎スペクトル250MHzppm 8.31Hz1H 8.18ddHzHz1H 7.43Hz1H 5.34〜5.579H 3.92〜3.0326H 本物質の−クロロ−−ニトロプニル基の
配䜍がβ䜍であるこずは、α−グルコシダヌれ及
びβ−グルコシダヌれの䞡酵玠を甚いお確認し
た。
[0030] Melting point: 198-201°C Ultraviolet absorption spectrum: Maximum absorption wavelength [λ nax ] =
295nm Molecular extinction coefficient (ε) = 8100 (H 2 O) Infrared absorption spectrum cm -1 : 3400, 2920, 1580,
1520, 1480, 1350, 1270, 1020 Nuclear magnetic resonance spectrum (250MHz) ppm 8.31 (d, J, = 3Hz, 1H) 8.18 (dd, J = 3Hz, J = 9Hz, 1H) 7.43 (d, J = 9Hz, 1H) 5.34-5.57 (m, 9H) 3.92-3.03 (m, 26H) The fact that the 2-chloro-4-nitrophenyl group of this substance is in the β-position means that both α-glucosidase and β-glucosidase enzymes It was confirmed using

【0031】【0031】

【実隓䟋】 䞋蚘の詊薬を甚い、ヒト膵臓アミラヌれ以䞋
−アミラヌれず呌ぶの反応性を枬定した。 詊薬基質液β−−クロロ−−ニト
ロプニル−マルトペンタオシド以䞋G5β−
CNPず呌ぶ及びα−−ニトロプニル−
マルトペンタオシド以䞋G5α−PNPず呌ぶ
の各基質を0.1Mリン酞緩衝液PH7.0にお、そ
れぞれ6mMずなるように調補する。 詊薬反応停止液1Mリン酞及びアセトニ
トリル 詊料−アミラヌれを500IUに調補す
る。 HPLC枬定条件 移動盞10アセトニトリル カラムTSK−ゲルNH2−60東゜ヌ瀟補 流速0.7ml分 怜出UV蚈
[Experimental Example 1] The reactivity of human pancreatic amylase (hereinafter referred to as P-amylase) was measured using the following reagent. Reagent A (substrate solution): β-(2-chloro-4-nitrophenyl)-maltopentaoside (hereinafter referred to as G5β-
CNP) and α-(4-nitrophenyl)-
Maltopentaoside (hereinafter referred to as G5α-PNP)
Prepare each substrate to 6mM in 0.1M phosphate buffer (PH7.0). Reagent B (reaction stop solution): 1M phosphoric acid and acetonitrile Sample: Prepare P-amylase to 500 IU/1. HPLC measurement conditions Mobile phase: 10% acetonitrile Column: TSK-gel NH 2 -60 (manufactured by Tosoh Corporation) Flow rate: 0.7ml/min Detection: UV meter

【0032】 枬定操䜜 è©Šè–¬A0.6mlを37℃で分間予備加枩する。次
いで−アミラヌれ0.02mlを加え、60分経過埌に
1Mリン酞0.1ml及びアセトリニトリル0.6mlを加
え反応を停止させる。この反応液15ÎŒlを詊料ずし
おアミラヌれの反応性をHPLCにより枬定した。
残存基質量、生成するG2α−PNP、G3α−PNP、
G2β−CNP及びG3β−CNPの量を䞋蚘衚に瀺す。
[0032] Measurement procedure: Prewarm 0.6 ml of reagent A at 37°C for 5 minutes. Next, add 0.02ml of P-amylase and after 60 minutes
Add 0.1 ml of 1M phosphoric acid and 0.6 ml of acetrinitrile to stop the reaction. The reactivity of amylase was measured by HPLC using 15 ÎŒl of this reaction solution as a sample.
Amount of remaining substrate, generated G2α-PNP, G3α-PNP,
The amounts of G2β-CNP and G3β-CNP are shown in the table below.

【0033】 本発明のG5β−CNP及び比范䟋のG5α
−PNPに察する−アミラヌれの䜜甚郚䜍を比
范するず、−アミラヌれはG5β−CNPでは、
還元末端から番目のグルコシド結合G2−G3
間に察しお特異的に䜜甚する。䞀方、−アミ
ラヌれはG5α−PNPでは、G2−G3間ぞの特異性
が䜎く、これより糖鎖の長いG3−G4間に察する
反応性が高い。
[0033] G5β-CNP of the present invention and G5α of the comparative example
- Comparing the action sites of P-amylase on PNP, P-amylase is
The second glucosidic bond from the reducing end (G2−G3
(between). On the other hand, P-amylase has low specificity for G2-G3 in G5α-PNP, and has high reactivity for G3-G4, which has a longer sugar chain.

【0034】【0034】

【衚】 ■■■ 亀の甲 0066 ■■■[Table 1] ■■■ Turtle shell [0066] ■■■

【0035】【0035】

【実斜䟋】 䞋蚘の詊薬を甚い、α−グルコシダヌれの反応
性を枬定した。 詊薬0.1Mリン酞緩衝液PH7.0にグルコ
ヌスオキシダヌれ50Uml、−゚チル−−
ヌヒドロキシ−−プロピル−−ゞメ
トキシアニリンナトリりムDAOS1mM、
−アミノアンチピリンmM、バヌオキシダヌれ
3Umlを加えお調補する。 詊薬基質−ニトロプニル−α・・
G1〜G5又はG2〜G5各20mMを0.1Mリン酞緩衝
液PH7.0に溶解する。グルコヌス単䜍。 詊薬0.5Mくえん酞 詊料α−グルコシダヌれ0.01〜2Uml
Example 2 The reactivity of α-glucosidase was measured using the following reagents. Reagent A: Glucose oxidase 50U/ml, N-ethyl-N- in 0.1M phosphate buffer (PH7.0)
(2-hydroxy-3-propyl)-3,5-dimethoxyaniline sodium (DAOS) 1mM, 4
-Aminoantipyrine mM, baroxidase
Prepare by adding 3U/ml. Reagent B (substrate): p-nitrophenyl-α・D・
Dissolve 20mM each of G1 to G5 or G2 to G5 in 0.1M phosphate buffer (PH7.0). (G: glucose unit). Reagent C: 0.5M citric acid Sample: α-glucosidase 0.01-2U/ml

【0036】 枬定法詊料A1.0mlず詊薬B0.5mlを
混合し、87℃で分間予備加枩する。次いで詊料
0.5mlを加え、15分経過埌、詊薬C2.0mlを加えお
反応を停止させ、590nmにおける吞光床を枬定
し、G2マルトヌスで埗られた倀を100ずし
お、各マルトオリゎ糖及び−ニトロプニルマ
ルトオリゎ等の倀を算出した。
[0036] Measurement method: Mix 1.0 ml of sample A and 0.5 ml of reagent B, and preheat at 87° C. for 5 minutes. Then the sample
After 15 minutes, 2.0 ml of reagent C was added to stop the reaction, the absorbance was measured at 590 nm, and the value obtained for G2 (maltose) was taken as 100%, and each maltooligosaccharide and p-nitro The values of phenyl maltooligo etc. were calculated.

【0037】 その結果を図に瀺す。図はα−グ
ルコシダヌれの皮々の基質に察する反応性ず基質
重合床ずの関係を瀺すグラフであ぀お、図䞭の実
線は−ニトロプニルマルトオリゎ糖、点線は
マルトオリゎ糖を基質ずした堎合である。
[0037] The results are shown in FIG. Figure 1 is a graph showing the relationship between the reactivity of α-glucosidase to various substrates and the degree of substrate polymerization. be.

【0038】 アミラヌれ枬定基質の重芁な条件の
぀ずしお、アミラヌれの䜜甚郚䜍がカ所である
こず、たたもし䜜甚郚䜍がカ所以䞊であ぀たず
しおも、生成した反応生成物のいずれに察しおも
共圹酵玠α−グルコシダヌれが同䞀の反応性
を瀺し、完党に枬定系に導けるこずが必芁である
第回臚床化孊倏期セミナヌプログラム資料
集。本願発明の基質はアミラヌれによる反応生
成物がほずんどG2β−CNP単䞀であるのに察し
お、比范䟋の基質G5α−PNPはそれがG2α−
PNPずG3α−PNPの混合物ずなる。
[0038] One of the important conditions for amylase measurement substrate
One of the reasons is that amylase has only one site of action, and even if there are two or more sites of action, the conjugate enzyme (α-glucosidase) performs the same reaction on all of the reaction products produced. It is necessary to be able to show the characteristics and be able to completely guide the measurement system (2nd Clinical Chemistry Summer Seminar Program Material Collection). In the substrate of the present invention, the amylase reaction product is almost exclusively G2β-CNP, whereas in the substrate of the comparative example (G5α-PNP), it is G2α-CNP.
It becomes a mixture of PNP and G3α-PNP.

【0039】 図に瀺すようにα−グルコシダヌれ
によるG3α−PNPずG2α−PNPに察する反応性
は玄倍も異なり、G3α−PNPが倚量に生成す
るず完党に枬定系に導くのに障害ずなる。
[0039] As shown in FIG. 1, the reactivity of α-glucosidase to G3α-PNP and G2α-PNP differs by about 4 times, and when G3α-PNP is produced in large amounts, it becomes an obstacle to completely introduce it into the measurement system.

【図面の簡単な説明】[Brief explanation of drawings]

図はα−グルコシダヌれの皮々の基質に察す
る反応性ず基質重合床ずの関係を瀺すグラフであ
る。
FIG. 1 is a graph showing the relationship between the reactivity of α-glucosidase to various substrates and the degree of substrate polymerization.

【化】[Chemical formula 8]

【化】[ka]

Claims (1)

【特蚱請求の範囲】[Claims] 【請求項】 次匏 【化】 【化】 で衚わされ、融点198〜201℃、玫倖郚吞収スペク
トルにおいお295nm付近に吞収極倧を有するβ−
−クロロ−−ニトロプニル−マルトペン
タオシド。
Claim 1: A β- compound represented by the following formula [Chemical 1]
(2-chloro-4-nitrophenyl)-maltopentaoside.
JP998691A 1991-01-04 1991-01-04 Beta-(2-chloro-4-nitrophenyl)-maltopentaoside Granted JPH04305594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP998691A JPH04305594A (en) 1991-01-04 1991-01-04 Beta-(2-chloro-4-nitrophenyl)-maltopentaoside

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP998691A JPH04305594A (en) 1991-01-04 1991-01-04 Beta-(2-chloro-4-nitrophenyl)-maltopentaoside

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP18582983A Division JPS6078994A (en) 1983-10-06 1983-10-06 Beta-(2-chloro-4-nitrophenyl)-maltopentaoside and its preparation

Publications (2)

Publication Number Publication Date
JPH04305594A JPH04305594A (en) 1992-10-28
JPH0541636B2 true JPH0541636B2 (en) 1993-06-24

Family

ID=11735206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP998691A Granted JPH04305594A (en) 1991-01-04 1991-01-04 Beta-(2-chloro-4-nitrophenyl)-maltopentaoside

Country Status (1)

Country Link
JP (1) JPH04305594A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9622483B2 (en) 2014-02-19 2017-04-18 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US11039620B2 (en) 2014-02-19 2021-06-22 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602199A (en) * 1983-06-21 1985-01-08 Toyobo Co Ltd Measurement of alpha-amylase activity

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602199A (en) * 1983-06-21 1985-01-08 Toyobo Co Ltd Measurement of alpha-amylase activity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9622483B2 (en) 2014-02-19 2017-04-18 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US11039619B2 (en) 2014-02-19 2021-06-22 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US11039620B2 (en) 2014-02-19 2021-06-22 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same

Also Published As

Publication number Publication date
JPH04305594A (en) 1992-10-28

Similar Documents

Publication Publication Date Title
Adamson et al. Fluorinated carbohydrates: Part III. 2-deoxy-2-fluoro-D-glucose and 2-deoxy-2-fluoro-D-mannose
US20050124563A1 (en) Triazole linked carbohydrates
US4709020A (en) Heptaose compounds and preparation thereof
JPH03175999A (en) Substrate for beta-galactosidase
Bridiau et al. One-pot stereoselective synthesis of β-N-aryl-glycosides by N-glycosylation of aromatic amines: application to the synthesis of tumor-associated carbohydrate antigen building blocks
JPH0541636B2 (en)
JPH026760B2 (en)
Tsou et al. Synthesis of Phenyl β-D-Glucopyruronoside1
Satomura et al. Synthesis of p-nitrophenyl 65-O-benzyl-α-maltopentaoside, a substrate for alpha amylases
KR880001565B1 (en) Process for preparation aminocyclitol derivatives
US4357326A (en) Multi-glucopyranosyl-fructofuranosyl-galactopyranosyl-glucopyranoside sulfate salts and methods of use
JPS6023120B2 (en) Method for producing adenosine-3',5'-cyclic phosphoric acid alkyl triester
JPH0655753B2 (en) Novel oligoglucoside derivative, measuring method and measuring reagent for α-amylase
US5254677A (en) β-galactosidase substrates for cedia
US4468385A (en) Poly-cation salts of 4-O-poly-hexaose-thio-alkylene sulfate derivatives and method of use
US4393055A (en) Hydroxyalkyl ether derivatives of rutin poly(H-)sulfate and method of use
JPH06179690A (en) Fucose derivative, its production, reagent for measuring alpha-l-fucosidase activity comprising the same as active ingredient and method of measuring alpha-l-fucosidase activity using the same
US4407796A (en) Modulators of the complement system
JP3029925B2 (en) Maltooligosaccharide derivatives and their production
JP3070709B2 (en) Method for producing maltooligosaccharide derivatives
JPS6323199B2 (en)
JPH05170785A (en) Manufacturing of oligosaccharide derivative
JP4115066B2 (en) Carbohydrate amidine derivatives
JPH02258794A (en) Glycoside capable of forming dyestuff and production thereof
CS236751B2 (en) Processing of substrates for determining of alpha-amylase