JPH0541579B2 - - Google Patents

Info

Publication number
JPH0541579B2
JPH0541579B2 JP58248025A JP24802583A JPH0541579B2 JP H0541579 B2 JPH0541579 B2 JP H0541579B2 JP 58248025 A JP58248025 A JP 58248025A JP 24802583 A JP24802583 A JP 24802583A JP H0541579 B2 JPH0541579 B2 JP H0541579B2
Authority
JP
Japan
Prior art keywords
calcination
zone
exhaust gas
calcining
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58248025A
Other languages
Japanese (ja)
Other versions
JPS60137857A (en
Inventor
Tetsuo Fujisawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP24802583A priority Critical patent/JPS60137857A/en
Publication of JPS60137857A publication Critical patent/JPS60137857A/en
Publication of JPH0541579B2 publication Critical patent/JPH0541579B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Furnace Details (AREA)

Description

【発明の詳細な説明】 本発明は、個別に燃料供給手段を配備した2段
の仮焼帯を用いてセメント原料粉末を仮焼する装
置における各仮焼帯へ供給する燃料の制御方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the fuel supplied to each calcining zone in an apparatus for calcining cement raw material powder using two stages of calcining zones provided with individual fuel supply means. It is.

セメント原料の焼成反応には、主として吸熱反
応である石灰石の仮焼(分解)反応と、発熱反応
であるセメントクリンカの生成反応とがあり、近
代的セメント原料粉末では、予熱装置と焼成炉と
の間に独立した燃料供給手段を備える仮焼装置を
配置し、セメント原料粉末を焼成炉に供給するに
先立ち、仮焼装置及び焼成炉からの排ガスを利用
して予熱装置内において浮遊状態で予熱した後仮
焼装置に導入し、当該仮焼装置に供給する燃料の
燃焼熱により仮焼反応の大部分をここで完了さ
せ、続いてこの仮焼された原料を同様に独立した
燃料供給手段を備えた焼成装置に供給して、ここ
で残余の仮焼反応とクリンカの生成反応を行わせ
るようにしている。
The firing reaction of cement raw materials mainly includes the calcining (decomposition) reaction of limestone, which is an endothermic reaction, and the cement clinker production reaction, which is an exothermic reaction. A calcination device equipped with an independent fuel supply means is arranged between the two, and before supplying the cement raw material powder to the calcination furnace, it is preheated in a floating state within the preheating device using the exhaust gas from the calcination device and the calcination furnace. The post-calciner is introduced into a post-calciner, where most of the calcination reaction is completed by the heat of combustion of the fuel supplied to the calcifier, and then this calcined raw material is similarly provided with an independent fuel supply means. The remaining calcination reaction and clinker production reaction are carried out here by supplying it to a calcination device.

このような仮焼装置付焼成方法は、供給燃料の
燃焼を仮焼装置と焼成炉の双方を分担させ、仮焼
装置では主として仮焼反応を、また焼成装置では
主としてセメントクリンカの生成反応を行わせる
ことにより、焼成装置の大型化に伴う問題点、例
えば焼成炉での熱負荷の増大による耐火物の短寿
命化等をなくし、同時に焼成装置内容積当たりの
生産量の飛躍的増大を図り、且つ長期に亘る安定
運転を可能とする等の点で、他の焼成方法に較べ
て優れた効果を発揮していることは周知の通りで
ある。
In such a firing method with a calcination device, the combustion of the supplied fuel is shared between the calcination device and the firing furnace, with the calcination device mainly performing the calcination reaction, and the calcination device mainly performing the cement clinker production reaction. By doing so, we are able to eliminate problems associated with larger firing equipment, such as the shortened lifespan of refractories due to increased heat load in the firing furnace, and at the same time dramatically increase the production volume per internal volume of the firing equipment. It is well known that this firing method is more effective than other firing methods in that it enables stable operation over a long period of time.

特に、個別に燃料供給手段を配備した2段の仮
焼帯により仮焼工程を多段式に構成し、原料粉末
をこれら2段の仮焼帯を順次経由させることによ
り、仮焼工程でのセメント原料粉末の仮焼反応を
比較的低温で且つより一層効果的に促進させる方
法は、焼成装置の生産性を更に高めることがで
き、更に焼成炉排ガスの一部又は全量を仮焼装置
及び予熱装置で利用せずに、バイパスして系外へ
排出する焼成方式に適用した場合に、バイパスガ
スによる熱損失を最小限にとどめることができる
等の特徴を備えている。
In particular, by configuring the calcination process in multiple stages with two stages of calcination zones each equipped with an individual fuel supply means, and passing the raw material powder through these two stages of calcination zones in sequence, cement A method of promoting the calcination reaction of raw material powder more effectively at a relatively low temperature can further increase the productivity of the calcination equipment, and furthermore, it is possible to further increase the productivity of the calcination equipment, and furthermore, it is possible to further increase the productivity of the calcination equipment, and furthermore, it is possible to further increase the productivity of the calcination equipment. When applied to a firing method in which the gas is bypassed and discharged to the outside of the system without being used in the gas, it has features such as being able to minimize heat loss due to the bypass gas.

第1図はこの様な従来例に係る多段式仮焼装置
を使用したセメントクリンカ製造設備を例示する
線図的系統図であり、図中熱ガスの流れを実線矢
印で、また原料粉末の流れを破線矢印で示す。装
置の概要は図に示すように予熱装置1、仮焼装置
2、焼成工程を司るロータリキルン等の焼成炉
3、及びクリンカ冷却装置4から成る。
Figure 1 is a diagrammatic system diagram illustrating a cement clinker production facility using such a conventional multi-stage calciner. is indicated by a dashed arrow. As shown in the figure, the apparatus consists of a preheating device 1, a calcination device 2, a sintering furnace 3 such as a rotary kiln that controls the sintering process, and a clinker cooling device 4.

予熱装置1はサイクロン等の粉末分離器C1
C3及びダクト6導より構成され、また仮焼装置
2はこの例では直列配置型であつて、熱ガスの流
れ方向に見て下流側の仮焼帯21と、上流側の仮
焼帯22との2段の仮焼帯を直列状に配置して構
成され、夫々の仮焼帯21,22は個別に燃料供
給装置7a,8aを備えた仮焼炉7,8及び当該
仮焼炉に付属した粉末分離器C4,C5等により構
成される。
The preheating device 1 is a powder separator C 1 such as a cyclone.
C 3 and a duct 6, and the calcination device 2 is of a series arrangement type in this example, with a calcination zone 21 on the downstream side and a calcination zone 22 on the upstream side as seen in the flow direction of hot gas. It is constructed by arranging two stages of calcination zones in series, and each calcination zone 21, 22 is connected to the calcination furnace 7, 8, which is individually equipped with a fuel supply device 7a, 8a, and the calcination furnace. Consists of attached powder separators C4 , C5 , etc.

原料投入シユート5から供給された原料粉末
は、予熱装置1を構成する各粉末分離器C1〜C3
を順次降下し、他方焼成炉3及び仮焼装置2から
の高温排ガスは誘引通風機13により吸引されて
予熱装置1内を上昇するから、ダクト6内及び粉
末分離器C1〜C3内にて原料粉末と高温ガスとの
熱交換及び分離が繰返される。予熱された原料粉
末は予熱装置1の最下段粉末分離器C3から仮焼
装置2を構成する下流側の1次仮焼炉7へ導入さ
れ、続いて粉末分離器C4を通して上流側の2次
仮焼炉8へ導入される。
The raw material powder supplied from the raw material input chute 5 is sent to each powder separator C 1 to C 3 that constitute the preheating device 1.
On the other hand, high-temperature exhaust gas from the calcination furnace 3 and the calcination device 2 is sucked by the induced draft fan 13 and rises inside the preheating device 1, so that it flows into the duct 6 and the powder separators C1 to C3. Heat exchange and separation between the raw material powder and the high-temperature gas is repeated. The preheated raw material powder is introduced from the lowermost powder separator C 3 of the preheating device 1 to the downstream primary calcination furnace 7 constituting the calcination device 2, and then passes through the powder separator C 4 to the upstream 2 It is introduced into the next calcining furnace 8.

一方2次仮焼炉8内では、冷却装置4より高温
空気導管10を通じて導入される高温の燃焼用空
気と、焼成炉3からの未だ酸素を含んだ排ガスと
が供給され、燃料供給装置8aから供給される燃
料により燃焼が起こり、更に1次仮焼炉7内で
も、2次仮焼炉8から粉末分離器C5を通じて未
だ酸素を十分に含んだ排ガスが供給され、燃料供
給装置7aから供給される燃料により燃焼が起こ
るので、前記原料粉末は上記燃料の燃焼熱と排ガ
スの保有する熱とを受けて1次仮焼帯21及び2
次仮焼帯22を順次通過する間に仮焼される。
On the other hand, inside the secondary calciner 8, high-temperature combustion air introduced from the cooling device 4 through the high-temperature air conduit 10 and exhaust gas still containing oxygen from the calciner 3 are supplied, and from the fuel supply device 8a. Combustion occurs due to the supplied fuel, and exhaust gas still containing sufficient oxygen is supplied from the secondary calciner 8 through the powder separator C5 in the primary calciner 7, and is supplied from the fuel supply device 7a. The raw material powder receives the combustion heat of the fuel and the heat possessed by the exhaust gas, and then burns in the primary calcining zones 21 and 2.
It is calcined while successively passing through the next calcining zone 22.

仮焼された原料粉末は粉末分離器C5から焼成
炉入口端覆9を通して焼成炉3に入り、焼成炉3
の出口端覆19に設置した燃料供給装置3aから
燃焼用1次空気と共に供給される燃料の燃焼熱に
より焼成炉3内で必要な熱処理を受けてクリンカ
に生成された後、クリンカ冷却装置4で冷却され
る。
The calcined raw material powder enters the calcining furnace 3 from the powder separator C 5 through the calcining furnace inlet cover 9, and enters the calcining furnace 3.
The combustion heat of the fuel supplied together with the primary air for combustion from the fuel supply device 3a installed at the outlet end cover 19 of the fuel is subjected to necessary heat treatment in the kiln 3 to form clinker, and then the clinker is produced in the clinker cooling device 4. cooled down.

尚、クリンカ冷却用の空気は押込送風機16に
よつて供給され、クリンカと熱交換を行つて昇温
した高温空気の一部は仮焼装置2及び焼成炉3へ
分配導入されるが、仮焼装置2への高温空気の一
部は必要に応じて第1図示のように高温空気分岐
導管10aを通して下流側の仮焼帯21へ短絡供
給しても良い。また、冷却装置4における余剰の
空気は誘引風機17によつて排出され、一方冷却
装置4から出たクリンカはコンベア18によつて
次工程へ搬出される。
Note that air for cooling the clinker is supplied by a forced air blower 16, and a part of the high-temperature air heated by exchanging heat with the clinker is distributed and introduced into the calcining device 2 and the calcining furnace 3. A part of the high-temperature air to the apparatus 2 may be short-circuited to the downstream calcining zone 21 through the high-temperature air branch conduit 10a as shown in the first figure, if necessary. Further, surplus air in the cooling device 4 is discharged by an induced air fan 17, while clinker discharged from the cooling device 4 is carried out to the next process by a conveyor 18.

第1図に示したような多段式の仮焼方法によれ
ば、熱ガスの流れ方向に見て、下流側の仮焼帯2
1において燃料及び原料粉末から発生する炭酸ガ
スは上流側の仮焼帯22へは流入せず、また上流
側の仮焼帯22には下流側の仮焼帯21とほぼ同
等のガス量が通過するので、上流側の仮焼帯22
ほど熱ガス中の炭酸ガス分圧を低減することがで
き、原料粉末の仮焼反応を比較的低温で効率良く
促進することができる。
According to the multi-stage calcination method as shown in FIG.
1, the carbon dioxide gas generated from the fuel and raw material powder does not flow into the upstream calcining zone 22, and approximately the same amount of gas passes through the upstream calcining zone 22 as in the downstream calcining zone 21. Therefore, the upstream calcining zone 22
The partial pressure of carbon dioxide gas in the hot gas can be reduced as much as possible, and the calcination reaction of the raw material powder can be efficiently promoted at a relatively low temperature.

この際、燃料供給装置7aから1次仮焼炉7へ
供給する燃料の量を多くする程、2次仮焼炉8へ
は仮焼度合の進行した原料粉末が供給され、従つ
て上流側の仮焼帯22において原料粉末から発生
する炭酸ガス量が減少すると同時に、燃料供給装
置8aから2次仮焼炉8へ供給する燃料の量が少
なくて済む為、燃料の燃焼によつて発生する炭酸
ガス量も減少し、その結果上流側の仮焼帯22に
おいては下流側の仮焼帯21と比べて熱ガス中の
炭酸ガス分圧を著しく低減することができ、原料
粉末の仮焼反応を一段と促進させる為に都合の良
い反応雰囲気を形成することができる。
At this time, the larger the amount of fuel supplied from the fuel supply device 7a to the primary calciner 7, the more highly calcined the raw material powder is supplied to the secondary calciner 8. At the same time, the amount of carbon dioxide generated from the raw material powder in the calcining zone 22 is reduced, and at the same time, the amount of fuel supplied from the fuel supply device 8a to the secondary calciner 8 is reduced, so that the amount of carbon dioxide generated by combustion of the fuel is reduced. The amount of gas also decreases, and as a result, the partial pressure of carbon dioxide gas in the hot gas can be significantly reduced in the upstream calcining zone 22 compared to the downstream calcining zone 21, which reduces the calcining reaction of the raw material powder. A favorable reaction atmosphere can be created to further accelerate the reaction.

然しながら、燃料供給装置7aから1次仮焼炉
7へ燃料を多く供給する結果、上述のように燃料
供給装置8aから2次仮焼炉8へ供給される燃料
の量が減るにも拘わらず、予熱装置1を経て誘引
通風機13により排出される排ガスの温度が上昇
し、多量の熱量が排出されるようになる為、仮焼
装置2で必要とする燃料消費量が全体として増加
するという欠点を伴う。
However, as a result of supplying a large amount of fuel from the fuel supply device 7a to the primary calciner 7, the amount of fuel supplied from the fuel supply device 8a to the secondary calciner 8 decreases as described above. The disadvantage is that the temperature of the exhaust gas discharged by the induced draft fan 13 after passing through the preheating device 1 rises, and a large amount of heat is discharged, resulting in an overall increase in the amount of fuel consumed by the calcination device 2. accompanied by.

本発明は上記欠点を解決し、複数の仮焼帯へ燃
料を供給するに当たつて、総合的に効率の良い燃
料配分を行うことのできる仮焼方法を提供するこ
とを目的とするものであり、その要旨とする処
が、セメント原料粉末を気体中で浮遊させること
により分散させた状態で予熱して個別に燃料供給
手段を配備した2段の仮焼帯を用いて仮焼した
後、一方の仮焼帯へその排ガスが導かれる焼成工
程へ排出するようにしたセメント原料粉末の多段
式仮焼方法において、上記仮焼帯の内の最終段仮
焼帯の排ガス中の炭酸ガス濃度を検出し、この最
終段仮焼帯の排ガス中の炭酸ガス濃度が焼成工程
を構成する焼成炉の排ガ中の酸素濃度を検出して
該酸素濃度の検出値から算出された焼成炉の排ガ
ス中の炭酸ガス濃度よりも低くならないように各
仮焼帯へ供給する燃料の量を制御する点にあるセ
メント原料粉末の多段式仮焼方法を提供するもの
である。
SUMMARY OF THE INVENTION The present invention aims to solve the above-mentioned drawbacks and provide a calcining method that can perform a comprehensively efficient fuel distribution when supplying fuel to a plurality of calcining zones. The gist of this is that after preheating cement raw material powder in a dispersed state by suspending it in a gas, and calcining it using a two-stage calcining zone each equipped with an individual fuel supply means, In a multi-stage calcination method for cement raw powder, in which the exhaust gas is discharged to the firing process where the exhaust gas is led to one of the calcination zones, the concentration of carbon dioxide in the exhaust gas in the final stage of the calcination zones is determined. The carbon dioxide concentration in the exhaust gas of this final stage calcining zone is calculated from the detected oxygen concentration by detecting the oxygen concentration in the exhaust gas of the firing furnace that constitutes the firing process. The present invention provides a multistage calcination method for cement raw material powder in which the amount of fuel supplied to each calcination zone is controlled so that the carbon dioxide concentration does not become lower than the carbon dioxide concentration.

続いて第2図以下の添付図面を参照しつつ、本
発明を具体化した実施例に付き説明し、本発明の
理解に供する。
Next, embodiments embodying the present invention will be described with reference to the accompanying drawings starting from FIG. 2 to provide an understanding of the present invention.

ここに第2図乃至第4図は夫々本発明を適用し
た第1乃至第3の実施例に係るセメントクリンカ
製造設備の線図的系統図である。
2 to 4 are diagrammatic system diagrams of cement clinker manufacturing equipment according to first to third embodiments to which the present invention is applied, respectively.

尚、第1図に示す従来例に使用した構成要素と
共通する要素には同一の符号を使用すると共にそ
の詳細な説明は省略する。
Note that the same reference numerals are used for elements common to those used in the conventional example shown in FIG. 1, and detailed explanation thereof will be omitted.

第2図に示すように2次仮焼帯22を構成する
粉末分離器C5と1次仮焼帯21を構成する仮焼
炉7とを接続するガス導管6′にガス分析器14
を付設して最終段仮焼帯である仮焼帯22の排ガ
スが含有する炭酸ガス濃度を検出すると共に、焼
成炉3の入口端覆9にもガス分析器15を付設し
て焼成工程から仮焼帯22へ供給される排ガスが
含有する酸素の濃度を検出する。更に上記ガス分
析器14で検出した2次仮焼帯22からの排ガス
中の炭酸ガス濃度が、上記ガス分析器15で検出
された酸素濃度の値から算出した焼成炉3からの
排ガス中の炭酸ガス濃度よりも低くならないよう
に、仮焼装置2へ供給する燃料の内、燃料供給装
置7aから1次仮焼炉7へ供給する燃料と、燃料
供給装置8aから2次仮焼炉8へ供給する燃料と
の配分を制御する。
As shown in FIG. 2, a gas analyzer 14 is connected to the gas conduit 6' connecting the powder separator C5 constituting the secondary calcining zone 22 and the calcining furnace 7 constituting the primary calcining zone 21.
A gas analyzer 15 is attached to the inlet cover 9 of the firing furnace 3 to detect the carbon dioxide concentration contained in the exhaust gas from the final stage calcining zone 22, and a gas analyzer 15 is also attached to the inlet cover 9 of the firing furnace 3 to detect the concentration of carbon dioxide gas contained in the exhaust gas from the final stage calcining zone 22. The concentration of oxygen contained in the exhaust gas supplied to the burning zone 22 is detected. Furthermore, the carbon dioxide concentration in the exhaust gas from the secondary calcining zone 22 detected by the gas analyzer 14 is equal to the carbon dioxide concentration in the exhaust gas from the calcining furnace 3 calculated from the oxygen concentration value detected by the gas analyzer 15. Of the fuel supplied to the calcination device 2, the fuel supplied from the fuel supply device 7a to the primary calcination furnace 7 and the fuel supplied from the fuel supply device 8a to the secondary calcination furnace 8 so as not to become lower than the gas concentration. control the fuel distribution.

このように焼成工程からの排ガス中の炭酸ガス
濃度を最終段仮焼帯22からの排ガス中の炭酸ガ
ス濃度より低くすることは、焼成炉3の入口端部
における原料粉末の再炭酸化反応を防止し、仮焼
装置2からの排ガス温度を低くして仮焼装置2で
消費する燃料を不必要に多くしないという点で効
果がある。
In this way, making the carbon dioxide concentration in the exhaust gas from the firing process lower than the carbon dioxide concentration in the exhaust gas from the final stage calcination zone 22 suppresses the recarbonation reaction of the raw material powder at the inlet end of the firing furnace 3. This is effective in that the temperature of the exhaust gas from the calcination device 2 is lowered and the amount of fuel consumed by the calcination device 2 is not increased unnecessarily.

上記の点について更に具体的に説明すると、最
終段仮焼帯22の粉末分離器C5から入口端覆9
を通して焼成炉3へ原料粉末が供給されるに当た
つて、焼成炉3を構成するロータリキルン3bの
回転部と固定部である入口端覆9との間のシール
部から漏入する大気に接触して原料粉末の温度は
若干低下するが、このような状態で原料粉末はロ
ータリキルン3bが高速で回転することによる転
動作用を受け、焼成炉3の入口端部3cにおいて
最終段仮焼帯22内の熱ガスよりも高い炭酸ガス
濃度をもつ熱ガスに接触する場合には、原料粉末
中の仮焼済み酸化カルシウムの一部と熱ガス中に
含まれる炭酸ガス成分とが再炭酸化反応を行い、
最終段仮焼帯22において折角高度に仮焼した原
料粉末の一部が再炭酸化されて炭酸カルシウムに
戻される為、焼成炉3内の出口端側に向けて原料
粉末が移動する過程において再びその仮焼反応を
行わなければならず、従つて余分な大きさをもつ
焼成炉を必要とすることになる。即ち、最終段仮
焼帯22における排ガス中の炭酸ガス分圧を過度
に低減しすぎて仮焼反応を進行させすぎてもその
割には効果に乏しく、このような不都合は最終段
仮焼帯22からの排ガス中の炭酸ガス分圧を、焼
成炉3からの排ガス中の炭酸ガス分圧よりも低く
ならない範囲にとどめることにより回避すること
ができる。このような操業状態を実現する為に、
燃料供給装置7aから1次仮焼炉7へ供給する燃
料の量を減少させれば、1次仮焼帯21から2次
仮焼帯22へ排出される原料粉末の仮焼の度合が
低下し、これに応じて燃料供給装置8aから2次
仮焼炉8へ供給する燃料の量を増加させる必要が
生じる為、仮焼帯22において燃料及び原料粉末
から発生する炭酸ガス量が増加して当該仮焼帯2
2における炭酸ガス分圧が上昇する。尚、冷却装
置4から高温空気導管10を通して仮焼装置2へ
供給される高温空気の一部を高温空気分岐導管1
0aにより1次仮焼帯21へ短絡して導入する場
合には、この短絡空気量に応じて2次仮焼帯22
内の熱ガスが含有する炭酸ガス濃度は高くなる。
To explain the above point more specifically, from the powder separator C 5 of the final stage calcining zone 22 to the inlet end cover 9
When the raw material powder is supplied to the firing furnace 3 through the rotary kiln 3, it comes into contact with the atmosphere leaking from the seal between the rotating part of the rotary kiln 3b that constitutes the firing furnace 3 and the inlet end cover 9, which is a fixed part. The temperature of the raw material powder decreases slightly, but in this state, the raw material powder is subjected to rotational action due to the high speed rotation of the rotary kiln 3b, and is transferred to the final stage calcining zone at the inlet end 3c of the firing furnace 3. When it comes into contact with a hot gas having a higher carbon dioxide concentration than the hot gas in the 22, a part of the calcined calcium oxide in the raw material powder and the carbon dioxide component contained in the hot gas undergo a recarbonation reaction. and
In the final stage calcination zone 22, a part of the raw material powder that has been calcined to a high degree is recarbonated and returned to calcium carbonate. The calcination reaction must be carried out, thus requiring a calcining furnace of extra size. That is, even if the partial pressure of carbon dioxide gas in the exhaust gas in the final stage calcination zone 22 is excessively reduced and the calcination reaction proceeds too much, the effect will be poor. This can be avoided by keeping the partial pressure of carbon dioxide in the exhaust gas from the firing furnace 3 within a range that does not become lower than the partial pressure of carbon dioxide in the exhaust gas from the firing furnace 3. In order to achieve this kind of operating condition,
If the amount of fuel supplied from the fuel supply device 7a to the primary calcination furnace 7 is reduced, the degree of calcination of the raw material powder discharged from the primary calcination zone 21 to the secondary calcination zone 22 will be reduced. In response to this, it becomes necessary to increase the amount of fuel supplied from the fuel supply device 8a to the secondary calcination furnace 8, so the amount of carbon dioxide gas generated from the fuel and raw material powder in the calcination zone 22 increases, causing the Calcining zone 2
The carbon dioxide partial pressure at 2 increases. Note that a part of the high-temperature air supplied from the cooling device 4 to the calcining device 2 through the high-temperature air conduit 10 is transferred to the high-temperature air branch conduit 1.
When the air is short-circuited and introduced into the primary calcining zone 21 by 0a, the secondary calcining zone 22 is
The concentration of carbon dioxide gas contained in the hot gas inside increases.

従つて最終段仮焼帯22の排ガスが含有する炭
酸ガス濃度を検出し、当該検出値が焼成炉排ガス
中の炭酸ガス濃度よりも低くならないように各仮
焼帯21,22へ供給する燃料の配分を制御する
ことにより、前述の如き焼成炉3の入口端部3c
における再炭酸化反応を防止することができ、焼
成炉3をその全長に亘つて有効に利用することが
できる。同時に、1次仮焼帯21へ配分する燃料
を減少させることにより1次仮焼帯21の粉末分
離器C4から予熱装置1へ導入する熱ガス温度が
低下し、ひいては予熱装置1からの排ガス温度が
低下する為、仮焼装置2で必要とする燃料消費量
が低減されることになり、セメント原料焼成装置
の熱経済性を高めることができる。
Therefore, the concentration of carbon dioxide gas contained in the exhaust gas of the final stage calcination zone 22 is detected, and the amount of fuel supplied to each calcination zone 21, 22 is adjusted so that the detected value does not become lower than the concentration of carbon dioxide gas in the combustion furnace exhaust gas. By controlling the distribution, the inlet end 3c of the firing furnace 3 as described above
It is possible to prevent the recarbonation reaction in the firing process, and the firing furnace 3 can be effectively utilized over its entire length. At the same time, by reducing the amount of fuel distributed to the primary calcining zone 21, the temperature of the hot gas introduced from the powder separator C4 of the primary calcining zone 21 to the preheating device 1 decreases, and as a result, the exhaust gas from the preheating device 1 decreases. Since the temperature is lowered, the amount of fuel consumed by the calcination device 2 is reduced, and the thermal economy of the cement raw material sintering device can be improved.

尚このような多段式の仮焼方法によれば、仮焼
装置2全体としての原料粉末の滞留時間が長くな
ると同時に、原料粉末が順次炭酸ガス分圧の低下
した仮焼帯21及び22を通過する為、仮焼装置
2内における原料粉末の仮焼反応が促進され、実
質的に仮焼反応が完了した原料粉末を焼成工程へ
排出することができる。
According to such a multi-stage calcination method, the residence time of the raw material powder in the calcination device 2 as a whole becomes longer, and at the same time, the raw material powder sequentially passes through the calcination zones 21 and 22 where the partial pressure of carbon dioxide gas is lowered. Therefore, the calcination reaction of the raw material powder in the calcination device 2 is promoted, and the raw material powder whose calcination reaction has been substantially completed can be discharged to the firing process.

次に上記実施例に適用した第2図に示すセメン
トクリンカ製造設備の場合について具体的数字に
基づき説明すると、燃料として重油を使用する場
合には、一般に焼成炉3の排ガス中の炭酸ガス濃
度は10〜20%程度(但し焼成炉での空気比によつ
てその数値は変動する)であり、焼成炉3への供
給燃料をセメントクリンカ製造設備全体に供給す
る燃料の20〜30%程度とし、仮焼装置2へ供給す
る燃料を残りの70〜80%程度とし、該70〜80%程
度の燃料を1次仮焼帯21と2次仮焼帯22に対
して(40〜70):(10〜30)の比(但し該比は1次
仮焼帯へ高温空気分岐導管10aを通して短絡供
給する空気量によつても多少変動する)程度に配
分することにより、2次仮焼帯22からの排ガス
中の炭酸ガス濃度が焼成炉3からの排ガス中の炭
酸ガス濃度と同程度又はこれよりも僅かに高くな
るように制御することができる。
Next, to explain the case of the cement clinker manufacturing equipment shown in FIG. 2 applied to the above embodiment based on specific numbers, when heavy oil is used as fuel, the carbon dioxide concentration in the exhaust gas of the kiln 3 is generally It is about 10 to 20% (however, the value varies depending on the air ratio in the kiln), and the fuel supplied to the kiln 3 is about 20 to 30% of the fuel supplied to the entire cement clinker manufacturing equipment. The remaining 70 to 80% of the fuel supplied to the calcination device 2 is supplied to the primary calcination zone 21 and the secondary calcination zone 22 (40 to 70): 10 to 30) (however, this ratio varies somewhat depending on the amount of air short-circuited and supplied through the high-temperature air branch pipe 10a to the primary calcining zone), from the secondary calcining zone 22. The carbon dioxide concentration in the exhaust gas from the firing furnace 3 can be controlled to be the same as or slightly higher than the carbon dioxide concentration in the exhaust gas from the firing furnace 3.

第3図及び第4図は、本発明を適用したセメン
トクリンカ製造設備の第2及び第3の実施例にお
ける線図的系統図であるが、これらの図におい
て、第1図及び第2図と同様な機能を有する部分
には同一の符号を付して説明する。
3 and 4 are diagrammatic system diagrams of second and third embodiments of cement clinker production equipment to which the present invention is applied; Parts having similar functions will be described with the same reference numerals.

第3図において仮焼装置2は、熱ガスの流れ方
向に見て下流側の1次仮焼帯23と上流側の2次
仮焼帯24との2段の仮焼帯から構成され、各仮
焼帯23,24には夫々燃料供給装置33a,3
4aを備えた仮焼炉33,34及び当該仮焼炉3
3,34に付属した粉末分離器C4,C5が配置さ
れる。このような構成になる仮焼装置2におい
て、2次仮焼帯24へは冷却装置4からの高温空
気が導入され、燃料供給装置34aから2次仮焼
炉34に供給される燃料を該炉34内で燃焼させ
るのに供せられる一方、焼成炉3からの排ガスは
ガス導管20を通して入口端覆9から仮焼炉33
へ直接導入するようになつている。
In FIG. 3, the calcination device 2 is composed of two stages of calcination zones: a primary calcination zone 23 on the downstream side and a secondary calcination zone 24 on the upstream side when viewed in the flow direction of hot gas. The calcining zones 23 and 24 are provided with fuel supply devices 33a and 3, respectively.
Calciner 33, 34 equipped with 4a and the calciner 3
Powder separators C 4 and C 5 attached to 3 and 34 are arranged. In the calcination device 2 having such a configuration, high-temperature air from the cooling device 4 is introduced into the secondary calcination zone 24, and the fuel supplied from the fuel supply device 34a to the secondary calcination furnace 34 is fed into the secondary calcination zone 24. 34 , while the exhaust gas from the calciner 3 is passed through the gas conduit 20 from the inlet end cover 9 to the calciner 33 .
It is now being introduced directly into

そして予熱装置1の粉末分離器C3からの原料
粉末は、必要に応じてガス導管20を介して或い
は直接的に1次仮焼炉33へ導入され、以下粉末
分離器C4、2次仮焼炉34、粉末分離器C5を順
に降下するが、最終段仮焼帯である2次仮焼帯2
4を構成する粉末分離器C5と1次仮焼炉33と
を接続するガス導管6′にガス分析器14を付設
して最終段仮焼帯24の排ガスが含有する炭酸ガ
ス濃度を検出すると共に、ガス導管20にもガス
分析器15を付設して焼成工程の排ガスが含有す
る酸素の濃度を検出してこれより炭酸ガス濃度を
算出し、最終段仮焼帯からの排ガス中の炭酸ガス
濃度が焼成工程からの排ガス中の炭酸ガス濃度よ
りも低くならないように、1次仮焼帯23と2次
仮焼帯24へ供給する燃料の配分を制御するのは
第2図の場合と同様である。しかし、本実施例に
よれば、焼成工程からの排ガスは最終段仮焼帯2
4を通過させないので最終段仮焼帯で処理する熱
ガス量が減少し、当該仮焼帯24を構成する機器
の設備費を低減することができる。
Then, the raw material powder from the powder separator C 3 of the preheating device 1 is introduced into the primary calcination furnace 33 via the gas pipe 20 or directly as required, and is subsequently transferred to the powder separator C 4 and the secondary calcination furnace 33 . The furnace 34 and the powder separator C5 are descended in order, and the final stage calcination zone is the secondary calcination zone 2.
A gas analyzer 14 is attached to the gas conduit 6' that connects the powder separator C 5 and the primary calcination furnace 33, which constitutes the powder separator C 4, and detects the concentration of carbon dioxide contained in the exhaust gas of the final stage calcination zone 24. At the same time, a gas analyzer 15 is also attached to the gas conduit 20 to detect the concentration of oxygen contained in the exhaust gas from the firing process, calculate the carbon dioxide concentration from this, and calculate the carbon dioxide concentration in the exhaust gas from the final stage calcining zone. The distribution of fuel supplied to the primary calcination zone 23 and the secondary calcination zone 24 is controlled in the same manner as in the case of FIG. 2 so that the concentration does not become lower than the concentration of carbon dioxide in the exhaust gas from the calcination process. It is. However, according to this embodiment, the exhaust gas from the firing process is transferred to the final stage calcining zone.
4 is not allowed to pass through, the amount of hot gas processed in the final stage calcining zone 24 is reduced, and the equipment cost of the equipment constituting the calcining zone 24 can be reduced.

次に第4図に示す本発明を適用したセメントク
リンカの第3の実施例に付いて説明すると、図に
示すように焼成炉3からの排ガスを使用する排ガ
ス系統1次仮焼帯25と、冷却装置4からの高温
空気による燃焼ガスを使用する燃焼ガス系統1次
仮焼帯26とを熱ガスの流れ方向に見て並列状に
配置すると共に、前記燃焼ガス系統1次仮焼帯2
6のガス上流側に2次仮焼帯27を配設したもの
であり、夫々の仮焼帯25,26,27は個別に
燃料供給装置35a,36a,37aを備えた仮
焼炉35,36,37及び当該仮焼炉に付属した
粉末分離器C14,C24,C25等により構成されると
共に、各1次仮焼帯25,26には夫々分離器
C11〜C13,C21〜C23等より構成される予熱装置1
1,12が接続される。
Next, a description will be given of a third embodiment of the cement clinker to which the present invention is applied, shown in FIG. 4. As shown in the figure, an exhaust gas system primary calcining zone 25 that uses exhaust gas from the kiln 3; The combustion gas system primary calcination zone 26 that uses combustion gas produced by high-temperature air from the cooling device 4 is arranged in parallel when viewed in the flow direction of hot gas, and the combustion gas system primary calcination zone 2
A secondary calcining zone 27 is disposed on the upstream side of the gas of No. 6, and each calcining zone 25, 26, 27 is a calcining furnace 35, 36 equipped with an individual fuel supply device 35a, 36a, 37a. , 37 and powder separators C 14 , C 24 , C 25 attached to the calcining furnace, and each primary calcining zone 25 and 26 has a separator, respectively.
Preheating device 1 composed of C 11 to C 13 , C 21 to C 23 , etc.
1 and 12 are connected.

そして各1次仮焼帯25,26から排出される
高温ガスを利用することにより予熱装置11,1
2において予熱された原料粉末は予熱装置11,
12の最下段粉末分離器C13,C23から夫々排ガス
系統1次仮焼帯25を構成する仮焼炉35及び燃
焼ガス系統1次仮焼帯26を構成する仮焼炉36
へ供給されて夫々別個に1次後焼され、続いて各
仮焼炉35,36に付属する粉末分離器C14,C24
から燃焼ガス系統に配置された2次仮焼帯27へ
共に供給されて2次仮焼された後、粉末分離器
C25及び入口端覆9を通して焼成炉3に供給され
る。
The preheating devices 11 and 1 are heated by using the high temperature gas discharged from each of the primary calcining zones 25 and 26.
The raw material powder preheated in step 2 is transferred to a preheating device 11,
A calcining furnace 35 constituting the exhaust gas system primary calcining zone 25 and a calcining furnace 36 constituting the combustion gas system primary calcining zone 26 from the 12 lowermost powder separators C 13 and C 23 respectively.
powder separators C 14 and C 24 attached to each calciner 35 and 36.
After being supplied to the secondary calcination zone 27 arranged in the combustion gas system and subjected to secondary calcination, the powder separator
It is supplied to the firing furnace 3 through the C 25 and the inlet end cover 9.

この際、最終段仮焼帯としての2次仮焼帯27
の排ガスが含有する炭酸ガス濃度をガス分析器1
4により検出し、この検出値が同様にガス分析器
15で検出した焼成工程からの排ガスの炭酸ガス
濃度よりも低くならないように、1次仮焼帯2
5,26と2次仮焼帯27へ供給する燃料の配分
を制御するのは前に説明したのと同様であるが、
本実施例によれば、排ガス系統1次仮焼帯25に
おける燃焼用空気を冷却装置4から焼成炉3を通
して導入するようになつているので、焼成炉3か
らの排ガス中の炭酸ガス濃度は10〜15%程度と低
く、これに伴つて1次仮焼帯25,26への燃料
配分量を増やし、逆に2次仮焼帯27への燃料配
分量を減らすことにより、2次仮焼帯27におけ
る炭酸ガス分圧を低く維持して操業する場合に
も、焼成炉3の入口端部における原料粉末の再炭
酸化反応を生じることがないので、2次仮焼帯2
7において炭酸ガス分圧の低い雰囲気ガス中でよ
り一層効率良く仮焼反応を促進することができ
る。
At this time, the secondary calcination zone 27 as the final stage calcination zone
Gas analyzer 1 measures the concentration of carbon dioxide contained in the exhaust gas.
4, and in order to prevent this detected value from becoming lower than the carbon dioxide concentration of the exhaust gas from the firing process similarly detected by the gas analyzer
Controlling the distribution of fuel supplied to 5, 26 and the secondary calcining zone 27 is the same as described above.
According to this embodiment, since the combustion air in the exhaust gas system primary calcination zone 25 is introduced from the cooling device 4 through the firing furnace 3, the carbon dioxide concentration in the exhaust gas from the firing furnace 3 is 10 The amount of fuel distributed to the primary calcination zones 25 and 26 is increased, and conversely, the amount of fuel distributed to the secondary calcination zone 27 is reduced. Even when operating with a low carbon dioxide gas partial pressure in the firing zone 27, the recarbonation reaction of the raw material powder at the inlet end of the calcining furnace 3 does not occur, so the secondary calcining zone 2
In step 7, the calcination reaction can be promoted more efficiently in an atmospheric gas with a low partial pressure of carbon dioxide gas.

尚以上の説明において最終段仮焼帯の排ガスが
含有する炭酸ガス濃度の替わりに最終段仮焼炉の
内部又は出口における排ガス中の炭酸ガス濃度を
検出たり、或いは最終段仮焼帯からの排ガス中の
炭酸ガス濃度を焼成工程からの排ガス中の炭酸ガ
ス濃度よりも実用上の支障を伴わない程度に僅か
に低くする等は本発明の趣旨に含まれるものであ
る。また本発明の技術的範囲は、上記の説明にの
み拘束されるものでなく、例えば予熱装置の構造
(サイクロン式、塔式)、その系列数、段数等に制
限されず、また各仮焼帯の構造(噴流層式、旋回
流式等)、配置(組込み型、別置型等)或いは各
仮焼帯で使用する燃料の種類(液体、固体、或い
は気体)、燃料供給手段の種類、形式、取り付け
位置等は自由に変更し得る。
In the above explanation, instead of the carbon dioxide concentration contained in the exhaust gas from the final stage calcination zone, the carbon dioxide concentration in the exhaust gas inside or at the outlet of the final stage calcination furnace is detected, or the exhaust gas from the final stage calcination zone is detected. It is within the spirit of the present invention to make the carbon dioxide concentration in the carbon dioxide gas slightly lower than the carbon dioxide concentration in the exhaust gas from the firing process to an extent that does not cause any practical problems. Further, the technical scope of the present invention is not limited only to the above explanation, and is not limited to, for example, the structure of the preheating device (cyclone type, tower type), the number of series, the number of stages, etc. structure (spouted bed type, swirling flow type, etc.), arrangement (built-in type, separate type, etc.), type of fuel used in each calcining zone (liquid, solid, or gas), type and format of fuel supply means, The mounting position etc. can be changed freely.

更に仮焼帯に適宜原料粉末の循環手段を設けた
り、焼成装置から排出する排ガスの脱硝手段を組
合せることも可能である。
Furthermore, it is also possible to provide appropriate means for circulating raw material powder in the calcining zone, or to combine means for denitrating the exhaust gas discharged from the calcining apparatus.

以上述べた通り本発明は、セメント原料粉末を
気体中で浮遊させることにより分散させた状態で
予熱して個別に燃料供給手段を配備した2段の仮
焼帯を用いて仮焼した後、一方の仮焼帯へその排
ガスが導かれる焼成工程へ排出するようにしたセ
メント原料粉末の多段式仮焼方法において、上記
仮焼帯の内の最終段仮焼帯の排ガス中の炭酸ガス
濃度を検出し、この最終段仮焼帯の排ガス中の炭
酸ガス濃度が焼成工程を構成する焼成炉の排ガ中
の酸素濃度を検出して該酸素濃度の検出値から算
出された焼成炉の排ガス中の炭酸ガス濃度よりも
低くならないように各仮焼帯へ供給する燃料の量
を制御することを特徴とするセメント原料粉末の
多段式仮焼方法であるから、焼成工程において原
料粉末の再炭酸化反応が生じるのを防止すること
ができ、更に、仮焼工程における燃料消費を節減
して効率良く原料の仮焼を行わせることができ
る。
As described above, the present invention involves preheating cement raw material powder in a dispersed state by suspending it in a gas, and calcining it using a two-stage calcining zone each equipped with an individual fuel supply means. In a multi-stage calcination method for cement raw powder, in which the exhaust gas is discharged to a firing process where the exhaust gas is led to a calcination zone, the concentration of carbon dioxide in the exhaust gas of the final stage of the calcination zones is detected. The carbon dioxide concentration in the exhaust gas of this final stage calcining zone is calculated from the detected oxygen concentration by detecting the oxygen concentration in the exhaust gas of the firing furnace that constitutes the firing process. This is a multi-stage calcination method for cement raw material powder, which is characterized by controlling the amount of fuel supplied to each calcination zone so that the concentration does not become lower than the carbon dioxide concentration, so that the recarbonation reaction of the raw material powder occurs in the firing process. In addition, the fuel consumption in the calcination process can be reduced and the raw material can be calcined efficiently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例に係るセメントクリンカ製造設
備の線図的系統図、第2図乃至第4図は本発明を
適用した第1乃至第3の実施例に係るセメントク
リンカ製造設備の線図的系統図である。 (符号の説明) 2…仮焼装置、3…焼成炉
(焼成工程)、7,8,33〜37…仮焼炉、7
a,8a,33a〜37a…燃料供給装置、1
4,15…ガス分析器、21,23,25,26
…1次仮焼帯、22,24,27…2次仮焼帯。
FIG. 1 is a diagrammatic system diagram of cement clinker manufacturing equipment according to a conventional example, and FIGS. 2 to 4 are diagrammatic diagrams of cement clinker manufacturing equipment according to first to third embodiments to which the present invention is applied. It is a system diagram. (Explanation of symbols) 2...Calcination device, 3...Calcination furnace (firing process), 7, 8, 33-37...Calcination furnace, 7
a, 8a, 33a to 37a...Fuel supply device, 1
4, 15...Gas analyzer, 21, 23, 25, 26
...Primary calcining zone, 22, 24, 27...Secondary calcining zone.

Claims (1)

【特許請求の範囲】[Claims] 1 セメント原料粉末を気体中で浮遊させること
により分散させた状態で予熱して個別に燃料供給
手段を配備した2段の仮焼帯を用いて仮焼した
後、一方の仮焼帯へその排ガスが導かれる焼成工
程へ排出するようにしたセメント原料粉末の多段
式仮焼方法において、上記仮焼帯の内の最終段仮
焼帯の排ガス中の炭酸ガス濃度を検出し、この最
終段仮焼帯の排ガス中の炭酸ガス濃度が焼成工程
を構成する焼成炉の排ガス中の酸素濃度を検出し
て該酸素濃度の検出値から算出された焼成炉の排
ガス中の炭酸ガス濃度よりも低くならないように
各仮焼帯へ供給する燃料の量を制御することを特
徴とするセメント原料粉末の多段式仮焼方法。
1 Cement raw material powder is suspended in a gas and dispersed, preheated and calcined using two stages of calcining zones each equipped with a fuel supply means, and then the exhaust gas is transferred to one of the calcining zones. In a multi-stage calcination method for cement raw material powder that is discharged to a calcination process in which the The concentration of carbon dioxide in the exhaust gas of the firing furnace is not lower than the concentration of carbon dioxide in the exhaust gas of the firing furnace, which is calculated from the detected oxygen concentration by detecting the oxygen concentration in the exhaust gas of the firing furnace that constitutes the firing process. A multi-stage calcination method for cement raw material powder, characterized in that the amount of fuel supplied to each calcination zone is controlled.
JP24802583A 1983-12-23 1983-12-23 Multi-step calcination for cement raw material powder Granted JPS60137857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24802583A JPS60137857A (en) 1983-12-23 1983-12-23 Multi-step calcination for cement raw material powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24802583A JPS60137857A (en) 1983-12-23 1983-12-23 Multi-step calcination for cement raw material powder

Publications (2)

Publication Number Publication Date
JPS60137857A JPS60137857A (en) 1985-07-22
JPH0541579B2 true JPH0541579B2 (en) 1993-06-23

Family

ID=17172081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24802583A Granted JPS60137857A (en) 1983-12-23 1983-12-23 Multi-step calcination for cement raw material powder

Country Status (1)

Country Link
JP (1) JPS60137857A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0822768B2 (en) * 1987-12-29 1996-03-06 三菱重工業株式会社 Cement baking equipment
WO2015133161A1 (en) * 2014-03-06 2015-09-11 太平洋エンジニアリング株式会社 Cement burning apparatus, and method for denitrating exhaust gas from cement kiln

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6051642A (en) * 1983-08-30 1985-03-23 株式会社神戸製鋼所 Cement raw material powder calcining process
JPS6096553A (en) * 1983-10-28 1985-05-30 株式会社神戸製鋼所 Method of baking cement raw material powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6051642A (en) * 1983-08-30 1985-03-23 株式会社神戸製鋼所 Cement raw material powder calcining process
JPS6096553A (en) * 1983-10-28 1985-05-30 株式会社神戸製鋼所 Method of baking cement raw material powder

Also Published As

Publication number Publication date
JPS60137857A (en) 1985-07-22

Similar Documents

Publication Publication Date Title
US4094626A (en) Apparatus for producing cement clinker
US3864075A (en) Apparatus for burning granular or pulverous material
US4381916A (en) Method and apparatus for roasting fine grained ores
US4289483A (en) Apparatus for the mutli-step calcination of cement-clinker
CS200177B2 (en) Method of and apparatus for perdorming at least partial calcination of preheated powdered raw material
US3986818A (en) Device for the thermal treatment of fine granular material with burning means with a heat exchanger system
CA1058864A (en) Apparatus for calcining raw material
US4299560A (en) Combustion control system for burning installation with calcining burner
RU2638059C2 (en) Method and device for producing cement clinker
US4249892A (en) Method and apparatus for the thermal treatment of pulverulent material particularly for the calcining of cement
US4260369A (en) Method of converting a rotary kiln cement making plant to a calcining furnace cement making plant
US3938949A (en) Method and apparatus for burning pulverulent materials
CA1097501A (en) Method of burning granular or pulverulent raw material and kiln plant therefor
US4366000A (en) Method and apparatus for preheating dry raw meal prior to introduction of the meal into a suspension cyclone preheater system supplying a rotary kiln
US4334860A (en) System and method for the heat treatment of fine grained materials
CN217330465U (en) System for utilize fluidized bed furnace and lime kiln tail gas to carry out charcoal material stoving
JPH0541579B2 (en)
US4431453A (en) Process and apparatus for producing hydraulic cement
US4204835A (en) Apparatus for treating solid particulate material
JPS5838374B2 (en) Calcination method and equipment for powder raw materials
US4416697A (en) Method for preheating cement clinker raw materials
US4416696A (en) Method for heat treating cement clinker raw materials
JPH0127983B2 (en)
JPS5854105B2 (en) Calcination method for cement raw materials
JPS5899150A (en) Powdery substance calcining device