【考案の詳細な説明】[Detailed explanation of the idea]
[産業上の利用分野]
本考案は寒冷期における海上等の事故及び災害
に備えて着用する耐寒救命作業衣用材に関するも
のである。
[従来の技術]
寒冷海域においては船舶の海難事故、海労作業
中の海中転落事故、或は飛行機の故障着水事故等
に備えて防水性・保温性素材よりなる救命衣が使
用されている。
[考案が解決しようとする問題点]
しかしながら従来の救命衣は素材の防水性と保
温性のみが重要視される結果、厚みの大きい嵩張
つたものになるという傾向があつた。その為着用
者の作業性が物理的に阻害される他、救命衣内部
と外界の空気の流通がほぼ完全に遮断され、人体
より排泄される汗や蒸気が衣服内に籠り衣服内の
湿度を高め不快感を招くという問題もあり作業能
率を低下させている。従つて救急作業現場到着前
から着用することが嫌われ、ともすれば救急作業
現場に到着してから着用されることがある。しか
し衣服としての着用性能から見ると迅速な着用が
困難であり、一刻を争う救急用途という面では重
大な欠陥となつている。また温湿度コントロール
性が悪いという上記欠点の為に長時間着用して救
急作業に当たるときの肉体疲労は極めて大きく救
急隊員本人の保安上にも問題があつた。
本考案は上記の様な事情に鑑みてなされたもの
であつて、放湿を促進すると同時に嵩高構成を採
用しなくとも放熱を防止することができる構成と
することにより着用時の作業性に悪影響が生じ
ず、また長時間(救急作業現場への到着前からを
含む)着用していても衣服と肌との間の湿度を低
く保ち、且つ保温性に優れ着用感が快適である耐
寒救命作業衣を得る為の衣料材の提供を目的とす
るものである。
[問題点を解決する為の手段]
本考案は少なくとも次に示すA層、B層及びC
層を含む積層構造を有し、A層を最外表面側に配
置すると共に、B層及びC層を、任意順序で任意
数積層したものであることを要旨とするものであ
る。
A層:透湿性、防水性及び難燃性を有する層
B層:繊維状活性炭を10重量%以上含有する繊
維層
C層:金属を含有する輻射熱遮断層
[作用]
本考案に係る衣料材を耐寒救命作業衣として使
用した場合においては、A層の防水機能により入
水時における着衣内部への水の侵入を防止し、B
層に含有される繊維状活性炭の吸湿機能及びA層
の透湿機能により、人体より排泄される汗や蒸気
を人体表面より積極的に除去すると共に速やかに
外界へ放出させ、しかもB層の保温機能とC層の
断熱機能により体温の放出を防止するものであ
る。
従つてA,B,C各層の配置順序はA層が最外
部に位置すれば足り、B層及びC層の配置順序は
任意であり、又B層及びC層の配置数も任意であ
る。この為例えば第1図a〜cに部分拡大断面図
で示す様に、A層に隣接してB層、更にB層に隣
接してC層を配置[第1図a]することができる
が、この場合のB層とC層の順序を逆にしてA
層、C層、B層の順に配置[第1図c]すること
もできる。更にA層、B層、C層、B層の順に配
置[第1図c]し、或はA層、C層、B層、C層
の順に配置(図示せず)する如く、B層、C層を
複数層交互に配置することもできる。更にこれら
の各層間或はこれらを挟んで他の機能を有する層
を挿入することは自由である。
A層は透湿性及び防水性を有するものであれば
よく、その種類によつて本考案が限定されるもの
ではないが特に好ましいものを例示するならば、
例えば高密度織物や或はポリウレタン湿式コーテ
イング、ポリウレタン・アクリル湿式コーテイン
グを施した織物、多孔質性テトラフルオロエチレ
ンフイルムをラミネートした織物等が例示され
る。尚本考案において透湿性とはJIS L−1099A
法において透湿度2000g/m2・24hr以上を目安と
し、また防水性とはJISL−1092A法において耐水
度100gf/cm2以上を目安とする。
A層は更に、事故時の火災から作業者等の身体
を保護するために難燃性を備えていることが必要
である。従つて例えば第2図に拡大断面図で示す
様に難燃性織物からなる基布1の内側面に透湿性
及び防水性の両方を満足するフイルム2を貼着し
たものをA層とすることもできる。この場合透湿
性と防水性の両方を満足するフイルム2としては
例えば多孔質性テトラフルオロエチレンフイル
ム、多孔質性ポリウレタンフイルム或は非多孔質
性ポリウレタンフイルム等が例示される。尚この
場合難燃性とはJIS K−7021において酸素指数26
以上を目安とする。
一方難燃性織物としては、素材自体が難燃性で
あるアラミド系繊維、ポリアミドイミド繊維、フ
エノールホルムアルデヒド繊維、ポリクラール繊
維、モダクリル繊維、難燃ポリノジツク繊維等の
単独或は混紡ないし交織織物、更には綿、羊毛等
の天然繊維からなる織物に難燃加工を施したもの
或はまた上記した素材自体が難燃性を有する繊維
と天然性との混紡若しくは交織織物に難燃加工を
施したもの等が例示される。
尚付着水が内部へ浸透することを防止し、防水
機能を十分なものとする目的でA層には撥水加工
を施すこともできる。
次にB層は繊維層であるが、本考案においてB
層に含まれる繊維状活性炭とは比表面積600〜
2500m2/gを目安とする。湿分の逃散効率及び保
温効率維持の見地から上記比表面積が範囲外のも
のは好ましくない。
またB層の部材は保温機能を有するものであ
り、その材質が本考案を限定するものではない
が、寒冷海域でも保温機能を十分に発揮すること
ができる衣料材という見地から繊維積層体が好ま
しい。
この様な繊維積層体は保温機能を十分なものと
する為に目付が少なくとも60g/m2以上であり、
且つその主要部を短繊維不織布状或はスパンボン
ド状として形成されたものが望ましい。
繊維積層体に用いられる繊維としては例えば
綿、羊毛等の天然繊維、ビスコースレーヨン、銅
安人絹、アセテート等の再生繊維素繊維及びポリ
エステル。ポリオレフイン、ポリアミド、アクリ
ロニトリル等の合成繊維を用いることができる
が、高保温性を発揮させるためには、繊維径の小
さい繊維を用いることが好ましい。
B層は更に繊維状活性炭を含有することが必要
である。繊維状活性炭は衣服内の汗や蒸気を吸湿
し、所定量以上吸湿するとA層を経て低湿度側で
ある衣服外に放湿するものであり吸放湿材として
作用する。B層における繊維状活性炭の含有量が
10%未満であると、発汗量が多いときには吸湿が
不十分となり衣服内の湿度が上昇するので繊維状
活性炭の含有量は10%以上であることが必要であ
り、25%以上であればより好ましい。尚発汗量が
急激に増加した場合でも的確な吸湿機能を発揮さ
せ衣服内の湿度を低く保つためには、繊維状活性
炭は40%RHと80%RHにおける水分吸着量の比
が2.5以上であり且つ80%RHにおける水分吸着量
が30重量%以上であるものを用いることが望まし
い。
この様な吸湿能を有する繊維状活性炭は、その
素材、製法が限定されるものではないが、例えば
綿、麻、セルロース再生繊維、ポリビニルアルコ
ール繊維、アクリル系繊維、アラミド系繊維、架
橋ホルムアルデヒド繊維、リグニン繊維、フエノ
ール系繊維、石油ピツチ繊維等の原料繊維を、必
要に応じて適当な耐炎化剤を含有させた後、400
℃以下の温度で耐炎化処理を施し、次に500℃以
上1000℃以下の温度で炭化賦活する方法によつて
製造される。原料繊維としては得られる繊維状活
性炭の物性(強度等)の高いこと、高い吸着性能
が付与されることの2点から再生セルロール繊
維、フエノール系繊維、アクリル系繊維が好まし
い。賦活処理は例えば水蒸気、二酸化炭素等の賦
活ガスを10〜70容量%含有した状態で、700℃以
上に加熱することにより行なうことができる。こ
の場合原料繊維を炭化賦活した後、布帛状に形成
することもできるが、布帛状例えば織物、不織布
状等にしてから炭化賦活するのが作業能率上より
好ましい。賦活の温度、時間、賦活ガス濃度を適
当に選ぶことによつて比表面積600〜2500m2/g
の活性度を有する繊維状活性炭が得られる。
B層に繊維状活性炭を含有させるには、繊維状
活性炭をほぐして繊維積層体内に混入させ或はほ
ぐした短繊維状活性炭をレーヨン等の短繊維と混
ぜて不織布とし、繊維積層体と複合化してもよい
が、例えば第3図aに示す様に繊維積層体3の内
側に繊維状活性炭4を配設するか、或はまた第3
図bに示す様に繊維状活性炭4を繊維積層体3,
3の間に挿入してもよい。
この様に繊維状活性炭を含有せしめたB層の積
層形成方法としては、ニードルパンチの様に接着
剤を用いないボンド方式や接着剤を用いるボンド
方式を使用することができる。
次にC層は、身体から発せられる輻射熱線の放
熱を遮断することにより保温性を確保するもので
あつて、これにより体温が奪取されることを防止
する機能をもつものである。
従つて、断熱部材としては例えば布帛に金属層
その他の断熱素材を形成したものでもよい。尚こ
の場合の輻射熱遮断性の範囲はASTM D1518恒
温法において、試料の四辺の端部を断熱材で保持
し、試料を熱板の上方9mmの所に設置して測定し
たときのクロー値が0.3以上であることが望まし
い。又金属層の透湿手段として金属層に小孔を開
ける方法がある。しかし好ましくは蒸着、スパツ
タリング等により布組織の間隙をつめることなく
繊維表面層のみに金属層を形成するか、或は樹脂
を媒介したコーテイングにより形成するのが望ま
しい。
断熱材に布帛を用いる場合、布帛は汗や蒸気を
内層材側に円滑に移行させるために織物或は編物
であることが好ましく、例えばポエステル繊維か
らなる平織物を用いることができる。
以上述べたA層、B層、及びC層は放湿効果を
高める意味で各々が密着した積層材として形成さ
れるが積層する手段としてはキルテイングやミシ
ン掛けを行なつてもよく、或は接着を行なつても
よいし、縫製時に縫い合わせても良い。接着の場
合、活性炭に悪影響を及ぼすことなく、また活性
炭表面の細孔を皮覆して吸着機能を低下させるこ
とが少ない理由で、ホツトメルト系接着樹脂を薄
く粗密度の不織布状とした不織布状ホツトメルト
接着剤を用いて加熱加圧接着したり、A層及びB
層布帛の接着面に、溶融したホツトメルト樹脂を
点状に付着させるドツト加工を施した後、三層を
重ね合せて加熱加圧接着するのが好ましい。また
ミシン掛け等の縫製部は防水性を保つために防水
性テープでシールすることが望ましい。
[実施例]
実施例 1
第4図に拡大断面図で示す様にA層の内側にB
層を配設し、該B層の内側にC層を配設した複合
積層体を得た。
尚A層はアラミド繊維物とし透湿・防水性ポリ
ウレタンフイルム2を接着剤を用いて接着するこ
とにより形成し、B層はセルロース系繊維織物を
焼成した後、賦活して得た40%RHにおける水分
吸着量10重量%,80%RHにおける水分吸着量53
重量%、目付40g/m2の繊維状活性炭織物(東洋
紡績株式会社製)4の両側に目付100g/m2のポ
リエステル不織布状積層体3を配し、それぞれの
境界面に接着剤(5g/m2)を点状に配して接着
形成した。このときB層における繊維状活性炭織
物4の含有率は16%である。
またC層はポリエステル平織物5にアルミニウ
ム6を蒸着することにより形成した。
実施例 2
A層及びC層の構成・材質は実施例1のものと
同じとし、一方B層は繊維状活性炭を目付90g/
m2として配置させた以外は実施例1の場合と材
質・構成は同じとし、実施例1より繊維状活性炭
の厚みが増加した部分についてはポリエステル積
層体を減少して複合積層体を形成した。このとき
B層における繊維状活性炭織物4の含有率は30%
である。
[比較例]
比較例はいずれも実施例1,2と同じくA層の
内側にB層を、B層の更に内側にC層を配設する
構成[第1図a]とした。
比較例 1
A層及びC層の構成・材質は実施例1,2のも
のと同じとし、B層は繊維状活性炭を使用するこ
となくポリエステル不織布積層体のみで形成し、
また実施例より繊維状活性炭の厚みが減少した部
分についてはポリエステル不織布を増加した。
比較例 2
A層及びC層の構成・材質は実施例1,2のも
のと同じとし、一方B層は繊維状活性炭を目付
15g/m2として付着させた以外は実施例1の場合
と材質・構成は同じとし、実施例1より繊維状活
性炭の厚みが減少した部分についてはポリエステ
ル積層体を増加して複合積層体を形成した。この
ときB層における繊維状活性炭の含有率は6%で
あつた。
比較例 3
A層及びB層の構成は実施例1のものと同じと
し、一方C層には断熱材を使用せずポリエステル
平織物のみを使用し複合積層体を形成した。
実施例1,2と比較例1及び2の衣料材を衣服
内気候シミユレーシヨン装置(特願昭56−119586
号参照)を用いてテストを行なつた。テスト条件
は20℃,65%RH、模擬皮膚温度35℃とし、耐寒
救命作業衣を着用した状態を想定してテストし
た。テスト結果は第1表に示す通りであつた。
[Field of Industrial Application] The present invention relates to materials for cold-resistant life-saving work clothes to be worn in preparation for accidents and disasters at sea during the cold season. [Prior art] Life jackets made of waterproof and heat-retaining materials are used in cold sea areas in case of marine accidents involving ships, falls into the sea during maritime work, or accidents where airplanes break down and land on water. . [Problems to be solved by the invention] However, conventional life jackets have tended to be thick and bulky because only the waterproof and heat-retaining properties of the material are important. This not only physically impedes the wearer's work efficiency, but also almost completely blocks the flow of air between the inside of the life jacket and the outside world, causing sweat and steam excreted by the human body to get trapped inside the clothing, reducing the humidity inside the clothing. There is also the problem that the height increases and causes discomfort, which reduces work efficiency. Therefore, it is discouraged to wear it before arriving at the emergency work site, and it may be worn after arriving at the emergency work site. However, in terms of wearability as clothing, it is difficult to put on quickly, which is a serious drawback in emergency applications where time is of the essence. In addition, due to the above-mentioned disadvantage of poor temperature and humidity control, the physical fatigue caused by wearing them for long periods of time and performing emergency work was extremely high, which also created a safety problem for the emergency personnel themselves. The present invention was developed in view of the above-mentioned circumstances, and by creating a structure that promotes moisture release and at the same time prevents heat release without having to adopt a bulky structure, work efficiency when worn is adversely affected. Cold-resistant lifesaving work that does not cause cold weather, maintains low humidity between clothing and skin even when worn for long periods of time (including before arriving at the emergency work site), and has excellent heat retention and is comfortable to wear. The purpose is to provide clothing materials for obtaining clothing. [Means for solving the problem] The present invention includes at least the following A layer, B layer and C layer.
It has a laminated structure including layers, with the A layer disposed on the outermost surface side, and the B layer and the C layer laminated in any number in any order. Layer A: A layer having moisture permeability, waterproofness, and flame retardancy Layer B: A fibrous layer containing 10% by weight or more of fibrous activated carbon Layer C: A radiant heat blocking layer containing metal [Function] The clothing material according to the present invention When used as cold-resistant lifesaving work clothes, the waterproof function of layer A prevents water from entering the clothing when entering the water, and layer B
Due to the moisture absorption function of the fibrous activated carbon contained in the layer and the moisture permeability function of the A layer, sweat and steam excreted from the human body are actively removed from the human body surface and quickly released to the outside world, while the B layer retains heat. This function and the insulation function of the C layer prevent the release of body heat. Therefore, the order in which the layers A, B, and C are arranged is such that the A layer is located at the outermost position, the order in which the B and C layers are arranged is arbitrary, and the number of the B and C layers is also arbitrary. For this reason, for example, as shown in partially enlarged cross-sectional views in FIGS. 1a to 1c, layer B can be placed adjacent to layer A, and layer C can be placed adjacent to layer B [FIG. 1a]. , in this case, by reversing the order of B layer and C layer, A
It is also possible to arrange the layer, C layer, and B layer in this order [FIG. 1c]. Further, layer A, layer B, layer C, and layer B are arranged in this order [Fig. It is also possible to alternately arrange a plurality of C layers. Furthermore, layers having other functions may be freely inserted between or sandwiched between these layers. The A layer may have moisture permeability and waterproofness, and the present invention is not limited by its type, but particularly preferred examples include:
Examples include high-density fabrics, fabrics coated with polyurethane wet coating, fabrics coated with polyurethane/acrylic wet coating, fabrics laminated with porous tetrafluoroethylene film, and the like. In this invention, moisture permeability is defined by JIS L-1099A.
According to the JISL-1092A method, the standard for moisture permeability is 2000g/ m2・24hr or more, and the standard for waterproofness is 100gf/cm2 or more according to the JISL-1092A method. The A layer also needs to be flame retardant in order to protect the bodies of workers and others from fire in the event of an accident. Therefore, for example, as shown in the enlarged cross-sectional view in FIG. 2, layer A is made by pasting a film 2 that satisfies both moisture permeability and waterproofness on the inner surface of a base fabric 1 made of flame-retardant fabric. You can also do it. In this case, examples of the film 2 that satisfies both moisture permeability and waterproofness include porous tetrafluoroethylene film, porous polyurethane film, and non-porous polyurethane film. In this case, flame retardancy is defined as oxygen index 26 in JIS K-7021.
Use the above as a guide. On the other hand, flame-retardant fabrics include single or blended or interwoven fabrics made of aramid fibers, polyamide-imide fibers, phenol formaldehyde fibers, polyclar fibers, modacrylic fibers, and flame-retardant polynosic fibers, which are themselves flame-retardant. Fabrics made of natural fibers such as cotton and wool that have been treated with flame retardant treatment, or those that have been treated with flame retardant treatment on blended or interwoven fabrics of the above-mentioned materials that are themselves flame retardant and natural fibers. is exemplified. In addition, the A layer may be treated with a water-repellent finish in order to prevent adhering water from penetrating into the interior and to provide sufficient waterproof function. Next, layer B is a fiber layer, but in this invention, layer B is a fiber layer.
The fibrous activated carbon contained in the layer has a specific surface area of 600~
The standard is 2500m 2 /g. From the viewpoint of moisture dissipation efficiency and heat retention efficiency maintenance, those having specific surface areas outside the above range are not preferred. Furthermore, the member of layer B has a heat-retaining function, and although its material does not limit the present invention, a fiber laminate is preferable from the viewpoint of a clothing material that can sufficiently exhibit its heat-retaining function even in cold sea areas. . Such fiber laminates have a basis weight of at least 60 g/m 2 or more in order to have sufficient heat retention function.
In addition, it is preferable that the main part thereof be formed in the form of short fiber nonwoven fabric or spunbond fabric. Examples of fibers used in the fiber laminate include natural fibers such as cotton and wool, regenerated cellulose fibers such as viscose rayon, ammonium silk, and acetate, and polyester. Synthetic fibers such as polyolefin, polyamide, acrylonitrile, etc. can be used, but in order to exhibit high heat retention, it is preferable to use fibers with a small fiber diameter. The B layer must further contain fibrous activated carbon. Fibrous activated carbon absorbs sweat and steam within clothing, and when it absorbs more than a predetermined amount of moisture, it releases the moisture to the outside of the clothing, which is the low humidity side, through layer A, and acts as a moisture absorbing/releasing material. The content of fibrous activated carbon in layer B is
If it is less than 10%, when there is a lot of sweating, moisture absorption will be insufficient and the humidity inside the clothes will increase. Therefore, the content of fibrous activated carbon must be 10% or more, and if it is 25% or more, it is better. preferable. In order to exhibit accurate moisture absorption function and keep the humidity inside clothes low even when the amount of perspiration increases rapidly, fibrous activated carbon must have a moisture absorption ratio of 2.5 or more at 40% RH and 80% RH. In addition, it is desirable to use a material whose moisture adsorption amount at 80% RH is 30% by weight or more. Fibrous activated carbon having such moisture absorption ability is not limited in its material or manufacturing method, but includes, for example, cotton, hemp, regenerated cellulose fiber, polyvinyl alcohol fiber, acrylic fiber, aramid fiber, crosslinked formaldehyde fiber, Raw material fibers such as lignin fibers, phenolic fibers, and petroleum pitch fibers are treated with 400% flame retardant, if necessary.
It is manufactured by a method of flameproofing treatment at a temperature of 500°C or lower and then carbonization activation at a temperature of 500°C or higher and 1000°C or lower. As the raw material fibers, recycled cellulose fibers, phenolic fibers, and acrylic fibers are preferred because the obtained fibrous activated carbon has high physical properties (such as strength) and high adsorption performance is imparted. The activation treatment can be carried out, for example, by heating to 700° C. or higher in a state containing 10 to 70% by volume of an activation gas such as water vapor or carbon dioxide. In this case, the raw material fibers can be carbonized and then formed into a fabric, but it is preferable from the viewpoint of work efficiency to form the fiber into a fabric, such as a woven fabric or a non-woven fabric, and then carbonize it. By appropriately selecting the activation temperature, time, and activation gas concentration, the specific surface area can be increased from 600 to 2500 m 2 /g.
A fibrous activated carbon having an activity of . In order to contain fibrous activated carbon in layer B, the fibrous activated carbon is loosened and mixed into the fiber laminate, or the loosened short fibrous activated carbon is mixed with short fibers such as rayon to form a nonwoven fabric, and the fiber laminate is composited. However, for example, as shown in FIG.
As shown in Figure b, fibrous activated carbon 4 is applied to the fiber laminate 3,
It may be inserted between 3. As a method for forming layer B containing fibrous activated carbon in this way, a bonding method that does not use an adhesive such as needle punching or a bonding method that uses an adhesive can be used. Next, the C layer secures heat retention by blocking the radiation of radiant heat rays emitted from the body, and has the function of preventing body heat from being taken away. Therefore, the heat insulating member may be, for example, a fabric with a metal layer or other heat insulating material formed thereon. In this case, the range of radiant heat shielding property is determined by the ASTM D1518 constant temperature method, and the Claw value is 0.3 when measured by holding the four edges of the sample with heat insulating material and placing the sample 9 mm above the hot plate. The above is desirable. There is also a method of making small holes in the metal layer as a means for permeating the metal layer. However, it is preferable to form the metal layer only on the fiber surface layer by vapor deposition, sputtering, etc. without closing the gaps in the fabric structure, or by coating with a resin. When a fabric is used as the heat insulating material, the fabric is preferably a woven or knitted fabric in order to smoothly transfer sweat and steam to the inner layer material, and for example, a plain woven fabric made of polyester fibers can be used. The above-mentioned layers A, B, and C are formed as laminated materials in close contact with each other in order to enhance the moisture dissipation effect, but they may be laminated by quilting, sewing, or adhesion. You may do this, or you may sew them together at the time of sewing. In the case of adhesives, we use non-woven hot melt adhesives made from hot melt adhesive resin in the form of thin, coarse-density non-woven fabrics because they do not have a negative effect on the activated carbon and do not cover the pores on the surface of the activated carbon and reduce the adsorption function. The A layer and B layer may be bonded under heat and pressure using an adhesive.
It is preferable to perform a dot process in which molten hot melt resin is applied in dots to the adhesive surface of the layered fabric, and then to superpose the three layers and bond them under heat and pressure. In addition, it is desirable to seal the sewing parts such as sewing machine hooks with waterproof tape to maintain waterproofness. [Example] Example 1 As shown in the enlarged sectional view in Fig. 4, B is placed inside the A layer.
A composite laminate was obtained in which the layers were arranged and the C layer was arranged inside the B layer. The A layer is made of aramid fibers and is formed by bonding the moisture-permeable/waterproof polyurethane film 2 with an adhesive, and the B layer is made of aramid fiber material at 40% RH obtained by firing and then activating the cellulose fiber fabric. Moisture adsorption amount at 10% by weight and 80%RH 53
A polyester nonwoven fabric laminate 3 with a basis weight of 100 g/m 2 is arranged on both sides of a fibrous activated carbon fabric (manufactured by Toyobo Co., Ltd.) 4 with a basis weight of 40 g/m 2 , and an adhesive (5 g/m 2 ) is placed on each interface. m 2 ) were arranged in dots and adhesively formed. At this time, the content of the fibrous activated carbon fabric 4 in layer B is 16%. Moreover, the C layer was formed by vapor-depositing aluminum 6 on the polyester plain fabric 5. Example 2 The composition and materials of layer A and layer C were the same as those of example 1, while layer B was made of fibrous activated carbon with a basis weight of 90 g/
The materials and configuration were the same as in Example 1 except that the fibrous activated carbon was arranged as m 2 , and the polyester laminate was reduced in the area where the fibrous activated carbon was thicker than in Example 1 to form a composite laminate. At this time, the content of the fibrous activated carbon fabric 4 in layer B is 30%.
It is. [Comparative Example] In each of the comparative examples, as in Examples 1 and 2, the B layer was disposed inside the A layer, and the C layer was disposed further inside the B layer [FIG. 1a]. Comparative Example 1 The composition and materials of layer A and layer C were the same as those of Examples 1 and 2, and layer B was formed only from a polyester nonwoven fabric laminate without using fibrous activated carbon.
Furthermore, in the areas where the thickness of the fibrous activated carbon was reduced from the example, the amount of polyester nonwoven fabric was increased. Comparative Example 2 The structure and material of layer A and layer C were the same as those of Examples 1 and 2, while layer B was made of fibrous activated carbon with a basis weight of
The materials and composition were the same as in Example 1 except that it was deposited at 15 g/m 2 , and in the areas where the thickness of the fibrous activated carbon was reduced compared to Example 1, the polyester laminate was increased to form a composite laminate. did. At this time, the content of fibrous activated carbon in layer B was 6%. Comparative Example 3 The configurations of layer A and layer B were the same as those in Example 1, while for layer C, no heat insulating material was used and only polyester plain fabric was used to form a composite laminate. The clothing materials of Examples 1 and 2 and Comparative Examples 1 and 2 were processed using a clothing climate simulation device (Japanese Patent Application No. 119586/1986).
(see issue). The test conditions were 20℃, 65% RH, and a simulated skin temperature of 35℃, and the test was conducted assuming that the person was wearing cold-resistant lifesaving work clothes. The test results were as shown in Table 1.
【表】
テスト結果から明らかな様に実施例は快適な衣
服内湿度といわれている50±10%RHの範囲を保
持しているが、比較例1及び2はいずれもその範
囲を外れるものであつた。
次に実施例1及び比較例3の衣料材をASTM
−D1518保温性試験機を用いてテストした。テス
ト結果は第2表に示す通りであつた。[Table] As is clear from the test results, the example maintains a range of 50 ± 10% RH, which is said to be the comfortable humidity inside clothes, but both comparative examples 1 and 2 fall outside that range. It was hot. Next, the clothing materials of Example 1 and Comparative Example 3 were
-Tested using D1518 heat retention tester. The test results were as shown in Table 2.
【表】
テスト結果から明らかな様に実施例1は比較例
3より保温力が10%向上した。
尚本明細書では海上作業・災害用の衣料材を例
として説明したが、その利用分野はこれらに限定
されるものではなく、寒冷時の救命衣・通常の作
業衣・運転衣としても使用できるのであり、また
山岳用その他の分野においても救命衣・作業衣と
して利用できるものであることはいうまでもな
い。
[考案の効果]
本考案は以上の様に構成されるため平常時に着
用したままで作業・運転を行なつても衣服と肌の
間を低湿度に保つことができるので着用感が快適
であり、しかも断熱材と保温材の保温効果により
寒冷期における救命衣としても優れた性能を有
し、海難事故遭遇時の保命率も高い衣料材が得ら
れるものである。[Table] As is clear from the test results, the heat retention ability of Example 1 was improved by 10% compared to Comparative Example 3. In this specification, clothing materials for maritime work and disasters have been explained as an example, but the fields of use are not limited to these, and can also be used as life jackets in cold weather, normal work clothes, and driving clothes. Needless to say, it can also be used as a life jacket and work clothing in mountaineering and other fields. [Effects of the invention] Since the invention is constructed as described above, it is possible to keep the humidity between the clothes and the skin at a low level even when working or driving while wearing it during normal times, making it comfortable to wear. Moreover, due to the heat retention effect of the heat insulating material and the heat insulating material, it is possible to obtain a clothing material that has excellent performance as a life jacket in cold seasons and has a high survival rate in the event of a marine accident.
【図面の簡単な説明】[Brief explanation of the drawing]
第1〜4図はいずれも部分拡大断面図であつ
て、第1図a,b,cはいずれも本考案の耐寒救
命作業衣用材の構成例を示す図、第2図はA層の
構成例を示す図、第3図a,bはいずれもB層の
構成例を示す図、第4図は実施例を示す図であ
る。
A……透湿性、防水性、難燃性層、B……繊維
層、C……輻射熱遮断層、1……基布、2……透
湿・防水性フイルム、3……繊維積層体、4……
繊維状活性炭、5……布帛(ポリエステル平織
物)、6……金属層(アルミニウム)。
Figures 1 to 4 are all partially enlarged sectional views, Figures 1a, b, and c are views showing an example of the structure of the cold-resistant lifesaving work clothing material of the present invention, and Figure 2 is the structure of the A layer. FIGS. 3A and 3B are diagrams showing an example of the structure of the B layer, and FIG. 4 is a diagram showing an example. A... Moisture permeable, waterproof, flame retardant layer, B... Fiber layer, C... Radiant heat blocking layer, 1... Base fabric, 2... Moisture permeable/waterproof film, 3... Fiber laminate, 4...
Fibrous activated carbon, 5...Fabric (polyester plain weave), 6...Metal layer (aluminum).