JPH054093A - Treatment of organic polluted waste water - Google Patents

Treatment of organic polluted waste water

Info

Publication number
JPH054093A
JPH054093A JP3181821A JP18182191A JPH054093A JP H054093 A JPH054093 A JP H054093A JP 3181821 A JP3181821 A JP 3181821A JP 18182191 A JP18182191 A JP 18182191A JP H054093 A JPH054093 A JP H054093A
Authority
JP
Japan
Prior art keywords
sludge
copolymer
bed
biological
waste water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3181821A
Other languages
Japanese (ja)
Inventor
Zenichiro Hamada
善一郎 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TSUTSUMI SEISAKUSHO KK
Original Assignee
TSUTSUMI SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TSUTSUMI SEISAKUSHO KK filed Critical TSUTSUMI SEISAKUSHO KK
Priority to JP3181821A priority Critical patent/JPH054093A/en
Publication of JPH054093A publication Critical patent/JPH054093A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To improve the efficiency in purifying an org. polluted waste water by using the fine powder of a copolymer of acrylonitrile and vinyl acetate or a body coated with the powder as the biological adsorption carrier or bed. CONSTITUTION:The org. polluted waste water in a raw waste water tank 2 is transferred to an aeration tank 1 and brought into contact with the biological adsorption carrier or bed by aeration and agitation, and the microbes are adsorbed and removed from the waste water. In this case, the fine powder of a copolymer of acrylonitrile and vinyl acetate or a body coated with the powder, the random-shaped lump of the fiber consisting of the copolymer or the cut materials of the nonwoven fabric consisting of the fiber are used as the biological adsorption carrier or bed. Consequently, biological sludge is adsorbed on the fine powder of the copolymer to reduce the dispersed sludge, biological flocculation is excellently carried out at the final stage of the aeration tank, and the compactness of the settled sludge is enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、有機汚濁廃水から微生
物を吸着して浄化する吸着坦体又は吸着床として好適に
用いることのできる物質に関するものであり、換言すれ
ば、淨化に関与する微生物を固定して従来用いられたこ
とのない生物吸着坦体、吸着床による有機汚濁廃水の浄
化処理方法に係わるものである。
TECHNICAL FIELD The present invention relates to a substance which can be suitably used as an adsorption carrier or an adsorption bed for adsorbing and purifying microorganisms from organic polluted wastewater, in other words, microorganisms involved in purification. The present invention relates to a method for purifying an organic polluted wastewater using a biological adsorption carrier and an adsorption bed, which have not been used in the past.

【0002】[0002]

【従来の技術】有機汚濁廃水を生物学的に処理する場合
に、浄化に関与する微生物を固定して処理する方法とし
ては散水ろ床法、浸漬ろ床法、回転円板法などの生物膜
法が良く知られている。また微生物の着生する床を固定
せず微生物粒状体に着生させる方法としては、曝気攪流
によって有機汚濁廃水と接触させて処理する移動床や浮
遊型の流動床方式の処理方法がある。
BACKGROUND ART When biologically treating organic polluted wastewater, biofilms such as a sprinkling filter method, a dipping filter method and a rotating disk method are used as a method for fixing and treating microorganisms involved in purification. The law is well known. Further, as a method for allowing the microbial granules to grow without fixing the bed on which the microorganisms grow, there are a moving bed and a floating fluidized bed treatment method in which the microorganisms are brought into contact with the organic polluted wastewater for treatment.

【0003】ところで、有機汚濁廃水の活性汚泥法での
最終段階は、沈澱槽における処理水と生物性汚泥との固
液分離である。したがって曝気槽の最終段階の汚泥混合
液の沈降特性は、活性汚泥曝気槽内での生物学的浄化の
進行を評価する指標となる。
By the way, the final stage of the activated sludge method of organic polluted wastewater is solid-liquid separation of treated water and biological sludge in a settling tank. Therefore, the sedimentation characteristics of the sludge mixed liquid at the final stage of the aeration tank are an index for evaluating the progress of biological purification in the activated sludge aeration tank.

【0004】この評価方法を説明すると下記の通りであ
る。曝気槽最終段階での汚泥混合液を目盛円筒管に入れ
て静置すると静置直後2〜3分間に生物性汚泥は、生物
性凝集を示しフロックを形成して干渉沈降して一様な速
度で沈降する。この層沈降は、汚泥濃度が臨界濃度を越
えた境界面に達するまでは一定値を保ち、沈積した汚泥
層の高さが増加するにつれて沈降する汚泥は下層を圧縮
し始め沈降速度は減少し、下部に沈降した汚泥を圧密す
る。この沈降汚泥層の静置30分後の沈降汚泥層の容積
(%)を読み取る。この静置30分後の沈降汚泥の容積
がSV30である。
The evaluation method will be described below. When the sludge mixture at the final stage of the aeration tank is put in a graduated cylindrical tube and allowed to stand, the biological sludge shows biological coagulation within 2 to 3 minutes immediately after standing and forms flocs to cause interference sedimentation, resulting in uniform velocity. Settle at. This layer sedimentation keeps a constant value until the sludge concentration reaches the boundary surface exceeding the critical concentration, and as the height of the deposited sludge layer increases, the sludge that settles begins to compress the lower layer and the sedimentation velocity decreases, Consolidate sludge settling at the bottom. The volume (%) of the sedimented sludge layer after 30 minutes of standing is read. The volume of sedimented sludge after 30 minutes of standing is SV30.

【0005】このSV30を測定してのち汚泥混合液を
濾過して100℃以下で乾燥して、汚泥重量を求めてM
LSSmg/l で表示し、このMLSSとSV30とから
次式によって汚泥容量指数SVIを計算するのである。 SVI(ml)=(SV30×10000)/MLSS(mg/l ) このSVIは汚泥を沈降させた場合、汚泥1gの占める
容積をmlで示したものであり、その値は小さいほど良く
通常50〜100の範囲内にあることが好ましいもので
ある。
After measuring this SV30, the sludge mixture is filtered and dried at 100 ° C. or below, and the sludge weight is calculated to obtain M
It is expressed in LSS mg / l, and the sludge volume index SVI is calculated from this MLSS and SV30 by the following formula. SVI (ml) = (SV30 × 10000) / MLSS (mg / l) This SVI shows the volume occupied by 1 g of sludge in ml when the sludge is allowed to settle. It is preferably within the range of 100.

【0006】しかしながら、従来における実用化設備で
の活性汚泥法においてはこのSVIは100〜120の
範囲にあるが、汚泥沈降特性の測定の結果、汚泥沈降速
度が遅く汚泥に圧密性がなく上澄液の部分が少ない場合
は、SVIは200以上となり、汚泥が膨化した現象す
なわち一般にバルキングと呼ばれる状態にあることを示
し、固液分離が困難となって最終沈澱槽のオーバーフロ
ー水中に汚泥が流出することが起こるのである。
However, in the conventional activated sludge method in practical equipment, the SVI is in the range of 100 to 120, but as a result of measuring the sludge sedimentation characteristics, the sludge sedimentation speed is slow and the sludge is not compacted and is supernatant. When the amount of liquid is small, the SVI is 200 or more, indicating that the sludge has expanded, that is, in a state generally called bulking, and solid-liquid separation becomes difficult, and sludge flows out into the overflow water of the final settling tank. Things happen.

【0007】このような場合に強制的に汚泥を凝集させ
てSVIを下げるために、曝気槽に塩化鉄、硫酸鉄、硫
酸アルミニウム、ポリ塩化アルミニウムや高分子凝集剤
を添加する方法がある。しかし、これらの凝集剤を添加
した活性汚泥法は処理対象の廃水中に含有するリン除去
を目的としているが、一方これらの薬剤は原生動物や微
小生物をも殺滅するため、これら微小生物の役割として
考察される汚泥の減量化や処理水の向上などが期待でき
ず、汚泥中にアルミニウム、鉄などの金属が蓄積し、汚
泥の発生量が増大し、鉄塩添加の場合、処理水が着色す
るなどの問題がある。
In such a case, there is a method of adding iron chloride, iron sulfate, aluminum sulfate, polyaluminum chloride or a polymer coagulant to the aeration tank in order to forcibly coagulate the sludge and lower the SVI. However, the activated sludge method with the addition of these flocculants aims to remove phosphorus contained in the wastewater to be treated, while these agents also kill protozoa and microbes, so these The reduction of sludge considered as a role and improvement of treated water cannot be expected, and metals such as aluminum and iron accumulate in the sludge, increasing the amount of sludge generated. There are problems such as coloring.

【0008】[0008]

【発明が解決しようとする課題】本発明は、有機汚濁廃
水処理において生物吸着坦体若しくは生物吸着床として
極めて有効に用いることのできる物質を提供し、例えば
前記の活性汚泥法における曝気槽にこの物質を添加する
ことによって汚泥の沈降特性を向上させSVI値をきわ
めて効果的に下げることができるなど、非常に有用な有
機汚濁廃水の処理方法を開発しようとするものである。
DISCLOSURE OF THE INVENTION The present invention provides a substance which can be used very effectively as a biosorbent carrier or a biosorbent bed in the treatment of organic polluted wastewater, for example, in the aeration tank in the above-mentioned activated sludge method. It is intended to develop a very useful method for treating organic polluted wastewater, for example, by adding substances, sludge settling characteristics can be improved and SVI value can be lowered very effectively.

【0009】[0009]

【課題を解決するための手段】本発明者は、アクリロニ
トリルと酢酸ビニルの共重合ポリマーからアクリル繊維
を製造する工程において、その廃水の散水ろ床−活性汚
泥法併用の二段処理の際に、この共重合物ポリマーが微
生物に対して非常にすぐれた吸着機能を有することを見
い出し、上記の目的を達成するためにこのアクリロニト
リル・酢酸ビニル共重合体を利用することを検討したの
である。その結果、この共重合ポリマーが有機汚濁廃水
の浄化に関与する微生物の吸着坦体として他のいずれの
生物吸着坦体よりもすぐれた吸着機能を有することを知
り、本発明に到達したのである。
Means for Solving the Problems In the process of producing an acrylic fiber from a copolymer of acrylonitrile and vinyl acetate, the present inventor, in the two-stage treatment of the sprinkling filter of the waste water and the activated sludge method, It was found that this copolymer polymer has a very excellent adsorption function for microorganisms, and the utilization of this acrylonitrile-vinyl acetate copolymer was studied in order to achieve the above object. As a result, they arrived at the present invention by knowing that this copolymer has an adsorption function superior to any other biological adsorption carrier as an adsorption carrier for microorganisms involved in purification of organic polluted wastewater.

【0010】すなわち本発明は、アクリロニトリルと酢
酸ビニルとの共重合ポリマーの微粉末や塗布体、前記共
重合ポリマーからなる繊維のランダム塊状物、または前
記繊維からなる不織布の切断物を、生物吸着坦体若しく
は生物吸着床として用いることを特徴とする有機汚濁廃
水の処理方法、を要旨とするものである。
That is, according to the present invention, a fine powder or a coated body of a copolymer of acrylonitrile and vinyl acetate, a random agglomerate of fibers made of the copolymer, or a cut product of a nonwoven fabric made of the fibers is used as a bioadsorption carrier. A method of treating organic polluted wastewater, which is characterized by being used as a body or a biological adsorption bed.

【0011】アクリロニトリルと酢酸ビニルとの共重合
反応によって得られる共重合ポリマーを水洗する場合、
その洗浄水中に僅かにこの共重合ポリマーが含有される
のである。この水中の共重合ポリマーを顕微鏡で観察す
ると微細な楕円球状になっていることが認められる。こ
の共重合ポリマーを含有した廃水を散水ろ床−活性汚泥
法併用の二段処理法で処理した後の散水ろ床生物膜を顕
微鏡で観察すると、上記の楕円球状のポリマーに細菌が
吸着して凝結されている状態が確認されたのである。
When the copolymer obtained by the copolymerization reaction of acrylonitrile and vinyl acetate is washed with water,
Only a small amount of this copolymer is contained in the wash water. When the copolymerized polymer in water is observed with a microscope, it is recognized that it has a fine ellipsoidal shape. When observing the sprinkling filter biofilm after treating the wastewater containing this copolymer by a two-stage treatment method using a sprinkling filter-activated sludge method together with bacteria, bacteria are adsorbed to the above elliptic spherical polymer. The condensed state was confirmed.

【0012】また、この散水ろ床からの流下水を受ける
曝気槽内の活性汚泥を構成する微生物中にも、この共重
合ポリマーの楕円球状が生物を吸着してフロックを形成
しているのが顕微鏡下で観察されたのである。これらの
結果からこのアクリロニトリル・酢酸ビニル共重合ポリ
マーは非常にすぐれた微生物吸着性能を有することが判
断され、この特性を利用した技術は、従来全く存在せ
ず、この共重合ポリマーを廃水浄化に利用することは新
規かつ有用な利用法と考えられたのである。
[0012] In addition, in the microorganisms constituting the activated sludge in the aeration tank that receives the water flowing down from the sprinkling filter, the oval spheres of the copolymerized polymer adsorb organisms to form flocs. It was observed under a microscope. Based on these results, it was determined that this acrylonitrile-vinyl acetate copolymer has excellent microbial adsorption performance, and no technology utilizing this characteristic has existed at all in the past, and this copolymer was used for wastewater purification. It was considered to be a new and useful usage.

【0013】何故、この共重合ポリマーがすぐれた微生
物吸着性能を有するかについて考察すると下記の如き理
由があげられる。すなわちアクリロニトリルと酢酸ビニ
ルとの共重合ポリマーの微粉末は、その界面において微
生物と相互間の吸着に関し電気化学的な吸着で重要な場
を提供するのである。つまり、この共重合ポリマーを溶
融紡糸して得られるアクリル繊維はカチオン染料によっ
て染色されることからこの共重合ポリマーの表面は水中
で負(−)に荷電しており、一方、微生物の体表電荷は
大抵の場合(pHが酸性)は陽(+)に荷電しており、
両者は相互に電気化学的に吸着するのである。
Considering why this copolymer has excellent microbial adsorption performance, the following reasons can be given. That is, the fine powder of a copolymer of acrylonitrile and vinyl acetate provides an important field for electrochemical adsorption at the interface with respect to adsorption between microorganisms and each other. That is, since the acrylic fiber obtained by melt spinning this copolymer is dyed with a cationic dye, the surface of this copolymer is negatively charged in water, while the surface charge of the microorganism is Is usually positively (+) charged (pH acidic),
Both are electrochemically adsorbed to each other.

【0014】微生物の体表は、そのカルボキシル基、リ
ン酸基、アミノ基などの電離によりpHの変化によって
電離状態が変化し、pHが低い酸性側では陽(+)に荷
電し、pHが高いアルカリ側では負(−)に荷電するの
である。細菌には元来、陽(+)に荷電しているグラム
陽性細菌や負(−)に荷電しているグラム陰性細菌もあ
るが、大抵の場合、上記の如くpHによって荷電が変化
し、吸着に関しては生物吸着床に吸着した生物相互間に
おける電気化学的吸着が観察されるのである。
On the surface of the body of the microorganism, the ionization state changes due to the change in pH due to the ionization of its carboxyl group, phosphate group, amino group, etc., and it is positively (+) charged on the acidic side where the pH is low, and the pH is high. It is negatively (−) charged on the alkaline side. Bacteria originally include positive (+)-charged Gram-positive bacteria and negative (-)-charged Gram-negative bacteria, but in most cases, the charge changes with pH as described above and adsorption With respect to, the electrochemical adsorption between the organisms adsorbed on the biosorbent bed is observed.

【0015】活性汚泥法における曝気槽に、アクリロニ
トリル・酢酸ビニル共重合物の微粉末の懸濁液を、その
微粉末量が50mg/l 前後の添加量となる様に添加して
曝気することによって、生物性汚泥がこの共重合物微粉
末に吸着され分散汚泥は減少し、曝気槽最終段階での生
物性凝集は向上し、沈降汚泥の圧密性は高くなり良好な
沈降特性を示すのである。この吸着現象は最終沈澱槽よ
り引抜き、曝気槽に返送、曝気の繰返しを行なっても吸
着が離散することはなく、安定な吸着を示したのであ
る。なお、この共重合ポリマーの添加量は汚泥の状態に
よっても異なるが、前記の50mg/l 程度が好適である
と判断され、あまり少ないと沈降特性への効果は低い
し、添加量が多すぎても所定以上の効果の向上は得られ
ないのである。
A suspension of fine powder of acrylonitrile / vinyl acetate copolymer is added to the aeration tank in the activated sludge method so that the amount of the fine powder is about 50 mg / l and aeration is carried out. The biological sludge is adsorbed on the fine powder of the copolymer, the amount of the dispersed sludge is reduced, the biological flocculation in the final stage of the aeration tank is improved, and the compaction property of the sedimentation sludge is increased, and the sedimentation sludge exhibits good sedimentation characteristics. This adsorption phenomenon showed stable adsorption without being separated even if the adsorption was repeated after drawing out from the final settling tank, returning to the aeration tank, and repeating aeration. Although the amount of the copolymerized polymer added varies depending on the state of sludge, it is determined that the above-mentioned 50 mg / l is suitable, and if it is too small, the effect on the sedimentation property is low and the amount added is too large. However, it is not possible to obtain an effect higher than a predetermined value.

【0016】次に、アクリロニトリル・酢酸ビニル共重
合ポリマーを溶融紡糸して得られるアクリル繊維も、水
中における表面荷電が負(−)であるため、微生物を電
気化学的に吸着し、有機汚濁廃水の生物吸着坦体或は生
物吸着床として用いることができるものである。この場
合、このアクリル繊維をランダム塊状物にして用いる
か、又はこのアクリル繊維で不織布を作りこれを小さく
切断した不織布切断物として用いることが適切である。
Next, the acrylic fiber obtained by melt-spinning the acrylonitrile / vinyl acetate copolymer also has a negative (-) surface charge in water, and therefore, it is capable of electrochemically adsorbing microorganisms and the organic polluted wastewater. It can be used as a biosorbent carrier or a biosorbent bed. In this case, it is appropriate to use this acrylic fiber in a random lump form or use it as a nonwoven fabric cut product obtained by making a nonwoven fabric from this acrylic fiber and cutting it into small pieces.

【0017】例えば、アクリル繊維のランダム塊状物に
より吸着床を作成して、この吸着床により有機汚濁廃水
の浄化を行なうと生物性汚泥がこの吸着床にきわめて効
果的に吸着され廃水の浄化が達成されるのである。この
アクリル繊維で作られたランダム塊状物からなる生物吸
着床は、生物吸着床同志が曝気の際の攪流によって接触
しても吸着微生物は細分化されず、生物性凝集が阻害さ
れる欠点は全くないのである。
For example, if an adsorbent bed is made of random lumps of acrylic fibers and the adsorbent bed is used to purify the organic polluted wastewater, biological sludge is adsorbed to the adsorbent bed very effectively and the wastewater is purified. Is done. The biosorbent bed consisting of random lumps made of acrylic fiber has the drawback that the adsorbed microorganisms are not subdivided even when the biosorbent beds come into contact with each other by agitation during aeration, and biological aggregation is inhibited. There is no.

【0018】つまり、従来において用いられているアン
スラサイト、高炉スラグなどの吸着床では、吸着した付
着生物が曝気の際に接触摩擦されて細分化され、固液分
離の際に微生物の凝集が妨害され、沈澱槽で処理水が白
濁して透視度が低下するなどの問題点があったが、上記
のアクリル繊維による塊状物はそのような現象は全く起
こらないのである。
That is, in the conventionally used adsorption beds such as anthracite and blast furnace slag, the adhering organisms adsorbed are rubbed into contact with each other during aeration to be subdivided and the aggregation of microorganisms is disturbed during solid-liquid separation. However, there is a problem that the treated water becomes cloudy in the sedimentation tank and the transparency is lowered, but such a phenomenon does not occur at all in the lumps of acrylic fibers.

【0019】また富栄養化する閉鎖静止池において、池
水を循環濾過する場合にも、本発明におけるアクリル繊
維のランダム塊状物を使用して浄化することにより、池
水に浮遊する微細な藻類を除去することができるのであ
る。通常、池水を循環濾過する場合、工業用水の濾過に
広く利用されている圧力式急速濾過機が用いられている
が、池水中に浮遊する種々の藻類や微生物が濾材上に集
められて付着生活するため、種々なる障害が発生するの
である。しかし、例えば脈動吸着床方式の生物濾過装置
に、本発明におけるアクリル繊維のランダム塊状物を充
填して運転すれば、その生物吸着床に藻類や微生物が捕
捉され、単に物理的な捕捉だけではなく、生物吸着床に
おける極限の生活環境での生活代謝によって生物学的な
浄化が進行して、池水の浄化は確実に行なわれるのであ
る。
Also, in the case of circulating and filtering pond water in a closed static pond that is eutrophication, fine algae floating in the pond water are removed by purifying by using the random lumps of acrylic fibers in the present invention. You can do it. Normally, when circulating and filtering pond water, a pressure-type rapid filter, which is widely used for filtering industrial water, is used, but various algae and microorganisms floating in pond water are collected on the filter medium and adhere Therefore, various obstacles occur. However, for example, a pulsating adsorbent bed type biological filtration device is filled with a random lump of acrylic fibers in the present invention and operated, algae and microorganisms are trapped in the biological adsorbent bed, and not only physical trapping is performed. , Biological purification proceeds due to the living metabolism in the living environment in the bioadsorption bed, and the purification of pond water is surely performed.

【0020】本発明におけるアクリロニトリル・酢酸ビ
ニル共重合ポリマーは、微粉末、繊維のランダム塊状
物、又は不織布の切断物として用いることができる外
に、この共重合ポリマーを溶剤に溶解して適当な固形物
に塗布しても生物吸着床として応用し得るものである。
要は、この共重合ポリマーが表面積の大きい状態で、吸
着坦体又は吸着床として使用されその表面電荷が負
(−)に荷電していれば良く、電気化学的な吸着によっ
て有機汚濁廃水中の微生物を固定捕捉し浄化するのであ
る。
The acrylonitrile-vinyl acetate copolymer of the present invention can be used as a fine powder, a random lump of fibers, or a cut product of a non-woven fabric, and the copolymer is dissolved in a solvent to obtain a suitable solid. It can be applied as a biological adsorption bed even when applied to an object.
The point is that this copolymer is used as an adsorption carrier or adsorption bed in the state of having a large surface area and its surface charge is negatively (-) charged, and it is possible to obtain a negative charge in the organic polluted wastewater by electrochemical adsorption. The microorganisms are fixed and captured and purified.

【0021】[0021]

【実施例1】曝気槽最終段階における沈降特性の測定に
より、SV30=68%、MLSS=2590mg/l 、
SVI=268ml、なる数値を示す膨化傾向にある汚泥
を実験用に使用した。この汚泥を顕微鏡観察したとこ
ろ、放線菌が観察され、糸状菌のスフエロチルスが僅か
に観察されたが、その発生量から糸状菌によるバルキン
グとは考えられず放線菌に原因するものと考察された。
その他真菌類、毛虫類、輪虫類なども僅かに観察され
た。
Example 1 SV30 = 68%, MLSS = 2590 mg / l, by measuring sedimentation characteristics at the final stage of the aeration tank,
Swelling sludge showing a value of SVI = 268 ml was used for the experiment. When the sludge was observed under a microscope, actinomycetes were observed, and a small amount of filamentous fungus, spherochylus, was observed. However, it was considered that the sludge caused by actinomycetes was not considered to be bulking due to the filamentous fungus, based on the amount generated.
A few other fungi, caterpillars, rotifers, etc. were also observed.

【0022】この膨化傾向にある汚泥に対して、図1に
示した様な曝気装置において、添加位置(s)から曝気
槽(1)内にアクリロニトリル・酢酸ビニル共重合ポリ
マーの微粉末懸濁液を、微粉末濃度50mg/l に達する
まで添加し運転を続けた。なお、曝気槽(1)に添加し
た共重合ポリマーは汚泥構成生物の吸着担体として作用
するもので、曝気槽(1)内の濃度が一定量に達した場
合はその後は添加する必要はない。
With respect to this sludge which tends to expand, in the aeration apparatus as shown in FIG. 1, a fine powder suspension of acrylonitrile / vinyl acetate copolymer is placed in the aeration tank (1) from the addition position (s). Was added until the fine powder concentration reached 50 mg / l, and the operation was continued. The copolymerized polymer added to the aeration tank (1) acts as an adsorption carrier for the sludge-constituting organisms, and when the concentration in the aeration tank (1) reaches a certain amount, it is not necessary to add it thereafter.

【0023】上記共重合ポリマー微粉末の添加完了後、
曝気槽(1)内での曝気時間を4時間として実験を完了
した。この汚泥混合液の沈降特性を測定したところ、S
V30=32%、MLSS=3500mg/l、SVI=
91.4mlという値が得られ、SVIは処理前の値と比
べて大きく減少しており、沈澱槽(3)における固液分
離能は大幅に向上したのである。
After completion of the addition of the fine powder of copolymerized polymer,
The experiment was completed by setting the aeration time in the aeration tank (1) to 4 hours. When the sedimentation characteristics of this sludge mixture were measured, S
V30 = 32%, MLSS = 3500 mg / l, SVI =
A value of 91.4 ml was obtained, the SVI was greatly reduced compared to the value before treatment, and the solid-liquid separation ability in the precipitation tank (3) was greatly improved.

【0024】[0024]

【実施例2】アクリロニトリル・酢酸ビニル共重合ポリ
マーから溶融紡糸して得られたアクリル繊維を用いて、
1個の容積約1cm3 で重さ約0.2gのランダム塊状物
を多数製造した。生物汚泥濃度2g/l の汚泥液を、こ
の汚泥液に対して上記のランダム塊状物が30個/l と
なる割合で使用した吸着床を予め作成しておいた曝気槽
に投入した。
Example 2 Using acrylic fibers obtained by melt spinning from an acrylonitrile / vinyl acetate copolymer,
A large number of random agglomerates having a volume of about 1 cm 3 and a weight of about 0.2 g were produced. A sludge liquid having a biological sludge concentration of 2 g / l was used in an aeration tank in which an adsorbent bed was previously prepared in which the sludge liquid was used at a ratio of 30 pieces / l of the above random agglomerates.

【0025】ついで、下方より曝気を行ない6時間運転
したところ、生物類はこの吸着床に完全に吸着された。
またこのアクリル繊維によるランダム塊状物は曝気の際
の撹流によって相互に接触しても全く細分化されず生物
性凝集が阻害される欠点も見られなかった。
Next, when aeration was performed from below and the system was operated for 6 hours, the organisms were completely adsorbed on this adsorption bed.
Moreover, the random lumps of acrylic fibers were not subdivided at all even when they contacted each other by agitation during aeration, and there was no defect that biological aggregation was inhibited.

【0026】[0026]

【実施例3】図2に示した脈動流動床方式の池水浄化装
置における処理槽(4)のセラミックろ材(5)の上
に、実施例2と同様にして作成したアクリル繊維のラン
ダム塊状物よりなるアクリル生物吸着床(6)を積層し
て、富栄養化の進行した池水を送水した。バルブの切替
えにより通水・逆洗の操作を繰返しながら浄化したとこ
ろ、処理水受槽(7)には微生物、藻類などがほとんど
含まれない浄化水が得られたのである。
[Example 3] On a ceramic filter medium (5) of the treatment tank (4) in the pulsating fluidized bed pond water purification apparatus shown in FIG. Acrylic bio-adsorption bed (6) was laminated, and pond water with advanced eutrophication was sent. Purification was performed by repeating the operation of passing water and backwashing by switching the valve, and purified water containing almost no microorganisms or algae was obtained in the treated water receiving tank (7).

【0027】[0027]

【発明の効果】本発明は以上の様に、従来生物吸着によ
る汚泥の浄化物質としては全く使用されたことのないア
クリロニトリルと酢酸ビニルの共重合ポリマーが非常に
すぐれた微生物吸着能を有することを見い出したことに
より達成された発明である。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, a copolymer of acrylonitrile and vinyl acetate, which has never been used as a sludge purification substance by biological adsorption, has a very excellent microbial adsorption ability. It is an invention achieved by the discovery.

【0028】本発明はこの共重合ポリマーの微粉末やそ
の塗布体、このポリマーからなる繊維のランダム塊状
物、または同繊維の不織布の切断物等を使用して、生物
吸着坦体若しくは生物吸着床として用いることにより、
非常に効果の高い有機汚濁廃水の浄化処理が達成される
のである。本発明における共重合ポリマーの具備してい
る水中の微生物に対する電気化学的吸着能は、実施例に
示すように有機汚濁廃水の生物学的浄化や池水に発生す
る微細な藻類による種々なる障害の排除に応用すること
ができ、環境破壊防止の重要性が叫ばれている現在に極
めて高い有用性を発揮するものである。
The present invention uses a fine powder of this copolymer, a coated body thereof, a random agglomerate of fibers made of this polymer, or a cut product of a non-woven fabric of the fibers, etc. By using as
A highly effective purification treatment of organic polluted wastewater is achieved. The electrochemical adsorption capacity of the copolymer of the present invention for microorganisms in water is, as shown in Examples, biological purification of organic polluted wastewater and elimination of various obstacles caused by fine algae generated in pond water. It has a very high utility in the present day when the importance of preventing environmental damage is being emphasized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明処理方法を曝気方式の汚泥浄化に利用し
たときの概略説明図である。
FIG. 1 is a schematic explanatory diagram when the treatment method of the present invention is applied to aeration-type sludge purification.

【図2】本発明処理方法を脈動流動床方式の池水浄化装
置に利用したときの断面説明図である。
FIG. 2 is a cross-sectional explanatory view when the treatment method of the present invention is applied to a pulsating fluidized bed system pond water purification device.

【符合の説明】[Explanation of sign]

(1) 曝気槽 (2) 原廃水槽 (3) 沈澱槽 (4) 処理槽 (5) セラミックろ材 (6) アクリル生物吸着床 (7) 処理水受槽 (1) Aeration tank (2) Raw wastewater tank (3) Precipitation tank (4) Treatment tank (5) Ceramic filter medium (6) Acrylic organism adsorption bed (7) Treated water receiving tank

Claims (1)

【特許請求の範囲】 【請求項1】 アクリロニトリルと酢酸ビニルとの共重
合ポリマーの微粉末や塗布体、前記共重合ポリマーから
なる繊維のランダム塊状物、または前記繊維からなる不
織布の切断物を、生物吸着坦体若しくは生物吸着床とし
て用いることを特徴とする有機汚濁廃水の処理方法。
Claim: What is claimed is: 1. A fine powder of a copolymerized polymer of acrylonitrile and vinyl acetate, a coated body, a random lump of fibers made of the copolymerized polymer, or a cut product of a nonwoven fabric made of the fiber, A method for treating organic polluted wastewater, which is used as a biosorbent carrier or a biosorbent bed.
JP3181821A 1991-06-26 1991-06-26 Treatment of organic polluted waste water Pending JPH054093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3181821A JPH054093A (en) 1991-06-26 1991-06-26 Treatment of organic polluted waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3181821A JPH054093A (en) 1991-06-26 1991-06-26 Treatment of organic polluted waste water

Publications (1)

Publication Number Publication Date
JPH054093A true JPH054093A (en) 1993-01-14

Family

ID=16107412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3181821A Pending JPH054093A (en) 1991-06-26 1991-06-26 Treatment of organic polluted waste water

Country Status (1)

Country Link
JP (1) JPH054093A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0630862A1 (en) * 1993-06-23 1994-12-28 Degremont Process for biological treatment of water
EP0656323B1 (en) * 1993-11-09 2002-02-20 Alfred Albert Process for controlling the respiration activity of microorganisms in an activated sludge process in waste water treatment
CN102674497A (en) * 2012-05-18 2012-09-19 四川大学 Method for remediating azo dye pollution in water body by utilizing nano mushroom fungus biological adsorbent
CN104138745A (en) * 2014-08-19 2014-11-12 中国科学院生态环境研究中心 Preparation method of biological carbon adsorbent for repairing organic pollution
CN106430348A (en) * 2016-10-21 2017-02-22 成都朵猫文化传播有限公司 Sedimentation tank for sewage treatment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0630862A1 (en) * 1993-06-23 1994-12-28 Degremont Process for biological treatment of water
FR2706883A1 (en) * 1993-06-23 1994-12-30 Degremont
AU671367B2 (en) * 1993-06-23 1996-08-22 Degremont Process for the biological treatment of water
EP0656323B1 (en) * 1993-11-09 2002-02-20 Alfred Albert Process for controlling the respiration activity of microorganisms in an activated sludge process in waste water treatment
CN102674497A (en) * 2012-05-18 2012-09-19 四川大学 Method for remediating azo dye pollution in water body by utilizing nano mushroom fungus biological adsorbent
CN104138745A (en) * 2014-08-19 2014-11-12 中国科学院生态环境研究中心 Preparation method of biological carbon adsorbent for repairing organic pollution
CN106430348A (en) * 2016-10-21 2017-02-22 成都朵猫文化传播有限公司 Sedimentation tank for sewage treatment

Similar Documents

Publication Publication Date Title
JP4297615B2 (en) High-speed coagulating sedimentation wastewater treatment method
WO2020010678A1 (en) Novel material for in-situ decontamination of turbid river water and preparation method thereof
CN108793433B (en) High-turbidity water quality emergency treatment technology
Stoveland et al. A study of the factors which influence metal removal in the activated sludge process
CN111420630A (en) Preparation and regeneration method of magnesium hydroxide modified diatomite dephosphorizing agent
CN105540987A (en) Water deep purification method
JPH054093A (en) Treatment of organic polluted waste water
Pressman Cationic Polyelectrolytes as Prime Coagulants in Natural‐Water Treatment
CN107867743A (en) A kind of sewage-treating agent and preparation method thereof
JP3933230B2 (en) Nitrogen-containing organic wastewater treatment method
CN107032517B (en) The method that modified coral sand is used for Island engineering Water warfare
RU2137717C1 (en) Method of removing copper ions from waste waters
CN112794416A (en) Flocculation-adsorption reagent and method for synchronously removing turbidity, ammonia nitrogen and TP in black and odorous water body
JP3420838B2 (en) Method for treating phosphorus-containing organic wastewater
Wang et al. Comparing the effect of bioflocculant with synthetic polymers on enhancing granulation in UASB reactors for low-strength wastewater treatment
Ngo et al. Application of downflow floating medium flocculator/prefilter (DFF)—coarse sand filter (CSF) in nutrient removal
JP3103473B2 (en) Water purification material and its production method
Wilén Effect of different parameters on settling properties of activated sludge
KR19980045201A (en) Wastewater treatment agent using natural inorganic substance and its manufacturing method
CN109384295A (en) A kind of environmental protection water purification agent and preparation method thereof
CN110975799B (en) Preparation method of diatomite sludge filter material for efficient adsorption and dephosphorization
JP4079485B2 (en) Sulfuric acid-treated purified allophane soil and method for producing the same
CN209815854U (en) Water treatment system for micro-polluted source water
JPH06285474A (en) Water clarification method
JPH0675712B2 (en) Purification method of organic wastewater