JPH054022A - Flue gas desulfurization equipment - Google Patents

Flue gas desulfurization equipment

Info

Publication number
JPH054022A
JPH054022A JP3183222A JP18322291A JPH054022A JP H054022 A JPH054022 A JP H054022A JP 3183222 A JP3183222 A JP 3183222A JP 18322291 A JP18322291 A JP 18322291A JP H054022 A JPH054022 A JP H054022A
Authority
JP
Japan
Prior art keywords
reactor
gas
flue
flue gas
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3183222A
Other languages
Japanese (ja)
Inventor
Yoshihiko Mochizuki
美彦 望月
Yukio Kondo
行雄 近藤
Kunihiko Arai
邦彦 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP3183222A priority Critical patent/JPH054022A/en
Publication of JPH054022A publication Critical patent/JPH054022A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To lower the concentration of sulfurous acid gas in flue gas finally discharged to the atmosphere to increase desulfurization efficiency by taking off part of flue gas from between a heat exchanger for preheating the furnace and a reactor and providing a bypass flue supplying the gas to a region on the downstream side of the central part of the reactor and on the upstream side of the termination position. CONSTITUTION:From a flue 14 between a heat exchanger 16 and a reactor 18, branches off a bypass flue 28 which is connected to the place on time downstream side of the central part of the reactor 18 and on the upstream side of the termination part. Flue gas which is introduced into the reactor 18 through the main flue 14 is cooled by water sprayed with a nozzle 20 to a temp. corresponding to the dew point and mixed with hot flue gas introduced through the bypass flue 28 on the way to the termination. Thereby the flue gas is desulfurize with efficiency corresponding to the temp. of the mixed gas, so that the overall desulfurization efficiency of the reactor 18 is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は排ガス脱硫装置に係り、
特に石炭や石油等の硫黄含有燃料を燃焼させる炉からの
排ガスを脱硫するのに好適な排ガス脱硫装置の改良に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas desulfurization device,
In particular, it relates to improvement of an exhaust gas desulfurization apparatus suitable for desulfurizing exhaust gas from a furnace that burns a sulfur-containing fuel such as coal or petroleum.

【0002】[0002]

【従来の技術】一般に、石炭や石油等の硫黄を含む燃料
を燃焼させると、有害な硫黄酸化物、特に亜硫酸ガスが
発生する。このため、このような排ガスを大気に放出す
る前に、亜硫酸ガスをカルシウム化合物と反応させ、煙
道ガスを清浄化するための脱硫装置の開発が盛んに行わ
れている。この方式としては、大別して湿式法と半乾式
法が知られており、このうち水処理を必要としない半乾
式法が経済的あるいは簡単な方式として多く試みられる
ようになっている。半乾式法では、発生したダストはろ
過集塵あるいは電気集塵等の乾式集塵装置で捕集され
る。
2. Description of the Related Art Generally, when a fuel containing sulfur such as coal or petroleum is burned, harmful sulfur oxides, particularly sulfurous acid gas is generated. Therefore, desulfurization devices for purifying flue gas by reacting sulfurous acid gas with a calcium compound before releasing such exhaust gas to the atmosphere have been actively developed. This method is roughly classified into a wet method and a semi-dry method, and among them, the semi-dry method which does not require water treatment has been tried as an economical or simple method. In the semi-dry method, the generated dust is collected by a dry dust collector such as a filter dust collector or an electric dust collector.

【0003】ところで、半乾式法における脱硫効率は、
煙道ガスの温度が露点附近において最も高くできるた
め、脱硫効率向上の面からはガス温度をできるだけ露点
温度近くまで下げることが要求される。一方、脱硫装置
の後段に設置される乾式集塵装置においては、装置内に
おけるダストハンドリングや装置の腐食防止の観点か
ら、装置内での結露防止が不可欠である。このため集塵
装置入口の温度をできるだけ露点温度より高くすること
が要求される。これを解決する方法として、例えば、特
開昭61−287421号公報には、粉状アルカリ金属
と水を反応帯域に供給し、反応帯域の終点部分に高温煙
道ガスを供給する方式が開示されている。
By the way, the desulfurization efficiency in the semi-dry method is
Since the flue gas temperature can be maximized near the dew point, it is required to lower the gas temperature as close as possible to the dew point temperature in order to improve desulfurization efficiency. On the other hand, in the dry dust collector installed in the latter stage of the desulfurization device, prevention of dew condensation in the device is essential from the viewpoint of dust handling in the device and prevention of corrosion of the device. Therefore, it is required that the temperature at the entrance of the dust collector be as high as possible above the dew point temperature. As a method for solving this, for example, Japanese Patent Application Laid-Open No. 61-287421 discloses a system in which powdered alkali metal and water are supplied to the reaction zone, and high temperature flue gas is supplied to the end portion of the reaction zone. ing.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
方式では、反応帯域の終点部分以降のガスの昇温効果が
あるものの、反応帯域終点部分に供給した高温煙道ガス
中の亜硫酸ガスを除去することができず、反応帯域終点
以降のガス中には高濃度の亜硫酸ガスが含有され、これ
がそのまま大気に排出されてしまう欠点があった。
However, although the conventional method has the effect of increasing the temperature of the gas after the end portion of the reaction zone, it removes the sulfurous acid gas in the high temperature flue gas supplied to the end portion of the reaction zone. However, the gas after the end of the reaction zone contains a high concentration of sulfurous acid gas, which is discharged to the atmosphere as it is.

【0005】本発明は、上記従来の問題点に着目し、最
終的に大気放出される排出ガス中の亜硫酸ガス濃度が低
く、脱硫効率の高い排ガス脱硫装置を提供することを目
的とする。
In view of the above-mentioned conventional problems, the present invention has an object to provide an exhaust gas desulfurization apparatus which has a low concentration of sulfurous acid gas in the exhaust gas finally discharged to the atmosphere and has a high desulfurization efficiency.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る排ガス脱硫装置は、炉の煙道ガスの温
度を水スプレーによって低下させ、低温度領域にてガス
中の気体硫黄酸化物を脱硫剤と反応させて乾燥した固体
化合物にする反応器を備えた排ガス脱硫装置において、
炉の予熱用熱交換器と反応器の間から煙道ガスの一部を
取り出し、反応器の中央部より下流側で終端位置より上
流側の領域に前記ガスを供給するバイパス煙道を備えた
構成としたものである。
In order to achieve the above object, an exhaust gas desulfurization apparatus according to the present invention lowers the temperature of a flue gas of a furnace by water spraying, and gas sulfur in the gas in a low temperature region is reduced. In an exhaust gas desulfurization apparatus equipped with a reactor that reacts an oxide with a desulfurizing agent to form a dry solid compound,
A part of the flue gas was taken out from between the preheat heat exchanger of the furnace and the reactor, and a bypass flue was provided to supply the gas to a region downstream of the central part of the reactor and upstream of the end position. It is configured.

【0007】[0007]

【作用】上記構成によれば、反応器内のバイパス流入位
置よりも上流側のガス温度を露点温度にでき、反応器始
点より流入したガス中の亜硫酸の脱硫効率を最大に調整
できる。また、バイパス流入したガスは反応器内への流
入後、反応器終点までに反応器始点から流入したガスと
混合され、その混合ガス温度に応じた脱硫効率となる。
したがって、反応器の脱硫効率を全体として高くするこ
とができるのである。しかも、高温煙道ガスを熱交換器
の下流側から反応器内に供給しているため、熱交換器よ
り上流側での熱効率を最大に維持できる作用が得られ
る。
According to the above construction, the gas temperature upstream of the bypass inflow position in the reactor can be made the dew point temperature, and the desulfurization efficiency of sulfurous acid in the gas inflowing from the reactor start point can be adjusted to the maximum. Further, the gas that has flown into the bypass is mixed with the gas that has flowed in from the reactor start point after the gas flow into the reactor until the end point of the reactor, and the desulfurization efficiency depends on the temperature of the mixed gas.
Therefore, the desulfurization efficiency of the reactor can be increased as a whole. Moreover, since the high temperature flue gas is supplied into the reactor from the downstream side of the heat exchanger, it is possible to obtain the effect of maintaining the maximum thermal efficiency on the upstream side of the heat exchanger.

【0008】[0008]

【実施例】以下に、本発明に係る排ガス脱硫装置の具体
的実施例を図面を参照して詳細に説明する。
EXAMPLES Specific examples of the exhaust gas desulfurization apparatus according to the present invention will be described below in detail with reference to the drawings.

【0009】図1は実施例に係る排ガス脱硫装置を備え
た燃焼設備の構成を示している。燃焼炉10は石炭や石
油など硫黄含有燃料を用いて燃焼させる。また燃焼炉1
0には燃焼排ガスを排出する煙道14が炉頂側の側壁に
開口され、ここから排気するようにしている。煙道14
は途中に設置した熱交換器16に通され、ここで高温排
ガスによって燃焼用空気供給管12との熱交換をなし、
燃焼用空気の予熱を行うようにしている。そして、熱交
換器16を経た煙道14は脱硫反応器18に導かれてい
る。
FIG. 1 shows the structure of a combustion facility equipped with an exhaust gas desulfurization apparatus according to an embodiment. The combustion furnace 10 burns using a sulfur-containing fuel such as coal or petroleum. Also combustion furnace 1
At 0, a flue 14 for discharging combustion exhaust gas is opened in a side wall on the furnace top side, and exhaust is performed from here. Flue 14
Is passed through a heat exchanger 16 installed on the way, where heat exchange with the combustion air supply pipe 12 is performed by the high temperature exhaust gas,
The combustion air is preheated. The flue 14 passing through the heat exchanger 16 is guided to the desulfurization reactor 18.

【0010】脱硫反応器18の始端、すなわち図示の例
では反応器下端に煙道14を接続して排ガスを供給し、
上昇流として排ガスを流すようにしている。排ガスの脱
硫剤としては例えばカルシウム化合物の脱硫剤を用い、
燃焼炉10内、または煙道14内、あるいは反応器18
内で、粉体として排ガス中に添加するものとしている。
そして、反応器18内にて排ガスを露点温度まで低下さ
せるために、反応器18内部の始端部には水スプレーノ
ズル20を設置しており、導入される排ガスの流れに沿
って、すなわちガス流の下流に向けて噴霧させるように
している。
A flue 14 is connected to the starting end of the desulfurization reactor 18, that is, the lower end of the reactor in the illustrated example, to supply exhaust gas,
The exhaust gas is made to flow as an upward flow. As a desulfurizing agent for exhaust gas, for example, a desulfurizing agent of a calcium compound is used,
In the combustion furnace 10, the flue 14, or the reactor 18
In this, it is supposed to be added to the exhaust gas as powder.
In order to lower the exhaust gas to the dew point temperature inside the reactor 18, a water spray nozzle 20 is installed at the starting end inside the reactor 18, and along the flow of the introduced exhaust gas, that is, the gas flow. I am trying to spray toward the downstream of.

【0011】また、反応器18の最下流端、図示の例で
は反応器18の頂部には排気管22が開口され、これは
後段の乾式集塵装置24に接続され、ここで排ガス中か
らダストを除去した後、最終段の煙突26に導かれて大
気中に放出されるようになっている。
Further, an exhaust pipe 22 is opened at the most downstream end of the reactor 18, that is, at the top of the reactor 18 in the illustrated example, which is connected to a dry dust collector 24 in the subsequent stage, where dust is extracted from the exhaust gas. After being removed, the gas is guided to the chimney 26 at the final stage and released into the atmosphere.

【0012】このような設備において、実施例では、前
記熱交換器16と反応器18の間の煙道14からバイパ
ス煙道28を分岐させ、このバイパス煙道28を反応器
18に対し、その中央部より下流側でしかも反応器18
の終端部分より上流側の位置に接続した構成としてい
る。このバイパス煙道28は反応器18の内部にて吹出
し口30を下流側に向け、かつ反応器18内のガスとの
混合を良好にするために吹出し口30は複数に分岐され
て排ガスを吹出させるようにしている。特にこの実施例
では、バイパス煙道28の吹出し口30は反応器18の
中央位置に設定し、反応器18の後半部でのガス昇温化
を図るようにしている。
In such an installation, in an embodiment, a bypass flue 28 is branched from the flue 14 between the heat exchanger 16 and the reactor 18, and the bypass flue 28 is connected to the reactor 18 by Downstream of the central part and in the reactor 18
It is configured to be connected to a position on the upstream side of the end portion of. In this bypass flue 28, the outlet 30 is directed to the downstream side inside the reactor 18, and the outlet 30 is branched into a plurality of outlets in order to improve mixing with the gas inside the reactor 18. I am trying to let you. Particularly, in this embodiment, the outlet 30 of the bypass flue 28 is set at the central position of the reactor 18 so that the temperature of the gas in the latter half of the reactor 18 is raised.

【0013】上記実施例に係る排ガス脱硫装置では、主
煙道28を通じて導入された排ガスがノズル20より噴
霧された水スプレーにより露点温度まで温度低下され
る。ガス温度が露点附近においては、反応器18の上流
で酸化カルシウムであった脱硫剤は水と反応して水酸化
カルシウムとなる。水酸化カルシウムと亜硫酸ガスとの
反応は、ガス温度が露点において最も高いため、反応器
18の始端より流入したガス中の亜硫酸ガスの脱硫効率
は最大になる。
In the exhaust gas desulfurization apparatus according to the above embodiment, the temperature of the exhaust gas introduced through the main flue 28 is lowered to the dew point temperature by the water spray sprayed from the nozzle 20. When the gas temperature is near the dew point, the desulfurizing agent, which was calcium oxide in the upstream of the reactor 18, reacts with water to become calcium hydroxide. Since the reaction between calcium hydroxide and sulfurous acid gas has the highest gas temperature at the dew point, the desulfurization efficiency of the sulfurous acid gas in the gas flowing from the beginning of the reactor 18 is maximized.

【0014】次いで、反応器18の中央部には熱交換器
16の下流側からバイパス煙道28を通じて高温の排ガ
スが導入され、反応器18の終端までの間に露点温度ガ
スと混合される。この混合作用により、混合ガスの温度
は露点温度より高くなるため、バイパス煙道28より流
入したガス中の亜硫酸ガスの脱硫効率は反応器18の前
半部における脱硫効率より低下するが、その混合ガスの
温度に応じた効率で脱硫することになる。
Next, high temperature exhaust gas is introduced into the central portion of the reactor 18 from the downstream side of the heat exchanger 16 through the bypass flue 28, and is mixed with the dew point temperature gas until the end of the reactor 18. Due to this mixing action, the temperature of the mixed gas becomes higher than the dew point temperature. Therefore, the desulfurization efficiency of the sulfurous acid gas in the gas flowing in from the bypass flue 28 is lower than the desulfurization efficiency in the first half of the reactor 18, but the mixed gas is Desulfurization will be performed with efficiency according to the temperature.

【0015】このようなバイパス煙道28の有無による
脱硫効率の変化を反応器18の長さ方向について求めた
分布を図2に示すとともに、実験結果を次表に示す。
FIG. 2 shows the distribution of changes in the desulfurization efficiency depending on the presence or absence of the bypass flue 28 in the lengthwise direction of the reactor 18, and the experimental results are shown in the following table.

【0016】[0016]

【表1】 この表1において、実験1はバイパス流量が全流量の5
%の場合であり、実験2ではバイパス流量が無い場合を
示し、両者とも反応器18の出口温度が65℃の一定に
なるように水スプレー量を調整したものである。
[Table 1] In Table 1, in Experiment 1, the bypass flow rate is 5
%, And the case where there is no bypass flow rate is shown in Experiment 2. In both cases, the water spray amount is adjusted so that the outlet temperature of the reactor 18 becomes constant at 65 ° C.

【0017】実験2では排ガスの全流量が反応器18に
導入されるので、露点温度以上で反応し、効率ηが低
い。これに対し、実験1では反応器18の前半領域では
導入排ガス流量が実験2に比較して5%程低いので、排
ガス温度を露点温度近くまで温度調整することができ、
脱硫効率ηが大きい。反応器18の後半においてはバイ
パス流が流入することによりガス温度が露点以上になっ
て見掛けの脱硫効率が低下するが、反応器18の後半領
域でも脱硫反応が進行するので、結果的に脱硫効率ηが
大となる。
In Experiment 2, since the entire flow rate of the exhaust gas is introduced into the reactor 18, the reaction occurs at the dew point temperature or higher and the efficiency η is low. On the other hand, in Experiment 1, the introduced exhaust gas flow rate in the first half region of the reactor 18 was about 5% lower than in Experiment 2, so the exhaust gas temperature could be adjusted to near the dew point temperature.
The desulfurization efficiency η is large. In the latter half of the reactor 18, the gas temperature becomes higher than the dew point and the apparent desulfurization efficiency decreases due to the bypass flow, but the desulfurization reaction also proceeds in the latter half of the reactor 18, resulting in the desulfurization efficiency. η becomes large.

【0018】なお、バイパス流を反応器18に供給する
ことなく反応器の出口以降に入れたときにはバイパス排
ガス中に含まれる亜硫酸ガスはそのまま残留して煙突か
ら大気中に排出されることになるのはいうまでもない。
When the bypass flow is introduced into the reactor 18 and thereafter without being supplied to the reactor 18, the sulfurous acid gas contained in the bypass exhaust gas remains as it is and is discharged from the chimney to the atmosphere. Needless to say.

【0019】次に図3には他の実施例に係る排ガス脱硫
装置の断面構成図を示す。これはバイパス煙道28から
反応器18内に熱交換器16の下流側排ガスを導入する
に際して、その吹出し口30の向きを反応器18の上流
側に向けた点が前記実施例と異なる。このようにするこ
とによって反応器18の全長を短くすることができる利
点が得られる。
Next, FIG. 3 shows a cross-sectional structural view of an exhaust gas desulfurization apparatus according to another embodiment. This is different from the above-described embodiment in that when the exhaust gas on the downstream side of the heat exchanger 16 is introduced into the reactor 18 from the bypass flue 28, the outlet 30 of the exhaust gas is directed to the upstream side of the reactor 18. This has the advantage that the overall length of the reactor 18 can be shortened.

【0020】なお、上記実施例においては、脱硫剤を水
スプレーと分別して排ガス中に添加する場合について説
明したが、スラリとしてノズル20から噴射して添加す
る場合にも適用できる。
In the above embodiment, the case where the desulfurizing agent is separated from the water spray and added to the exhaust gas has been described, but the present invention can also be applied to the case where the desulfurizing agent is sprayed from the nozzle 20 and added.

【0021】[0021]

【発明の効果】以上説明したように、本発明によれば、
炉の予熱用熱交換器と脱硫反応器の間から煙道ガスの一
部を取り出し、反応器の中央部より下流側で終端位置よ
り上流側の領域に前記ガスを供給するバイパス煙道を備
えた構成としたので、最終的に大気放出される排出ガス
中の亜硫酸ガス濃度が低く、脱硫効率の高い排ガス脱硫
装置とすることができる。特に、バイパス流が導入され
る脱硫反応器の後半部での脱硫作用を維持しつつ、反応
器後段に設置される集塵装置での結露を防止でき、また
熱交換器の効率を低下させることなく全体的な脱硫効率
を向上させることができる。
As described above, according to the present invention,
A part of the flue gas is taken out from between the heat exchanger for preheating of the furnace and the desulfurization reactor, and a bypass flue is provided to supply the gas to a region downstream of the central part of the reactor and upstream of the end position. With such a configuration, the exhaust gas desulfurization device having a low concentration of sulfurous acid gas in the exhaust gas finally released to the atmosphere and high desulfurization efficiency can be obtained. In particular, while maintaining the desulfurization action in the latter half of the desulfurization reactor where the bypass flow is introduced, it is possible to prevent dew condensation in the dust collector installed in the latter stage of the reactor and to reduce the efficiency of the heat exchanger. The overall desulfurization efficiency can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例に係る排ガス脱硫装置を備えた燃焼設備
の構成図である。
FIG. 1 is a configuration diagram of a combustion facility including an exhaust gas desulfurization device according to an embodiment.

【図2】実施例に係る排ガス脱硫装置による脱硫効率と
従来の反応器の脱硫効率の特性図である。
FIG. 2 is a characteristic diagram of desulfurization efficiency of an exhaust gas desulfurization apparatus according to an example and desulfurization efficiency of a conventional reactor.

【図3】他の実施例に係る脱硫装置の断面構成図であ
る。
FIG. 3 is a cross-sectional configuration diagram of a desulfurization device according to another embodiment.

【符号の説明】[Explanation of symbols]

10 燃焼炉 12 燃焼用空気供給管 14 煙道 16 熱交換器 18 脱硫反応器 20 水スプレーノズル 24 乾式集塵装置 26 煙突 28 バイパス煙道 30 吹出し口 10 Combustion Furnace 12 Combustion Air Supply Pipe 14 Flue 16 Heat Exchanger 18 Desulfurization Reactor 20 Water Spray Nozzle 24 Dry Dust Collector 26 Chimney 28 Bypass Flue 30 Outlet

Claims (1)

【特許請求の範囲】 【請求項1】 炉の煙道ガスの温度を水スプレーによっ
て低下させ、低温度領域にてガス中の気体硫黄酸化物を
脱硫剤と反応させて乾燥した固体化合物にする反応器を
備えた排ガス脱硫装置において、炉の予熱用熱交換器と
反応器の間から煙道ガスの一部を取り出し、反応器の中
央部より下流側で終端位置より上流側の領域に前記ガス
を供給するバイパス煙道を備えたことを特徴とする排ガ
ス脱硫装置。
Claim: What is claimed is: 1. A flue gas in a furnace is lowered in temperature by water spraying, and gaseous sulfur oxides in the gas are reacted with a desulfurizing agent in a low temperature region to form a dry solid compound. In the exhaust gas desulfurization device equipped with a reactor, a part of the flue gas is taken out between the preheat heat exchanger of the furnace and the reactor, and the flue gas is located in a region downstream of the central part of the reactor and upstream of the end position. An exhaust gas desulfurization device having a bypass flue for supplying gas.
JP3183222A 1991-06-27 1991-06-27 Flue gas desulfurization equipment Pending JPH054022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3183222A JPH054022A (en) 1991-06-27 1991-06-27 Flue gas desulfurization equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3183222A JPH054022A (en) 1991-06-27 1991-06-27 Flue gas desulfurization equipment

Publications (1)

Publication Number Publication Date
JPH054022A true JPH054022A (en) 1993-01-14

Family

ID=16131929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3183222A Pending JPH054022A (en) 1991-06-27 1991-06-27 Flue gas desulfurization equipment

Country Status (1)

Country Link
JP (1) JPH054022A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6245308B1 (en) * 1998-04-08 2001-06-12 Mitsubishi Heavy Industries, Ltd. Method for decreasing sulfuric acid and sulfuric anhydride present in combustion exhaust gas
JP2004167406A (en) * 2002-11-21 2004-06-17 Joban Kyodo Karyoku Kk Exhaust gas cleaning apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04141214A (en) * 1990-10-02 1992-05-14 Babcock Hitachi Kk Exhaust gas desulfurizer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04141214A (en) * 1990-10-02 1992-05-14 Babcock Hitachi Kk Exhaust gas desulfurizer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6245308B1 (en) * 1998-04-08 2001-06-12 Mitsubishi Heavy Industries, Ltd. Method for decreasing sulfuric acid and sulfuric anhydride present in combustion exhaust gas
JP2004167406A (en) * 2002-11-21 2004-06-17 Joban Kyodo Karyoku Kk Exhaust gas cleaning apparatus

Similar Documents

Publication Publication Date Title
CN105903330A (en) System and method for efficient combined desulfurization and denitration
CN108211711A (en) Remove smoke the method for middle sulfur trioxide
US7005115B2 (en) Gas combustion treatment method and apparatus therefor
SU1679969A3 (en) Method for removing sulfurous anhydride from flue gases
CN108704463B (en) Comprehensive treatment system and process for desulfurization and denitrification of sintering flue gas and whitening of flue gas
CN209885578U (en) Dust removal SOx/NOx control takes off white integration system
JP2694916B2 (en) Method of reducing sulfur oxide gas in circulating fluidized bed combustion apparatus and apparatus for carrying out the method
CN212663167U (en) High-efficient SOx/NOx control dust collector of kaolin calcining kiln flue gas
CN105041431B (en) Exhaust after treatment system and method for exhaust aftertreatment
CN109809368A (en) A kind of oxygen-enriched combustion system and technique of the sulphur recovery for coal chemical industry
CN107551778A (en) A kind of denitrating flue gas desulfurization dust-removing technique method
CN111033124B (en) Gas combustion processing device, combustion processing method, and gas purification system
JPH054022A (en) Flue gas desulfurization equipment
JPS58167405A (en) Manufacture of sulfur from hydrogen sulfide of coke oven gas
CN108939901A (en) A kind of sintering flue gas desulfurization denitrification apparatus and method
CN208742297U (en) A kind of chain grate-rotary kiln pelletizing equipment for denitrifying flue gas
JPH11300164A (en) Boiler plant having denitration device, and denitration method
CN106582226B (en) It is a kind of using ammonia-contaminated gas as the Denitration in Boiler technique of denitrfying agent
CN211926556U (en) Tunnel cave flue gas intensification processing system
CN214075879U (en) High-efficient SOx/NOx control of low temperature flue gas takes off white integration equipment
CN210964554U (en) Chain grate-rotary kiln pellet flue gas ultralow emission system
CN114849431A (en) Air box assembly, clinker production device and flue gas pollutant treatment equipment
CN112403224B (en) CO oxidation and denitration system and method
JPS5990617A (en) Treatment of waste gas
CN209188514U (en) One kind being based on ammonia process-SCR combined desulfurization and denitration system