JPH0540197A - Refueling method for reactor - Google Patents

Refueling method for reactor

Info

Publication number
JPH0540197A
JPH0540197A JP3197925A JP19792591A JPH0540197A JP H0540197 A JPH0540197 A JP H0540197A JP 3197925 A JP3197925 A JP 3197925A JP 19792591 A JP19792591 A JP 19792591A JP H0540197 A JPH0540197 A JP H0540197A
Authority
JP
Japan
Prior art keywords
plug
fuel
core
ucs
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3197925A
Other languages
Japanese (ja)
Other versions
JPH0782111B2 (en
Inventor
Hajime Kataoka
一 片岡
Minoru Gunji
稔 軍司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doryokuro Kakunenryo Kaihatsu Jigyodan
Power Reactor and Nuclear Fuel Development Corp
Original Assignee
Doryokuro Kakunenryo Kaihatsu Jigyodan
Power Reactor and Nuclear Fuel Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doryokuro Kakunenryo Kaihatsu Jigyodan, Power Reactor and Nuclear Fuel Development Corp filed Critical Doryokuro Kakunenryo Kaihatsu Jigyodan
Priority to JP3197925A priority Critical patent/JPH0782111B2/en
Priority to FR9209694A priority patent/FR2680273B1/en
Priority to DE4226228A priority patent/DE4226228C2/en
Publication of JPH0540197A publication Critical patent/JPH0540197A/en
Publication of JPH0782111B2 publication Critical patent/JPH0782111B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/18Apparatus for bringing fuel elements to the reactor charge area, e.g. from a storage place
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To veduce the reactor vessel diameter by providing upper core structure on a small rotary plug placed eccentrically on a large rotary plug placed eccentrically on a fixed plug and inserting a refueling machine instead of this mechanism when refueling. CONSTITUTION:Upper core structure UCS 30 is put on a small rotary plug 43. For refueling in the core, the cylindrical UCS part 31 of the UCS 30 is drawn out and instead, a special plug loading a refueling machine 50 is inserted. By extending an offset arm 51, a refueling gripper 52 is set on the position having an offset from the refueling machine 50. And the gripper 52 can access an arbitrary position in the access range in the core and grips and removes at the incore fuel relay position 53 by making use of the radius and rotation angle of the large rotary plug 42, those of plug 43, the offset of the refueling machine and arm 51 rotation angle and placing of each component. Thus, the escaping of the UCS 30 from immediately above the core is not necessary and so minimizing of the reactor vessel 40 diameter is realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高速増殖炉の原子炉
容器頂部を密閉する蓋(プラグ)全体を開けることなく
蓋の下で原子炉内の燃料を交換する方式の燃料交換方法
の改良に関し、さらに詳しくは、原子炉容器直径の小型
化が可能な原子炉内燃料の交換方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is an improvement of a fuel exchange method of a system for exchanging fuel in a reactor under the lid without opening the entire lid (plug) for sealing the reactor vessel top of the fast breeder reactor. More specifically, the present invention relates to a method of exchanging fuel in a nuclear reactor that can reduce the diameter of the nuclear reactor vessel.

【0002】[0002]

【従来の技術】高速増殖炉の出力運転時の原子炉容器内
の構成例を図6および図7に示す。原子炉容器1内部に
収容した冷却材の液体ナトリウム2中には、核熱反応を
おこす燃料棒や制御棒、反射体等から構成される炉心3
が置かれており、炉心3の直上には円筒形の炉心上部機
構(以下UCSと略記する)4が上方から垂下してい
る。原子炉容器1頂部は蓋で密閉されており、蓋は固定
プラグ5と、固定プラグに対して偏心的に載置した回転
自在な回転プラグ6とからなり、UCS4は回転プラグ
6に偏心的に載置されている。また固定プラグ5の一部
には炉内中継機構孔プラグ7が、回転プラグ6の一部に
は燃料交換機孔プラグ8がそれぞれ設けられている。U
CS4はその内部に多数の制御棒駆動機構や炉心上部計
測器が納められており、制御棒駆動機構により制御棒の
炉心3内での位置を調整して炉出力を制御することがで
きる。上記のごとき構成によって、原子炉容器1に接続
した配管(図示せず)によりナトリウム2を循環し、核
反応熱を取り出すことができる。
2. Description of the Related Art FIG. 6 and FIG. 7 show examples of the internal structure of a reactor vessel during power operation of a fast breeder reactor. In the liquid sodium 2 as a coolant contained in the reactor vessel 1, a core 3 composed of fuel rods, control rods, reflectors, etc. which cause a nuclear thermal reaction.
A cylindrical core upper part mechanism (hereinafter abbreviated as UCS) 4 hangs from directly above the core 3. The top of the reactor vessel 1 is sealed with a lid, and the lid is composed of a fixed plug 5 and a rotatable rotary plug 6 placed eccentrically with respect to the fixed plug, and the UCS 4 is eccentrically attached to the rotary plug 6. It has been placed. Further, an in-reactor relay mechanism hole plug 7 is provided in a part of the fixed plug 5, and a fuel exchanger hole plug 8 is provided in a part of the rotary plug 6. U
The CS4 has a large number of control rod drive mechanisms and core upper part measuring instruments housed therein, and the control rod drive mechanism can adjust the position of the control rods in the core 3 to control the reactor power. With the above-mentioned configuration, sodium 2 can be circulated through the pipe (not shown) connected to the reactor vessel 1 to take out the nuclear reaction heat.

【0003】高速増殖炉においても炉心の燃料等を定期
的に交換する必要があるが、冷却材の液体ナトリウムは
化学的に非常に活性であり、空気に触れると燃え出すと
いう性質を有している。そのため、炉内の燃料交換作業
は原子炉容器頂部の蓋全体を開けることなく、外気と遮
断しつつ必要最小限の開口を作って蓋の下で行う必要が
あり、蓋の下で燃料交換作業が行われることからこれを
アンダー・ザ・プラグ方式と呼んでいる。
Even in a fast breeder reactor, it is necessary to periodically replace the core fuel and the like, but liquid sodium as a coolant is chemically very active and has the property of burning out when it comes into contact with air. There is. Therefore, it is necessary to perform the fuel refueling work inside the reactor under the lid by opening the minimum lid while shutting off the outside air without opening the entire lid at the top of the reactor vessel. This is called the under the plug method because it is performed.

【0004】この方式による炉内燃料交換作業を図6お
よび図7に対応する図8および図9を参照して説明す
る。燃料交換作業に際しては先ず、図6の炉内中継機構
孔プラグ7および燃料交換機孔プラグ8をそれぞれ外気
との接触を避けつつ取外し、孔に炉内中継機構9および
燃料交換機10をそれぞれ挿入・設置する。炉内中継機
構9は、円筒の下端に回転円盤11を備えた構造を有
し、回転円盤11には新・旧燃料を受入れるための燃料
移送ポット12を掛ける孔が2個開いている。この回転
円盤11により燃料交換機10と燃料出入機(図示せ
ず)との間で燃料13の中継移送を行えるようになって
いる。燃料交換機10は、本体からオフセット量Lを与
えるオフセットアーム14を備え、このオフセットアー
ム14は旋回(θ)できるようになっていてその先端に
は燃料を把持・離脱するためのグリッパ15が設けられ
ている。また燃料交換機10本体は、炉心3や炉内中継
機構9から燃料13を抜出し・挿入できるように上下動
可能であり、燃料交換機10の炉内挿入・引抜き時には
オフセットアーム14を折り畳めるようになっている。
Refueling work in the reactor by this system will be described with reference to FIGS. 8 and 9 corresponding to FIGS. 6 and 7. In the refueling work, first, the in-reactor relay mechanism hole plug 7 and the fuel exchanger hole plug 8 in FIG. 6 are removed while avoiding contact with the outside air, and the in-reactor relay mechanism 9 and the fuel exchanger 10 are inserted and installed in the holes, respectively. To do. The in-reactor relay mechanism 9 has a structure in which a rotating disk 11 is provided at the lower end of a cylinder, and the rotating disk 11 has two holes for hanging a fuel transfer pot 12 for receiving new and old fuel. The rotary disk 11 enables relay transfer of the fuel 13 between the fuel exchanger 10 and a fuel inlet / outlet machine (not shown). The refueling machine 10 is provided with an offset arm 14 for giving an offset amount L from the main body, the offset arm 14 is capable of turning (θ), and a gripper 15 for gripping / releasing fuel is provided at the tip thereof. ing. Further, the main body of the fuel exchanger 10 can move up and down so that the fuel 13 can be extracted and inserted from the core 3 and the in-core relay mechanism 9, and the offset arm 14 can be folded when the fuel exchanger 10 is inserted into and extracted from the reactor. There is.

【0005】次いで、燃料交換機10を炉心3上方に位
置させるために、燃料交換機を載置した回転プラグ6を
回転(θ′)させる。これによって必然的にUCS4は
炉心上方から退避させられ、一方、燃料交換機10本体
には回転プラグ6の回転中心に対して半径Rの回転角が
与えられる。かくして、燃料交換機10のグリッパ15
からみれば、L,R,θおよびθ′で定まる炉内のアク
セス領域内において、θとθ′の組み合わせにより、炉
心3の任意の位置(番地)の燃料にアクセスすることが
可能になる。
Next, in order to position the fuel exchanger 10 above the core 3, the rotary plug 6 on which the fuel exchanger is mounted is rotated (θ '). This inevitably causes the UCS 4 to be retracted from above the core, while the refueling machine 10 body is provided with a rotation angle of radius R with respect to the center of rotation of the rotating plug 6. Thus, the gripper 15 of the refueling machine 10
From the viewpoint, it becomes possible to access the fuel at any position (address) of the core 3 by the combination of θ and θ ′ within the access region in the reactor defined by L, R, θ and θ ′.

【0006】燃料交換作業時の上述した各機器の動作を
順を追って述べると以下のようになる。 1) 交換対象の燃料の真上に燃料交換機グリッパ15
が位置するように、回転プラグ6を回転させるととも
に、燃料交換機オフセットアーム14を旋回する。(回
転プラグ6の回転によりUCS4は炉心3上方から退避
させられる。) 2) 燃料交換機10本体を下降し、燃料交換機グリッ
パ15先端の爪で使用済燃料を把持する。 3) 燃料交換機10本体を上昇し、把持した使用済燃
料を炉心3から引抜く。 4) 回転プラグ6と燃料交換機オフセットアーム14
を回し、炉内中継機構9の回転円盤11の片方の孔の燃
料移送ポット12上まで使用済燃料13を移送して燃料
交換機10本体を下降し、使用済燃料13を離したの
ち、燃料交換機10本体を上昇してその位置で待機す
る。 5) この時、炉内中継機構9の円筒内部には、燃料出
入機(図示せず)のグリッパが新燃料を入れた燃料移送
ポット12を掴んで待機している。 6) 炉内中継機構9の回転円盤11の空になっている
孔が燃料出入機グリッパの真下にくるように回転円盤1
1を回し、新燃料を入れた燃料移送ポット12を回転円
盤11の空の孔に挿入する。燃料出入機のグリッパを少
し上昇させる。 7) 炉内中継機構9の新燃料が入っている方の燃料移
送ポット12が燃料交換機グリッパ15の真下にくるよ
うに回転円盤11を回す。 8) 燃料交換機グリッパ15で新燃料を把持し、上記
の逆の手順で炉心3の所定番地に装荷する。 9) 前記の使用済燃料が燃料出入機グリッパの真下に
くるように回転円盤11を回し、燃料出入機グリッパで
使用済燃料を入れた燃料移送ポット12を吊り上げて、
原子炉容器1外に移送する。
The operation of each of the above-described devices at the time of refueling work will be described step by step as follows. 1) Refueling machine gripper 15 directly above the fuel to be replaced
The rotating plug 6 is rotated and the refueling machine offset arm 14 is swung so that the position is positioned. (The UCS 4 is retracted from above the core 3 by the rotation of the rotary plug 6.) 2) The main body of the fuel exchanger 10 is lowered, and the spent fuel is grasped by the claws at the tip of the fuel exchanger gripper 15. 3) The main body of the refueling machine 10 is lifted up, and the spent fuel that is grasped is pulled out from the core 3. 4) Rotating plug 6 and refueling machine offset arm 14
Is rotated, the spent fuel 13 is transferred to above the fuel transfer pot 12 in one hole of the rotary disk 11 of the in-core relay mechanism 9, the main body of the fuel exchanger 10 is lowered, and the spent fuel 13 is released. 10 Lift the main body and wait at that position. 5) At this time, inside the cylinder of the in-reactor relay mechanism 9, a gripper of a fuel inlet / outlet machine (not shown) holds the fuel transfer pot 12 containing new fuel and stands by. 6) Rotating disc 1 so that the vacant hole of rotating disc 11 of in-reactor relay mechanism 9 is directly below the fuel gripper gripper.
Turn 1 to insert the fuel transfer pot 12 containing the new fuel into the empty hole of the rotating disk 11. Raise the fuel entry / exit gripper slightly. 7) Rotate the rotating disk 11 so that the fuel transfer pot 12 of the in-reactor relay mechanism 9 containing the new fuel is directly below the fuel exchanger gripper 15. 8) The new fuel is gripped by the refueling machine gripper 15 and loaded at a predetermined address of the core 3 in the reverse order of the above. 9) The rotating disk 11 is rotated so that the spent fuel is directly below the fuel inlet / outlet gripper, and the fuel transfer pot 12 containing the spent fuel is lifted by the fuel inlet / outlet gripper.
Transfer to the outside of the reactor vessel 1.

【0007】[0007]

【発明が解決しようとする課題】ところで、今後の高速
増殖炉を合理化するためには、炉心の大きさに比較して
原子炉容器をいかに小型化するかということが非常に重
要になってきている。原子炉容器の直径に注目した場
合、主要な決定因子は2つある。1つは、炉心の大きさ
や炉内構造物の寸法の合計によって決定される性格の寸
法(便宜上“炉内側決定寸法”という)であり、もう1
つは、炉心燃料領域と略同一の寸法を有するUCSを炉
心上方から退避させなければならないという、アンダー
・ザ・プラグ方式による燃料交換システム上の制約から
決定される寸法(便宜上“プラグ側決定寸法”という)
である。
By the way, in order to rationalize the fast breeder reactor in the future, how to downsize the reactor vessel in comparison with the size of the core becomes very important. There is. Focusing on the diameter of the reactor vessel, there are two main determinants. One is the size of the character that is determined by the size of the core and the total size of the internal structures (for convenience, it is called the "core inside size").
One is a dimension determined by the constraint on the fuel exchange system by the under-the-plug method that the UCS having the same dimension as the core fuel region must be evacuated from above the core (for convenience, "the dimension determined on the plug side" ”)
Is.

【0008】“プラグ側決定寸法”を簡略化して説明す
ると、炉心燃料領域の直径をdとし、UCS直径を同じ
くdとすると(図11参照)、軸対称円筒構造の原子炉
容器直径は、当然炉心中心を原子炉容器中心に置くか
ら、2d〜3d以上の寸法が必要になってしまう。実際
には、上記の原理的寸法の制約以外に、回転プラグのベ
アリングの幅、各構造物の板厚、ボルトの締め代、断熱
厚み等も加算して“プラグ側決定寸法”が決定される。
The "plug-side determined dimension" will be briefly described. If the diameter of the core fuel region is d and the UCS diameter is also d (see FIG. 11), the diameter of the reactor vessel of the axisymmetric cylindrical structure is naturally Since the center of the reactor core is placed at the center of the reactor vessel, a dimension of 2d to 3d or more is required. Actually, in addition to the above-mentioned restriction of the theoretical size, the width of the bearing of the rotary plug, the plate thickness of each structure, the tightening margin of the bolt, the thermal insulation thickness, etc. are also added to determine the “plug-side determination size”. ..

【0009】また上記の“炉内側決定寸法”は、発電を
目的としたループ型高速増殖炉を設計する場合には、
“プラグ側決定寸法”以下に設計することができるた
め、結局“プラグ側決定寸法”が原子炉容器直径の決定
因子になっているのが現状である。因みに、本願の出願
人である動力炉・核燃料開発事業団で設計を進めている
UCS直径が3360mmのループ型高速増殖炉の場
合、“炉内側決定寸法”は約8.4mであるのに対し
て、“プラグ側決定寸法”は、アンダー・ザ・プラグ方
式燃料交換システムの種々のバリエーションについて算
定すると9.2m〜12.6mとなってしまう。
Further, the above-mentioned "reactor inside dimension" is the same as that for designing a loop type fast breeder reactor for the purpose of power generation.
Since it can be designed to be smaller than the "plug-side determined dimension", the "plug-side determined dimension" is the deciding factor of the reactor vessel diameter in the end. By the way, in the case of a loop type fast breeder reactor with a UCS diameter of 3360 mm, which is being designed by the applicant of the present application, the Power Reactor and Nuclear Fuel Development Corporation, the “reactor inside dimension” is about 8.4 m. Thus, the “plug-side determined dimension” becomes 9.2 m to 12.6 m when calculated for various variations of the under-the-plug fuel exchange system.

【0010】そこでこの発明は、“プラグ側決定寸法”
を原子炉容器直径決定因子から排除することができ、も
って原子炉容器直径の小型化が図れるような新規な原子
炉内燃料交換方法を提供することを目的としてなされた
ものである。
Therefore, the present invention is based on the "determined dimension on the plug side".
The present invention aims to provide a novel method for refueling fuel in a nuclear reactor, which can eliminate the above-mentioned from the determinants of the diameter of the nuclear reactor vessel, and thereby reduce the diameter of the nuclear reactor vessel.

【0011】[0011]

【課題を解決するための手段】本発明者等は、上述した
ごとき回転プラグに載置した従来のUCSの内部に、縦
方向に引抜き可能なUCS部分を形成し、炉内燃料交換
時にはこのUCS部分を引抜き、引抜いた部分に燃料交
換機を挿入して燃料交換を行うことによって、燃料交換
時にUCS全体を炉心直上から退避させる必要がなくな
ることに着目して、この発明を完成させたものである。
The inventors of the present invention have formed a UCS portion that can be pulled out in the vertical direction inside a conventional UCS mounted on a rotary plug as described above, and this UCS portion is used at the time of fuel exchange in the reactor. This invention has been completed by focusing on the fact that it is not necessary to evacuate the entire UCS from directly above the core at the time of refueling by redrawing the part and inserting a fuel exchanger into the extracted part for refueling. ..

【0012】すなわち、この発明の原子炉内燃料交換方
法は、固定プラグと、この固定プラグに対して偏心的に
載置した回転自在な大回転プラグと、この大回転プラグ
に対して偏心的に載置した回転自在な小回転プラグとを
有する原子炉容器頂部蓋の前記小回転プラグに、多数の
制御棒駆動機構を内蔵するUCSを載置し、このUCS
の内部に引抜き可能なUCS部分を形成し、炉内燃料交
換時においては、前記UCS部分を引抜き、引抜いた部
分に、旋回可能なオフセットアームを備えた燃料交換機
を挿入・設置し、大回転プラグと小回転プラグの回転運
動および燃料交換機のオフセットアームの旋回運動によ
って、炉心内の任意の位置の燃料の交換作業を行うこと
を特徴とするものである。
That is, according to the method of refueling in a nuclear reactor of the present invention, a fixed plug, a rotatable large rotation plug eccentrically mounted on the fixed plug, and an eccentric mounting on the large rotation plug. A UCS having a large number of control rod drive mechanisms is mounted on the small rotation plug of the reactor vessel top lid having a rotatable small rotation plug.
A removable UCS part is formed in the inside of the reactor, and at the time of fuel exchange in the reactor, the UCS part is withdrawn, and a fuel exchange machine equipped with a swivelable offset arm is inserted and installed in the extracted part, and a large rotation plug and It is characterized in that the fuel replacement work at an arbitrary position in the core is performed by the rotary motion of the small rotary plug and the turning motion of the offset arm of the refueling machine.

【0013】この発明は、オフセットアーム式の燃料交
換機以外に、直動式と呼ばれる燃料交換機を用いる場合
にも適用できる。直動式燃料交換機は、円筒状の燃料交
換機本体の先端に直接グリッパが取付けられたオフセッ
ト量を持たない形式の燃料交換機である。この場合に
は、UCSを前記小回転プラグに回転自在に載置し、か
つUCS内部の引抜き可能なUCS部分をUCS中心か
ら偏心させて形成する。炉内燃料交換時においては、引
抜き可能なUCS部分を引抜いた後に直動式燃料交換機
を挿入・設置し、大回転プラグと小回転プラグの回転運
動およびUCSの回転運動によって、炉心内の任意の位
置の燃料の交換作業を行うことができる。
The present invention can be applied to a case where a direct-acting type fuel exchanger is used in addition to the offset arm type fuel exchanger. The direct drive type fuel exchange machine is a type of fuel exchange machine in which a gripper is directly attached to the tip of a cylindrical fuel exchange machine body and does not have an offset amount. In this case, the UCS is rotatably mounted on the small rotary plug, and the retractable UCS portion inside the UCS is formed eccentrically from the UCS center. At the time of refueling in the reactor, a direct-acting fuel exchange machine is inserted and installed after pulling out the extractable UCS part, and the rotary motion of the large rotary plug and the small rotary plug and the rotary motion of the UCS allows the arbitrary position in the core. The fuel replacement work can be performed.

【0014】[0014]

【作用】上述したごときこの発明の方法によれば、燃料
交換時にUCSを炉心直上から原子炉容器半径方向に距
離をもたせて退避させる必要がなく、UCSを炉心直上
に設置したままの状態で炉内燃料交換を行うことが可能
となる。その結果、前述した“プラグ側決定寸法”を原
子炉容器直径の決定因子から排除でき、実質的に“炉内
側決定寸法”のみによって原子炉容器直径を設計できる
ため、原子炉容器直径の小型化を図ることができる。
According to the method of the present invention as described above, it is not necessary to retract the UCS from immediately above the core at a distance in the radial direction of the reactor vessel at the time of refueling, and in the state where the UCS is installed directly above the core, It becomes possible to perform internal fuel exchange. As a result, the above-mentioned "plug-side deciding dimension" can be excluded from the determinants of the reactor vessel diameter, and the reactor vessel diameter can be designed substantially only by the "reactor inside deciding dimension", thus reducing the reactor vessel diameter. Can be planned.

【0015】[0015]

【実施例】以下に図面に示す実施例を参照してこの発明
を詳述する。図1は具体的な炉心マトリックスを示し、
いずれも断面六角形の燃料棒、遮蔽体および制御棒が所
定の位置に配列されている。図中、太線で描いた六角形
が制御棒(主炉停止系制御棒および後備炉停止系制御
棒)20の位置を表わしている。炉心マトリックス上に
重ねて示した円はUCS30の直径を表わしており、こ
の円内の領域が燃料交換の対象となる領域にほぼ等し
い。UCS30の円内に示した円は、UCS内部に形成
した縦方向に引抜き可能な円筒状のUCS部分31の直
径を表わしている。このUCS部分31の形成位置と寸
法は、炉心マトリックス内の制御棒配置とオフセットア
ーム式燃料交換機寸法とを考慮して決定される。図示の
例では、UCS30の直径は3.36m、このUCSの
内部のUCS部分31の直径は1.75mであり、UC
S部分31には9本の制御棒に対応する9本の制御棒駆
動機構が包含される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the embodiments shown in the drawings. Figure 1 shows a concrete core matrix,
In each case, a fuel rod having a hexagonal cross section, a shield, and a control rod are arranged at predetermined positions. In the drawing, the hexagons drawn with thick lines represent the positions of the control rods (main furnace stop system control rods and secondary furnace stop system control rods) 20. The circle overlaid on the core matrix represents the diameter of the UCS 30, and the area within this circle is approximately equal to the area to be refueled. The circle shown in the circle of the UCS 30 represents the diameter of a vertically-drawable cylindrical UCS portion 31 formed inside the UCS. The formation position and size of the UCS portion 31 are determined in consideration of the control rod arrangement in the core matrix and the offset arm type fuel exchanger size. In the example shown, the diameter of the UCS 30 is 3.36 m, the diameter of the UCS portion 31 inside this UCS is 1.75 m,
The S portion 31 includes nine control rod drive mechanisms corresponding to nine control rods.

【0016】図2は、図1に示したUCS30とその内
部に形成した引抜き可能な円筒状UCS部分31との関
係を説明しており、UCS部分31はUCS内部に形成
されているため、UCS30の外形形状は、従来と同様
の円筒型を維持していることがわかる。このようにUC
Sの外形形状には変化がないから、原子炉容器内の冷却
材流量配分等の設計も従来と同様に行うことができる。
FIG. 2 illustrates the relationship between the UCS 30 shown in FIG. 1 and the withdrawable cylindrical UCS portion 31 formed therein. Since the UCS portion 31 is formed inside the UCS, the UCS 30 It can be seen that the outer shape of (1) maintains the same cylindrical shape as the conventional one. Like this UC
Since the outer shape of S does not change, the design such as the distribution of the coolant flow rate in the reactor vessel can be performed as in the conventional case.

【0017】図3は、内部にUCS部分31を形成した
UCS30を、原子炉容器頂部の蓋に載置した状態の平
面図を示している。すなわち、原子炉容器40の固定プ
ラグ41には、原子炉容器中心とはその中心位置を異に
する回転自在に設計された大回転プラグ42が載置され
ている。大回転プラグ42には、大回転プラグ中心とは
その中心位置を異にする回転自在に設計された小回転プ
ラグ43が載置されている。この小回転プラグ43にU
CS30が載置されている。
FIG. 3 is a plan view showing a state where the UCS 30 having the UCS portion 31 formed therein is placed on the lid on the top of the reactor vessel. That is, on the fixed plug 41 of the reactor vessel 40, a large rotation plug 42, which is designed to be rotatable and whose center position is different from the center of the reactor vessel, is placed. On the large rotation plug 42, a small rotation plug 43, which is rotatably designed with its center position different from the center of the large rotation plug, is placed. U for this small rotation plug 43
CS30 is mounted.

【0018】炉内燃料交換時においては、円筒状UCS
部分31を引抜き、引抜いた部分には、オフセットアー
ム51を折り畳んだ状態の燃料交換機50を搭載した専
用のプラグを挿入し、燃料交換機挿入後にオフセットア
ーム51を伸長させると、燃料交換機グリッパ52が燃
料交換機50本体に対してオフセット量をもった位置に
セットされる。図示の例ではオフセットアーム51のオ
フセット長がUCS部分31の直径内に納まる寸法であ
るから、必ずしもオフセットアーム51は折り畳み可能
でなくともよい。オフセットアーム51は燃料交換機5
0に対して旋回可能に設けられている。かくして燃料交
換機グリッパ52は、大回転プラグ42の半径および回
転角、小回転プラグ43の半径および回転角、燃料交換
機50のオフセット量およびオフセットアーム51の旋
回角、さらには各機器の取付け位置によって、原子炉内
のアクセス範囲(一点鎖線の円)内を任意にアクセスす
ることができ、炉内燃料中継位置53でのグリッパ52
による燃料の把持・離脱を行うことができるのである。
At the time of refueling in the reactor, the cylindrical UCS
The portion 31 is pulled out, and a dedicated plug equipped with the fuel exchanger 50 with the offset arm 51 folded is inserted into the pulled-out portion, and when the offset arm 51 is extended after the fuel exchanger is inserted, the fuel exchanger gripper 52 causes the fuel to move. The switch 50 is set at a position having an offset amount with respect to the main body. In the illustrated example, since the offset length of the offset arm 51 is set within the diameter of the UCS portion 31, the offset arm 51 does not necessarily have to be foldable. The offset arm 51 is the refueling machine 5.
It is provided so as to be turnable with respect to zero. Thus, the refueling machine gripper 52 uses the radius and rotation angle of the large rotation plug 42, the radius and rotation angle of the small rotation plug 43, the offset amount of the refueling machine 50 and the swing angle of the offset arm 51, and the mounting position of each device. It is possible to arbitrarily access the inside of the access range (circle of alternate long and short dash line) in the furnace, and the gripper 52 at the fuel relay position 53 in the furnace
The fuel can be gripped and released by.

【0019】図示の例は、炉心の燃料交換対象領域半径
を1.68m、燃料中継位置53を原子炉中心から2.
45m、大回転プラグ42の直径を5.6m、小回転プ
ラグ43の直径を4.1m、UCS30の直径を3.3
6m、UCS部分31の直径を1.75m、燃料交換機
50のオフセット量を0.7mとして作図したものであ
り、炉内の任意の燃料交換番地と燃料中継位置53との
間で燃料を取り扱いできることが理解できる。図3に
は、燃料交換機グリッパ52が燃料中継位置53にアク
セスしている状態を点線で示してある。なお図中、番号
54は炉内中継機構を示し、番号55および56は冷却
材である液体ナトリウムの入口配管および出口配管をそ
れぞれ示す。
In the illustrated example, the radius of the fuel exchange target region of the core is 1.68 m, and the fuel relay position 53 is 2.
45 m, the diameter of the large rotation plug 42 is 5.6 m, the diameter of the small rotation plug 43 is 4.1 m, and the diameter of the UCS 30 is 3.3.
6 m, the diameter of the UCS part 31 is 1.75 m, the offset amount of the refueling machine 50 is 0.7 m, and the fuel can be handled between any refueling address in the reactor and the fuel relay position 53. Can understand. In FIG. 3, the state where the fuel exchanger gripper 52 is accessing the fuel relay position 53 is shown by a dotted line. In the figure, reference numeral 54 indicates an in-reactor relay mechanism, and reference numerals 55 and 56 indicate an inlet pipe and an outlet pipe of liquid sodium as a coolant, respectively.

【0020】図4は、図3の頂部蓋構造を原子炉容器に
搭載した状態の縦断面図を示しており、図3と同じ部材
は同じ番号を付すことにより説明を省略する。すなわち
前述したように、炉内燃料交換時においては、多数の制
御棒駆動機構57を内蔵するUCS30内部の円筒状U
CS部分31を専用の取扱機で引抜き、引抜き部分に折
り畳み可能なオフセットアーム51を備えた燃料交換機
50を搭載したプラグを挿入する。次いで、プラグ下方
で燃料交換機50のオフセットアーム51を伸ばすとグ
リッパ52は燃料交換機50本体に対してオフセット量
をもって旋回可能とされる。
FIG. 4 is a vertical cross-sectional view showing the state in which the top cover structure of FIG. 3 is mounted on a reactor vessel. The same members as those in FIG. That is, as described above, at the time of fuel refueling in the reactor, the cylindrical U inside the UCS 30 having a large number of control rod drive mechanisms 57 incorporated therein.
The CS portion 31 is pulled out by a dedicated handling machine, and a plug having a refueling machine 50 equipped with a foldable offset arm 51 is inserted into the pulled-out portion. Next, when the offset arm 51 of the refueling machine 50 is extended below the plug, the gripper 52 can be turned with respect to the body of the refueling machine 50 with an offset amount.

【0021】このようにして燃料交換機グリッパ52
は、オフセットアーム51の旋回運動と、大回転プラグ
42および小回転プラグ43の回転運動とによって、燃
料交換対象領域および燃料中継位置53との間を任意に
アクセスすることができる。アクセスした燃料59は燃
料交換機グリッパ52で把持して燃料中継位置53へ移
送し、燃料移送ポット60に入れる。次いでこの燃料移
送ポット60を原子炉容器40周壁方向へ倒したのち、
炉内中継機構54を経て燃料の抜出しを行う。新燃料の
炉内への導入は上述と逆の手順で行えばよい。
In this way, the fuel exchange gripper 52
Can arbitrarily access between the refueling target region and the fuel relay position 53 by the turning motion of the offset arm 51 and the rotary motions of the large rotation plug 42 and the small rotation plug 43. The accessed fuel 59 is gripped by the fuel exchanger gripper 52, transferred to the fuel relay position 53, and put in the fuel transfer pot 60. Next, after the fuel transfer pot 60 is tilted toward the peripheral wall of the reactor vessel 40,
Fuel is extracted through the in-reactor relay mechanism 54. The introduction of new fuel into the reactor may be performed in the reverse order of the above.

【0022】ところで、炉外での燃料移送を行う燃料出
入機(図示せず)と取合うための炉内中継機構54は、
燃料出入機の設計上、回転プラグの回転によって座標位
置が変わらない固定プラグ41上に載せた方が有利であ
り、また、炉内燃料中継位置53は、できるだけ炉心5
8領域に近付けた方が回転プラグを小さく設計できて有
利である。従って、図3および図4に示すように、炉内
中継機構54の据付け位置と燃料中継位置53との間に
は、原子炉容器40半径方向に距離を生じるため、従来
の図8に示したような回転円盤11でこの距離を吸収す
ることは無理を生じる。このため、図4で説明したよう
に燃料を収容する燃料移送ポット60を倒す方式の炉内
中継機構を採用している。炉内中継機構54と燃料中継
位置53との間の距離を吸収するために、図示の燃料移
送ポット60を倒す方式の他に、電車のパンタグラフ給
電のようなリンク機構で行う方式や、直立した燃料移送
ポットを横に滑らせる方式等、種々の方式が採用でき
る。
By the way, the in-reactor relay mechanism 54 for mating with a fuel inlet / outlet (not shown) for transferring fuel outside the reactor,
Due to the design of the fuel inlet / outlet device, it is advantageous to place it on the fixed plug 41 whose coordinate position does not change due to the rotation of the rotary plug. Also, the in-reactor fuel relay position 53 should be as close to the core 5 as possible.
It is advantageous to bring it closer to 8 areas because the rotating plug can be designed smaller. Therefore, as shown in FIG. 3 and FIG. 4, a distance is generated in the radial direction of the reactor vessel 40 between the installation position of the in-reactor relay mechanism 54 and the fuel relay position 53. It is unreasonable to absorb this distance with such a rotating disk 11. Therefore, as described with reference to FIG. 4, the in-reactor relay mechanism of the type in which the fuel transfer pot 60 for accommodating the fuel is tilted is adopted. In order to absorb the distance between the in-reactor relay mechanism 54 and the fuel relay position 53, in addition to the method of tilting the fuel transfer pot 60 shown in the figure, a method of using a link mechanism such as pantograph power supply of a train, or an upright position. Various methods such as a method of sliding the fuel transfer pot sideways can be adopted.

【0023】図5は、直動式燃料交換機を用いた場合の
この発明の実施例を説明するものである。図中、図3の
実施例と同じ部材には同じ番号を付すことにより説明を
省略する。図5の実施例においては、UCS32内部に
偏心的に形成した引抜き可能な円筒状UCS部分33を
引抜き、引抜いた後に直動式燃料交換機70を挿入・設
置する。また、UCS32は回転自在に小回転プラグ4
3に載置してある。かくして直動式燃料交換機70のグ
リッパ71は、大回転プラグ42の半径および回転角、
小回転プラグ43の半径および回転角、回転UCS32
の回転角、さらには直動式燃料交換機70の回転UCS
32中心に対する偏心量によって、原子炉内のアクセス
範囲(一点鎖線の円)内を任意にアクセスすることがで
き、炉内燃料中継位置53でのグリッパ71による燃料
の把持・離脱を行うことができるのである。図5には、
直動式燃料交換機70のグリッパ71が燃料中継位置5
3にアクセスしている状態を点線で示してある。
FIG. 5 illustrates an embodiment of the present invention when a direct drive type fuel exchanger is used. In the figure, the same members as those in the embodiment of FIG. In the embodiment shown in FIG. 5, the retractable cylindrical UCS portion 33 formed eccentrically inside the UCS 32 is withdrawn, and after the withdrawal, the direct drive type fuel exchanger 70 is inserted and installed. In addition, the UCS 32 is a small rotation plug 4 that can be freely rotated.
It is placed at 3. Thus, the gripper 71 of the direct drive type refueling machine 70 has the radius and rotation angle of the large rotation plug 42,
Radius and rotation angle of small rotation plug 43, rotation UCS32
Angle of rotation, and the rotation UCS of the direct drive type fuel exchanger 70
By the amount of eccentricity with respect to the center of 32, it is possible to arbitrarily access the inside of the access range (circle of alternate long and short dash line) in the reactor, and it is possible to grip and release the fuel by the gripper 71 at the in-reactor fuel relay position 53. Of. In Figure 5,
The gripper 71 of the direct drive type refueling machine 70 has the fuel relay position 5
The state in which 3 is being accessed is indicated by a dotted line.

【0024】図示の例は、炉心の燃料交換対象領域半径
を1.68m、燃料中継位置53を原子炉中心から2.
45m、大回転プラグ42の直径を6.3m、小回転プ
ラグ43の直径を4.5m、回転UCS32の直径を
3.36m、直動式燃料交換機70の回転UCS32中
心に対する偏心据付け量を1.04mとして作図したも
のであり、炉内の任意の燃料交換番地と燃料中継位置5
3との間で燃料を取り扱いできることが理解できる。
In the illustrated example, the radius of the refueling target area of the core is 1.68 m, and the fuel relay position 53 is 2.
45 m, the diameter of the large rotation plug 42 is 6.3 m, the diameter of the small rotation plug 43 is 4.5 m, the diameter of the rotary UCS 32 is 3.36 m, and the eccentric installation amount of the direct drive type fuel exchanger 70 with respect to the center of the rotation UCS 32 is 1.04 m. It was drawn as, and any fuel exchange address and fuel relay position 5 in the furnace
It can be understood that the fuel can be handled between the 3 and the above.

【0025】なお直動式燃料交換機を用いる場合には、
オフセットアーム式燃料交換機よりも、UCS32内部
に形成する引抜き可能な円筒状UCS部分33の直径を
小さくすることができる。そのため、UCS32内部の
制御棒駆動機構を包含しない部分に引抜き可能なUCS
部分33を形成することも可能であるため、引抜き可能
なUCS部分の構造が容易になり、軽量となるため引抜
きやすくできる利点もある。
When using a direct drive type fuel exchanger,
The diameter of the retractable cylindrical UCS portion 33 formed inside the UCS 32 can be made smaller than that of the offset arm type fuel exchanger. Therefore, a UCS that can be pulled out to a portion that does not include the control rod drive mechanism inside the UCS 32
Since it is also possible to form the portion 33, the structure of the UCS portion that can be pulled out is facilitated, and since it is light in weight, there is an advantage that it can be easily pulled out.

【0026】[0026]

【発明の効果】以上説明したようにこの発明において
は、炉内燃料交換時に炉心直上からUCSを退避させる
必要がないから、原子炉容器直径を従来のようにUCS
直径の2〜3倍以上といった寸法にしなくてもよく、原
子炉容器の小型化ができ、プラント建設費を大幅に削減
することが可能となる。
As described above, according to the present invention, it is not necessary to evacuate the UCS from directly above the core at the time of fuel refueling in the reactor.
The size of the reactor vessel does not have to be 2 to 3 times the diameter or more, and the reactor vessel can be downsized, and the plant construction cost can be significantly reduced.

【0027】因みに、前述したようなUCS直径が33
60mmのループ型原子炉にこの発明を適用した場合、
“プラグ側決定寸法”は大回転プラグの外径寸法をとっ
ても5.6〜6.3mとなり、“炉内側決定寸法”の
8.4mに対して十分に小さい値となるため、原子炉容
器直径の決定因子から“プラグ側決定寸法”を排除する
ことができ、“炉内側決定寸法”のみによって原子炉容
器直径を決定できることになる。
Incidentally, the UCS diameter as described above is 33
When this invention is applied to a 60 mm loop reactor,
The "plug-side determined dimension" is 5.6 to 6.3 m even with the outer diameter dimension of the large rotation plug, which is sufficiently smaller than the "reactor inner-side determined dimension" of 8.4 m. The “plug-side determinant” can be excluded from the determinants, and the reactor vessel diameter can be determined only by the “reactor-inner determinant”.

【0028】なお、炉内燃料交換時にUCS全体を引抜
き、この引抜き部分に、燃料交換機を載置したプラグを
挿入することも考えられる。しかしながらこの場合に
は、大口径のUCS取扱キャスクが必要になる。このた
め、UCS全体を引抜く際にはキャスクのガス置換のた
めの不活性ガスが大量に必要になる。これに対してこの
発明によれば、UCSの分割体を取扱えばよいため、取
扱キャスクや燃料交換機ケーシングが小型化でき、さら
には不活性ガス消費量も低減できるという利点がある。
It is also conceivable to pull out the entire UCS at the time of refueling in the furnace and insert a plug on which a refueling machine is mounted into this pulled out portion. However, in this case, a large diameter UCS handling cask is required. For this reason, a large amount of inert gas is required to replace the gas in the cask when extracting the entire UCS. On the other hand, according to the present invention, since it is only necessary to handle the UCS split body, there is an advantage that the handling cask and the fuel exchanger casing can be downsized and the inert gas consumption amount can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】炉心マトリックスとUCS直径および引抜き可
能なUCS部分の直径の一例を示す説明図。
FIG. 1 is an explanatory view showing an example of a core matrix, a UCS diameter, and a diameter of a drawable UCS portion.

【図2】図1に示したUCS外形形状とその内部に形成
した引抜き可能なUCS部分との関係を示す斜視図。
FIG. 2 is a perspective view showing a relationship between the UCS outer shape shown in FIG. 1 and a retractable UCS portion formed inside thereof.

【図3】炉内燃料交換時の原子炉容器頂部蓋およびオフ
セットアーム式燃料交換機配置を示す説明図。
FIG. 3 is an explanatory view showing the arrangement of a reactor vessel top cover and an offset arm type fuel exchanger at the time of refueling in the reactor.

【図4】図3の原子炉容器蓋を原子炉容器に搭載して、
この発明の燃料交換方法を実施している状態を示す原子
炉容器断面図。
FIG. 4 is a diagram showing a case where the reactor vessel lid of FIG. 3 is mounted on a reactor vessel,
FIG. 3 is a cross-sectional view of a reactor vessel showing a state in which the refueling method of the present invention is being performed.

【図5】炉内燃料交換時の原子炉容器頂部蓋および直動
式燃料交換機配置を示す説明図。
FIG. 5 is an explanatory view showing the arrangement of a reactor vessel top cover and a direct-acting type fuel exchange machine at the time of refueling in the reactor.

【図6】従来の高速増殖炉の出力運転時の原子炉内にお
けるUCSの位置関係を示す説明図。
FIG. 6 is an explanatory view showing the positional relationship of UCS in the nuclear reactor during the output operation of the conventional fast breeder reactor.

【図7】図6のA−A線に沿う断面図。7 is a sectional view taken along the line AA of FIG.

【図8】従来の高速増殖炉の炉内燃料交換時の原子炉内
におけるUCS等の位置関係を示す説明図。
FIG. 8 is an explanatory diagram showing a positional relationship of UCS and the like in a nuclear reactor at the time of fuel exchange in the conventional fast breeder reactor.

【図9】図8のB−B線に沿う断面図。 30,32…炉心上部機構(UCS)、31,33…引
抜き可能なUCS部分、40…原子炉容器、41…固定
プラグ、 42…大回転プラグ、 43…小回転プラ
グ、50…オフセットアーム式燃料交換機、 51…オ
フセットアーム、70…直動式燃料交換機。
9 is a sectional view taken along the line BB of FIG. 30, 32 ... Upper core mechanism (UCS), 31, 33 ... Extractable UCS part, 40 ... Reactor vessel, 41 ... Fixed plug, 42 ... Large rotation plug, 43 ... Small rotation plug, 50 ... Offset arm fuel exchange machine , 51 ... Offset arm, 70 ... Direct-acting type fuel exchanger.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】固定プラグと、該固定プラグに対して偏心
的に載置した回転自在な大回転プラグと、該大回転プラ
グに対して偏心的に載置した回転自在な小回転プラグと
を有する原子炉容器頂部蓋の前記小回転プラグに、多数
の制御棒駆動機構を内蔵する炉心上部機構を載置し、該
炉心上部機構の内部に引抜き可能な炉心上部機構部分を
形成し、炉内燃料交換時においては、前記炉心上部機構
部分を引抜き、引抜いた部分に、旋回可能なオフセット
アームを備えた燃料交換機を挿入・設置し、大回転プラ
グと小回転プラグの回転運動および燃料交換機のオフセ
ットアームの旋回運動によって、炉心内の任意の位置の
燃料の交換作業を行うことを特徴とする原子炉内燃料交
換方法。
1. An atom having a fixed plug, a rotatable large rotation plug eccentrically mounted on the fixed plug, and a rotatable small rotation plug eccentrically mounted on the large rotation plug. On the small rotation plug of the top lid of the reactor vessel, an upper core mechanism having a large number of control rod drive mechanisms is placed, and a retractable upper core mechanism portion is formed inside the upper core mechanism, and in-core fuel exchange is performed. In some cases, the upper core mechanism part is pulled out, and a fuel exchange machine equipped with a swivelable offset arm is inserted and installed in the pulled out part, the rotary motion of the large rotation plug and the small rotation plug and the rotation of the offset arm of the fuel exchange machine are swung. A method for refueling in a nuclear reactor, characterized in that the fuel is refueled at an arbitrary position in the core by exercise.
【請求項2】固定プラグと、該固定プラグに対して偏心
的に載置した回転自在な大回転プラグと、該大回転プラ
グに対して偏心的に載置した回転自在な小回転プラグと
を有する原子炉容器頂部蓋の前記小回転プラグに、多数
の制御棒駆動機構を内蔵する炉心上部機構を回転自在に
載置し、該炉心上部機構の内部に引抜き可能な炉心上部
機構部分を該炉心上部機構中心から偏心させて形成し、
炉内燃料交換時においては、前記炉心上部機構部分を引
抜き、引抜いた部分に、直動式燃料交換機を挿入・設置
し、大回転プラグと小回転プラグの回転運動および炉心
上部機構の回転運動によって、炉心内の任意の位置の燃
料の交換作業を行うことを特徴とする原子炉内燃料交換
方法。
2. An atom having a fixed plug, a rotatable large rotation plug eccentrically mounted with respect to the fixed plug, and a rotatable small rotation plug eccentrically mounted with respect to the large rotation plug. A core upper part mechanism having a large number of control rod drive mechanisms is rotatably mounted on the small rotation plug of the top cover of the reactor vessel, and a core upper part mechanism part that can be pulled out is inside the core upper part mechanism. Formed eccentrically from the center,
At the time of fuel refueling in the reactor, the core upper mechanism part is pulled out, and in the extracted portion, a direct-acting fuel exchange machine is inserted and installed, and by the rotary motion of the large rotary plug and the small rotary plug and the rotary motion of the core upper mechanism, A method for refueling an in-reactor, comprising performing a fuel exchange operation at an arbitrary position in the core.
JP3197925A 1991-08-07 1991-08-07 Refueling method in reactor Expired - Lifetime JPH0782111B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP3197925A JPH0782111B2 (en) 1991-08-07 1991-08-07 Refueling method in reactor
FR9209694A FR2680273B1 (en) 1991-08-07 1992-08-05 NUCLEAR REACTOR RECHARGING PROCESS.
DE4226228A DE4226228C2 (en) 1991-08-07 1992-08-07 Loading device for a nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3197925A JPH0782111B2 (en) 1991-08-07 1991-08-07 Refueling method in reactor

Publications (2)

Publication Number Publication Date
JPH0540197A true JPH0540197A (en) 1993-02-19
JPH0782111B2 JPH0782111B2 (en) 1995-09-06

Family

ID=16382564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3197925A Expired - Lifetime JPH0782111B2 (en) 1991-08-07 1991-08-07 Refueling method in reactor

Country Status (3)

Country Link
JP (1) JPH0782111B2 (en)
DE (1) DE4226228C2 (en)
FR (1) FR2680273B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111009330A (en) * 2019-12-25 2020-04-14 中广核研究院有限公司 Reactor uncovering and reloading rotary shielding device
CN112201374A (en) * 2020-10-10 2021-01-08 一重集团大连工程技术有限公司 Eccentric reactor reloading device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2963845A1 (en) * 2010-08-12 2012-02-17 Didier Costes Sodium-cooled nuclear reactor, has vertical combustible elements provided with hexagonal sections, and cylindrical body carrying vertical tube that is projectable radially under slab, where grappler of tube seizes top of elements
FR2966638B1 (en) * 2010-10-22 2012-12-28 Commissariat Energie Atomique DEVICE AND METHOD FOR REPLACING AN IRRADIATED FUEL ASSEMBLY BY A NEW COMBUSTIBLE ASSEMBLY IN THE VESSEL OF A NUCLEAR REACTOR AND A NUCLEAR REACTOR COMPRISING SUCH A DEVICE

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU401253A1 (en) * 1971-07-20 1984-11-07 Shumyakin E P Method for transferring fast breeding reactor
SU397094A1 (en) * 1971-07-20 1984-11-07 Shumyakin E P Transfer machine
SU440968A1 (en) * 1971-09-28 1984-07-15 Предприятие П/Я А-7755 Load transfer device for commercial fast breeding nuclear reactor
SU576856A1 (en) * 1975-09-03 1984-11-15 Предприятие П/Я А-7755 Sealed chamber for reloading mechanism of liquid-metal heat transer agent nuclear reactor
FR2488719B1 (en) * 1980-08-14 1985-10-04 Commissariat Energie Atomique INSTALLATION AND METHOD FOR HANDLING FAST NEUTRAL NUCLEAR REACTOR ASSEMBLIES
DE3403110A1 (en) * 1983-02-04 1984-08-09 Westinghouse Electric Corp., Pittsburgh, Pa. DEVICE FOR HANDLING FUEL ELEMENTS
US4645640A (en) * 1984-02-09 1987-02-24 Westinghouse Electric Corp. Refueling system with small diameter rotatable plugs
EP0240602A3 (en) * 1986-04-03 1988-09-21 Rockwell International Corporation fuel transfer means
FR2605787B1 (en) * 1986-10-22 1989-05-05 Commissariat Energie Atomique FUEL HANDLING PLANT IN A FAST NEUTRAL NUCLEAR REACTOR
JPH02161394A (en) * 1988-12-15 1990-06-21 Toshiba Corp Refueling device
JP2520008B2 (en) * 1989-03-23 1996-07-31 富士電機株式会社 Refueling device for fast breeder reactor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111009330A (en) * 2019-12-25 2020-04-14 中广核研究院有限公司 Reactor uncovering and reloading rotary shielding device
CN112201374A (en) * 2020-10-10 2021-01-08 一重集团大连工程技术有限公司 Eccentric reactor reloading device
CN112201374B (en) * 2020-10-10 2024-04-23 一重集团大连工程技术有限公司 Eccentric reactor reloading device

Also Published As

Publication number Publication date
JPH0782111B2 (en) 1995-09-06
FR2680273B1 (en) 1994-12-09
FR2680273A1 (en) 1993-02-12
DE4226228A1 (en) 1993-02-18
DE4226228C2 (en) 1996-08-14

Similar Documents

Publication Publication Date Title
US4096031A (en) Nuclear reactor refueling system
US10755822B2 (en) In-vessel rod handling systems
JPH0540197A (en) Refueling method for reactor
US3600277A (en) Refueling apparatus and method for fast reactors
JPH0540196A (en) Refueling method for reactor
US20130315363A1 (en) Device and method for replacing an irradiated fuel assembly with a new fuel assembly in the vessel of a nuclear reactor, and nuclear reactor including such a device
JPS60187896A (en) Charger for fuel
JPS6346878Y2 (en)
JP3104471B2 (en) Refueling machine gripper for fast breeder reactor
JPS59147299A (en) Nuclear fuel assembly handling device
JP3028678B2 (en) Reactor upper mechanism of fast breeder reactor
JPH0267995A (en) Fuelling equipment of fast breeder reactor
JP2520008B2 (en) Refueling device for fast breeder reactor
EP0240602A2 (en) Fuel transfer means
JPS60244896A (en) Fast breeder type reactor
JPH0584879B2 (en)
JPS6122798B2 (en)
Kim et al. Design review of In-vessel transfer system in SFR
JPS6118712B2 (en)
JP2660465B2 (en) Fast reactor refueling equipment
JPH0329893A (en) Refuelling device
JPS635297A (en) Upper structure of fast breeder reactor
Takahashi et al. Study of an advanced fuel handling system
JPS62226097A (en) Control-rod drive-mechanism built-in fuel exchanger
JPS63149597A (en) Fuel exchanger for nuclear reactor