JPH0540087A - Method for measuring and controlling concentration of element in semiconductor - Google Patents

Method for measuring and controlling concentration of element in semiconductor

Info

Publication number
JPH0540087A
JPH0540087A JP19945791A JP19945791A JPH0540087A JP H0540087 A JPH0540087 A JP H0540087A JP 19945791 A JP19945791 A JP 19945791A JP 19945791 A JP19945791 A JP 19945791A JP H0540087 A JPH0540087 A JP H0540087A
Authority
JP
Japan
Prior art keywords
thin film
composition
semiconductor
profile
impurity concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19945791A
Other languages
Japanese (ja)
Inventor
Hiroshi Fujioka
洋 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP19945791A priority Critical patent/JPH0540087A/en
Publication of JPH0540087A publication Critical patent/JPH0540087A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To measure the concn. profile of the element in a semiconductor within a short time and to control the growth of a membrane in situ. CONSTITUTION:The optical data of a semiconductor is measured by ellipsometry and converted to an element concn. profile on reference to the data base of preliminarily accumulated optical data/composition data. By this constitution, the concn. profile of impurity is calculated and the composition file of a two- component type semiconductor during the growth of a membrane is hourly calculated to be fed back to a growing condition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体中の元素濃度プロ
ファイルの測定方法、さらに特定すれば半導体の不純物
濃度プロファイルの測定方法、および二成分系薄膜半導
体の薄膜の濃度プロファイルを成長中に刻々測定し、こ
れに基づいて薄膜成長を制御する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring an element concentration profile in a semiconductor, more specifically, a method for measuring an impurity concentration profile of a semiconductor, and a concentration profile of a thin film of a binary thin film semiconductor during growth. And a method for controlling thin film growth based on this.

【0002】[0002]

【従来の技術】従来、Si 基板上に成長させる二成分系
薄膜たとえばSi1-X GeX 薄膜の組成プロファイルの測定
は、成長させて、プロセス反応装置から取出した後、た
とえば二次イオン質量スペクトル分析(SIMS)によって
行っていた。しかし薄膜を成長させた後の測定であるた
め、成長中に薄膜組成プロファイルを制御することは不
可能であった。
2. Description of the Related Art Conventionally, the composition profile of a binary thin film, such as a Si 1-X Ge X thin film, grown on a Si substrate is measured by growing it and taking it out from a process reactor, and then measuring the secondary ion mass spectrum, for example. It was done by analysis (SIMS). However, it was impossible to control the composition profile of the thin film during the growth because it was measured after the thin film was grown.

【0003】また、半導体中に拡散させた不純物の濃度
プロファイルの測定は、たとえば二次イオン質量スペク
トル分析(SIMS)やストリッピング抵抗(SR)などの破
壊試験か、または非破壊的な方法として、プロセスシュ
ミレータによって不純物の濃度プロファイルを推定する
ことも行われたが、現実の拡散工程は必ずしも所定のと
おりに熱処理条件を実現させることができない。そのた
めシュミレータに入力する条件が現実の条件と相違し
て、シュミレータから得られる濃度プロファイルが試料
の実際の濃度プロファイルと一致しない欠点があった。
The concentration profile of impurities diffused in a semiconductor is measured by, for example, a destructive test such as secondary ion mass spectrum analysis (SIMS) or stripping resistance (SR), or as a nondestructive method. Although the concentration profile of impurities was also estimated by the process simulator, the actual diffusion process cannot always realize the heat treatment conditions as prescribed. Therefore, the condition input to the simulator is different from the actual condition, and the concentration profile obtained from the simulator does not match the actual concentration profile of the sample.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、非破
壊的な方法によって、半導体中の元素濃度プロファイ
ル、特に半導体中の不純物濃度プロファイルの測定、お
よび二成分系半導体薄膜の組成プロファイルの測定を行
い、さらに、二成分系半導体薄膜の成長条件を insitu
で制御する方法を提供することである。
The object of the present invention is to measure the element concentration profile in a semiconductor, especially the impurity concentration profile in a semiconductor, and the composition profile of a binary semiconductor thin film by a non-destructive method. In addition, the growth conditions of the binary semiconductor thin film were measured in situ.
It is to provide a method of controlling by.

【0005】[0005]

【課題を解決するための手段】上記課題は、(a)可視
光分光エリプソメトリまたは赤外線エリプソメトリによ
って、基板上に成長中の二成分系薄膜を含む半導体の光
学情報Δ,Ψを刻々測定し、(b)この光学情報を、直
前に測定した時までの集積薄膜の深さ組成情報(組成プ
ロファイル)と、組成と光学定数(複素屈折率nまたは
複素誘電率ε)の関係を示すデータベースに参照し、単
位薄膜層の組成と膜厚をパラメータにコンピュータフィ
ッティングすることにより、単位薄膜層の組成データお
よび膜厚データを得、(c)これを蓄積して薄膜全体の
深さと組成の関係を求めて測定時までの組成プロファイ
ルを刻々得、(d)この組成プロファイルを、設計の組
成プロファイルにフィッティングさせてその差を求め、
薄膜成長条件にフィードバックさせて薄膜成長を刻々制
御することを特徴とする半導体の二成分系薄膜の成長制
御方法、および
The above problems are as follows: (a) The optical information Δ, Ψ of a semiconductor including a binary thin film being grown on a substrate is measured every moment by visible light spectroscopic ellipsometry or infrared ellipsometry. , (B) This optical information is stored in a database showing the depth composition information (composition profile) of the integrated thin film up to the time immediately before measurement, and the relationship between the composition and the optical constant (complex refractive index n or complex dielectric constant ε). Then, by performing computer fitting with the composition and film thickness of the unit thin film layer as parameters, the composition data and film thickness data of the unit thin film layer are obtained, and (c) the data is accumulated and the relationship between the depth and composition of the whole thin film is obtained. The composition profile up to the time of measurement is obtained momentarily, and (d) this composition profile is fitted to the designed composition profile to obtain the difference,
A method of controlling the growth of a binary semiconductor thin film of a semiconductor, characterized by controlling the growth of the thin film by feeding back the thin film growth condition, and

【0006】(a)赤外線エリプソメトリによって、拡
散させた不純物を含む半導体の光学情報を測定し、
(b)他方、プロセスシュミレータに、仮定の不純物拡
散条件をパラメータとして入力して、仮定の不純物濃度
プロファイルを計算し、(c)仮定の不純物濃度プロフ
ァイルを赤外線エリプソメトリの光学情報に変換し、
(d)プロセスシュミレータによる光学情報を、測定に
よる光学情報に一致するまで、プロセスシュミレータに
入力する不純物拡散条件を変更してフィッティングさ
せ、(e)これらの値が一致したときの不純物拡散条件
によって得られるプロセスシュミレータの不純物濃度プ
ロファイルを、求める半導体の不純物濃度プロファイル
と見做すことを特徴とする、半導体の不純物濃度プロフ
ァイルの測定方法によって解決することができる。
(A) By infrared infrared ellipsometry, optical information of a semiconductor containing diffused impurities is measured,
(B) On the other hand, the hypothetical impurity concentration profile is calculated by inputting the hypothetical impurity diffusion conditions into the process simulator as parameters, and (c) the hypothetical impurity concentration profile is converted into infrared ellipsometry optical information,
(D) The optical information obtained by the process simulator is changed by fitting the impurity diffusion conditions input to the process simulator until the optical information obtained by the measurement matches, and (e) the optical information obtained by the impurity diffusion conditions when these values match. This can be solved by a method for measuring an impurity concentration profile of a semiconductor, which is characterized in that the impurity concentration profile of the obtained process simulator is regarded as a desired impurity concentration profile of the semiconductor.

【0007】[0007]

【作用】エリプソメトリは、偏光が既知の入射角で物体
の表面に入射すると、入射偏光と反射偏光との間の光学
的状態の変化を測定する。近年、このような光学情報Δ
およびΨをコンピュータで処理することによって、エリ
プソメトリの応用は著しく発達した。
Operation Ellipsometry measures the change in optical state between incident and reflected polarized light when the polarized light is incident on the surface of an object at a known angle of incidence. In recent years, such optical information Δ
By computerizing and and Ψ, the application of ellipsometry has been significantly developed.

【0008】エリプソメトリの特徴は、極めて薄い膜厚
を測定することができる。そして、インタフェロメトリ
や反射スペクトロメトリで測定できない程度の薄膜で
も、光学情報ΔおよびΨを測定することができる。Δお
よびΨは次式で表される。 Δ=δS −δP (式中、δS およびδP は(入射面に垂直および平行な
光の成分の反射による位相差) tan Ψ =(Rp /Rs ) /(Ep /Es ) (式中、Rp およびRs は入射面に平行および垂直な反
射偏光の電場成分、Ep およびEs は入射面に平行およ
び垂直な入射偏光の電場成分)
The characteristic of ellipsometry is that extremely thin film thickness can be measured. The optical information Δ and Ψ can be measured even with a thin film that cannot be measured by interferometry or reflection spectrometry. Δ and Ψ are expressed by the following equations. Δ = δ S −δ P (where, δ S and δ P are (the phase difference due to the reflection of light components perpendicular to and parallel to the incident surface) tan Ψ = (R p / R s ) / (E p / E s ) (where R p and R s are the electric field components of reflected polarization parallel and perpendicular to the plane of incidence, and E p and E s are the electric field components of incident polarization parallel and perpendicular to the plane of incidence)

【0009】Δは、入射面に平行な偏光成分と、垂直な
偏光成分との間の位相差が、反射によって変化する量で
あり、Ψは、 tanΨが反射による偏光の振幅比の変化を
表す量である。これらをコンピュータ処理することによ
って、対応する複素屈折率n(または複素誘電率ε)と
膜厚dに変換することができる。
Δ is the amount by which the phase difference between the polarized component parallel to the plane of incidence and the polarized component perpendicular to it is changed by reflection, and Ψ is the change in the amplitude ratio of the polarized light by tan Ψ. Is the amount. These can be converted into the corresponding complex refractive index n (or complex permittivity ε) and film thickness d by computer processing.

【0010】本発明の方法は、偏光測定とコンピュータ
処理を組合せたエリプソメトリを応用して、半導体中の
元素濃度プロファイルを測定する。さらに、二成分系薄
膜半導体の成長中に、その組成プロファイルを in situ
で測定し、これを薄膜成長条件にフィードバックさせて
制御し、これによって所定の組成プロファイルを形成す
ることができる。
The method of the present invention applies ellipsometry in which polarization measurement and computer processing are combined to measure the element concentration profile in a semiconductor. Furthermore, during the growth of the binary semiconductor thin film semiconductor, its composition profile was measured in situ.
It is possible to form a predetermined composition profile by feeding back to the thin film growth condition and controlling it by measuring.

【0011】本発明の方法は、極めて薄い単位薄膜層に
ついて、濃度を測定できるので、濃度が傾斜した薄膜の
成長制御もできる。勿論、超格子の作製の制御もでき
る。なお、混晶の作製の制御にも応用することができ
る。
Since the method of the present invention can measure the concentration of an extremely thin unit thin film layer, it is possible to control the growth of a thin film having a concentration gradient. Of course, the production of the superlattice can also be controlled. It can also be applied to control of production of mixed crystals.

【0012】特に、赤外線エリプソメトリによって、拡
散させた不純物のプロファイルを測定する場合、エリプ
ソメトリの測定直前に、Si 基板の表面の自然酸化膜を
酸洗浄して除去することが、測定の精度が高いので好ま
しい。最後に、赤外線エリプソメトリにおいても、偏光
を分光して使用する方が測定精度が高いので好ましい。
In particular, when measuring the profile of diffused impurities by infrared ellipsometry, it is necessary to remove the natural oxide film on the surface of the Si substrate by acid cleaning immediately before the measurement of ellipsometry. It is preferable because it is expensive. Lastly, also in infrared ellipsometry, it is preferable to use the polarized light after splitting it because the measurement accuracy is higher.

【0013】[0013]

【実施例】実施例1 図1は、本発明の半導体の二成分系薄膜の組成プロファ
イルを制御しながら成長させる方法のブロック図であ
る。二成分系薄膜半導体は、常法によって表1
EXAMPLE 1 FIG. 1 is a block diagram of a method of growing a binary semiconductor thin film of a semiconductor according to the present invention while controlling the composition profile. Two-component thin film semiconductors are prepared by the conventional method as shown in Table 1.

【0014】[0014]

【表1】 [Table 1]

【0015】に示す条件で、Si 基板上にSi1-X GeX
膜を化学気相成長させながら、可視光分光エリプソメト
リによって、光学情報としてΔ,Ψを測定した。この光
学情報を、直前回に測定した時までの集積薄膜の深さ組
成情報(組成プロファイル)と、組成と光学定数(複素
屈折率nまたは複素誘電率ε)の関係を示すベータベー
スに参照し、単位薄膜層の組成Xと膜厚dをパラメータ
にコンピュータフィッティングすることにより、直前回
と今回の測定の間に成長した膜厚dと組成Xを求めた。
Under the conditions shown in ( 1) , Δ 1 and ψ were measured as optical information by visible light spectroscopic ellipsometry while the Si 1-X Ge X thin film was grown on the Si substrate by chemical vapor deposition. This optical information is referred to the depth composition information (composition profile) of the integrated thin film up to the time immediately before the measurement and the beta base showing the relationship between the composition and the optical constant (complex refractive index n or complex dielectric constant ε). By performing computer fitting using the composition X and the film thickness d of the unit thin film layer as parameters, the film thickness d and the composition X grown between the immediately previous time and this measurement were obtained.

【0016】図2は、異なる組成のSi1-X GeX の誘電率
の波長依存を示す。特定の波長をとれば、誘電率がSi
1-X GeX の組成、すなわちGe 濃度に対応している。組
成が、深さ方向に均質であり、その組成がそれぞれ異な
る多数のSi1-X GeX をあらかじめ測定して、誘電率εと
Ge 濃度Xの関係をデータベースとして使用した。
FIG. 2 shows the wavelength dependence of the dielectric constant of Si 1-X Ge X having different compositions. At a specific wavelength, the dielectric constant is Si
It corresponds to the composition of 1-X Ge X , that is, the Ge concentration. A large number of Si 1-X Ge X having a uniform composition in the depth direction and different compositions were measured in advance, and the relationship between the dielectric constant ε and the Ge concentration X was used as a database.

【0017】さきに求めた単位膜層の膜厚および組成を
蓄積して薄膜全体の深さと濃度の関係を求めて、測定時
までの組成プロファイルを得、これを設計の組成プロフ
ァイルにフィッティングさせて、相違する場合には、薄
膜成長条件の反応ガス流量、圧力および温度の少なくと
も1つにフィードバックさせた。図3は、こうして得ら
れたGe 濃度プロファイルを設計のプロファイルに比較
したグラフである。ほぼ設計値と一致する結果を示す。
By accumulating the film thickness and composition of the unit film layer obtained previously, the relationship between the depth and the concentration of the entire thin film is obtained, the composition profile up to the time of measurement is obtained, and this is fitted to the designed composition profile. In the case of difference, feedback was made to at least one of the reaction gas flow rate, pressure and temperature of the thin film growth conditions. FIG. 3 is a graph comparing the Ge concentration profile thus obtained with the design profile. The results almost match the design values.

【0018】実施例2 可視光分光エリプソメトリの代りに、赤外線エリプソメ
トリにより、光学情報としてΔおよびΨを使用して、G
e 濃度と屈折率の関係に基づいて、組成プロファイルを
求めたことの他は、例1と同様に実験した。赤外線エリ
プソメトリの場合は、赤外線に対してSi1-X GeX が透明
であるので、複素屈折率の消衰係数がゼロとなり、分光
エリプソメトリを使わなくとも、波長固定で、組成プロ
ファイルと膜厚がわかる。
EXAMPLE 2 Instead of visible light spectroscopic ellipsometry, infrared ellipsometry was used, using Δ and Ψ as optical information, G
An experiment was performed in the same manner as in Example 1 except that the composition profile was obtained based on the relationship between the e concentration and the refractive index. In the case of infrared ellipsometry, since Si 1-X Ge X is transparent to infrared rays, the extinction coefficient of the complex index of refraction becomes zero, and the wavelength is fixed and the composition profile and film I know the thickness.

【0019】表2Table 2

【表2】 [Table 2]

【0020】は、赤外域における、Si とGe のそれぞ
れの屈折率nを示す。Si1-X GeX の屈折率nは、これら
の値の中間の値をとるが、Xとnの関係はあらかじめ単
一組成膜を測定し、これをデータベースとして使用し
た。その結果、実施例1と同様に、二次イオン質量スペ
クトル分析による組成プロファイルとほぼ同様な組成プ
ロファイルを得ることができた。
Indicates the refractive index n of each of Si and Ge in the infrared region. The refractive index n of Si 1-X Ge X takes an intermediate value between these values, but the relationship between X and n was obtained by measuring a single composition film in advance and using this as a database. As a result, similar to Example 1, it was possible to obtain a composition profile substantially similar to the composition profile by secondary ion mass spectrum analysis.

【0021】図4は、本発明の半導体の不純物濃度プロ
ファイル測定方法のブロック図である。測定した半導体
は、B濃度1×1015/cm3 のp型Si の (111)ウェハ
に、 33keVでAs+ を5×1013/cm2 注入し、N2 気流中
で 950℃, 30秒間赤外線加熱して、As+ を拡散させた。
エリプソメトリ測定直前にウェハは1%HFで表面の自然
酸化膜を除去した。
FIG. 4 is a block diagram of the semiconductor impurity concentration profile measuring method of the present invention. The measured semiconductor was p + Si (111) wafer with B concentration of 1 × 10 15 / cm 3 , 5 × 10 13 / cm 2 of As + was injected at 33 keV, and 950 ° C. for 30 seconds in N 2 gas flow. Infrared heating was used to diffuse As + .
Immediately before ellipsometry measurement, the surface of the wafer was removed with 1% HF to remove the native oxide film.

【0022】波長0.8〜2μmの赤外線エリプソメトリ
を行い、光学情報としてΔおよびΨを測定した。図4に
示すように、プロセスシュミレータを使用し、初期値と
して、上記の拡散条件の 950℃, 30秒間を入力し、これ
によって得られた不純物プロファイルをデータベースを
参照して、光学情報に変換して、測定光学情報とフィッ
ティングさせた。これらの値が一致しない場合は、シュ
ミレータに入力する条件を初期値より偏らせて、再び上
記操作を繰返し、シュミレータの光学情報とエリプソメ
トリの測定による光学情報が一致したときに、この光学
情報ΔとΨを、膜面からの深さと不純物濃度に変換し
た。本発明による不純物濃度プロファイルは、破壊試験
の二次イオン質量スペクトル分析とほぼ近似する値を示
した。
Infrared ellipsometry having a wavelength of 0.8 to 2 μm was performed, and Δ and Ψ were measured as optical information. As shown in Fig. 4, using a process simulator, enter the above diffusion conditions of 950 ° C for 30 seconds as the initial value, and convert the impurity profile obtained by this into optical information by referring to the database. And fitted with the measured optical information. If these values do not match, the conditions to be input to the simulator are biased from the initial values, the above operation is repeated again, and when the optical information of the simulator and the optical information of the ellipsometry match, this optical information Δ And Ψ were converted into the depth from the film surface and the impurity concentration. The impurity concentration profile according to the present invention showed a value approximately similar to the secondary ion mass spectrum analysis of the destructive test.

【0023】[0023]

【発明の効果】本発明によれば、試料半導体を破壊する
ことなく、不純物プロファイルを、極く短時間で、簡単
にモニタすることが可能となり、不純物拡散工程におけ
る制御性、ひいては半導体素子の歩留りを大幅に向上す
ることができる。また本発明によれば破壊試験の手間を
省いて、薄膜成長中にヘテロ接合素子の組成プロファイ
ルを in situで測定し、その情報をフィードバックさせ
て、組成プロファイルを高精度で制御する。これによっ
てヘテロバイポーラトランジスタなどの高速素子を容易
に作製することができる。
According to the present invention, the impurity profile can be easily monitored in a very short time without destroying the sample semiconductor, and the controllability in the impurity diffusion process and the yield of the semiconductor element can be improved. Can be greatly improved. Also, according to the present invention, the composition profile of the heterojunction device is measured in situ during thin film growth, and the information is fed back to control the composition profile with high precision, without the need for destructive testing. As a result, a high speed element such as a hetero bipolar transistor can be easily manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によって、薄膜成長中のヘテロ接合素子
の組成プロファイルを制御するブロック図である。
FIG. 1 is a block diagram for controlling the composition profile of a heterojunction device during thin film growth according to the present invention.

【図2】異なる組成Si1-X GeX の誘電率の波長依存を示
すグラフである。
FIG. 2 is a graph showing the wavelength dependence of the dielectric constant of different composition Si 1-X Ge X.

【図3】本発明によって作製した薄膜の組成プロファイ
ルを設計値と比較して示すグラフである。
FIG. 3 is a graph showing a composition profile of a thin film manufactured according to the present invention in comparison with a design value.

【図4】本発明によって、不純物を拡散させた半導体の
不純物濃度プロファイルを求めるブロック図である。
FIG. 4 is a block diagram for obtaining an impurity concentration profile of a semiconductor in which impurities are diffused according to the present invention.

【図5】本発明によって測定した不純物濃度プロファイ
ルを、従来のシュミレータによる値と比較して示すグラ
フである。
FIG. 5 is a graph showing an impurity concentration profile measured according to the present invention in comparison with a value obtained by a conventional simulator.

【符号の説明】[Explanation of symbols]

I…Si II…Si0.78 Ge0.22 III …Si0.61 Ge0.39 IV…Ge A…本発明によって成長させた二成分薄膜の組成プロフ
ァイル B…設計組成プロファイル a…本発明によって測定した不純物濃度プロファイル b…二次イオン質量スペクトル分析による不純物濃度プ
ロファイル c…シュミレータのみによって測定した不純物濃度プロ
ファイル
I ... Si II ... Si 0.78 Ge 0.22 III ... Si 0.61 Ge 0.39 IV ... Ge A ... Composition profile of a binary thin film grown according to the present invention B ... Design composition profile a ... Impurity concentration profile measured according to the present invention b ... Two Impurity concentration profile by secondary ion mass spectrum analysis c ... Impurity concentration profile measured only by a simulator

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 (a)可視光分光エリプソメトリまたは
赤外線エリプソメトリによって、基板上に成長中の二成
分系薄膜を含む半導体の光学情報Δ,Ψを刻々測定し、 (b)この光学情報を、直前に測定した時までの集積薄
膜の深さ組成情報と、組成と光学定数(複素屈折率nま
たは複素誘電率ε)の関係を示すデータベースに参照
し、単位薄膜層の組成と膜厚をパラメータにコンピュー
タフィッティングすることにより、単位薄膜層の組成デ
ータおよび膜厚データを得、 (c)これを蓄積して薄膜全体の深さと組成の関係を求
めて測定時までの組成プロファイルを刻々得、 (d)この組成プロファイルを、設計の組成プロファイ
ルにフィッティングさせてその差を求め、薄膜成長条件
にフィードバックさせて薄膜成長を刻々制御することを
特徴とする半導体の二成分系薄膜成長の制御方法。
1. An optical information Δ, Ψ of a semiconductor containing a binary thin film growing on a substrate is measured every moment by (a) visible light spectroscopic ellipsometry or infrared ellipsometry, and (b) this optical information is obtained. , The depth composition information of the integrated thin film up to the time immediately before the measurement and the database showing the relationship between the composition and the optical constant (complex refractive index n or complex dielectric constant ε) are referred to and the composition and thickness of the unit thin film layer are calculated. By computer fitting to the parameters, composition data and film thickness data of a unit thin film layer are obtained, and (c) by accumulating the data, the relationship between the depth and composition of the entire thin film is obtained to obtain a composition profile up to the time of measurement, (D) This composition profile is fitted to the composition profile of the design to find the difference, which is fed back to the thin film growth conditions to control the thin film growth moment by moment. A method for controlling the growth of a binary semiconductor thin film for a semiconductor.
【請求項2】 可視光分光エリプソメトリにおいて、光
学情報Δ,Ψおよび波長を、膜厚および組成に変換する
請求項1に記載の方法。
2. The method according to claim 1, wherein optical information Δ, Ψ and wavelength are converted into film thickness and composition in visible light spectroscopic ellipsometry.
【請求項3】 二成分系薄膜が、Si 基板上に成長中の
Si1-X GeX 薄膜である請求項1記載の方法。
3. A binary thin film is grown on a Si substrate.
The method according to claim 1, which is a Si 1-X Ge X thin film.
【請求項4】 (a)赤外線エリプソメトリによって、
拡散させた不純物を含む半導体の光学情報を測定し、 (b)他方、半導体装置の製造条件を与えることによっ
て不純物濃度プロファイルを計算できるプロセスシュミ
レータに、仮定の不純物拡散条件をパラメータとして入
力して、仮定の不純物濃度プロファイルを計算し、 (c)仮定の不純物濃度プロファイルをもった試料を赤
外エリプソメトリで測定した場合に得られると予測され
る光学情報Δ,Ψを不純物濃度と複素屈折率の関係を蓄
積したデータベースを参照して計算し、 (d)プロセスシュミレータによる光学情報を、測定に
よる光学情報に一致するまで、プロセスシュミレータに
入力する不純物拡散条件を変更してフィッティングさ
せ、 (e)これらの値が一致したときの不純物拡散条件によ
って得られるプロセスシュミレータの不純物濃度プロフ
ァイルを、求める半導体の不純物濃度プロファイルと見
做すことを特徴とする、 半導体の不純物濃度プロファイルの測定方法。
4. (a) By infrared ellipsometry,
(B) On the other hand, (b) On the other hand, a hypothetical impurity diffusion condition is input as a parameter to a process simulator capable of calculating an impurity concentration profile by giving manufacturing conditions of a semiconductor device, The hypothetical impurity concentration profile is calculated, and (c) the optical information Δ and Ψ predicted to be obtained when the sample having the hypothetical impurity concentration profile is measured by infrared ellipsometry is used to calculate the impurity concentration and the complex refractive index. The calculation is performed by referring to the database in which the relationships are accumulated, and (d) the optical information obtained by the process simulator is changed by fitting the impurity diffusion conditions input to the process simulator until the optical information obtained by the measurement is matched. Process Simulator Obtained by Impurity Diffusion Conditions When the Values of the Same Match The impurity concentration profile, characterized in that be regarded as semiconductor impurity concentration profile of obtaining, measuring method of a semiconductor impurity concentration profile.
【請求項5】 不純物拡散条件が、温度および時間であ
る請求項4に記載の方法。
5. The method according to claim 4, wherein the impurity diffusion conditions are temperature and time.
【請求項6】 プロセスシュミレータに、パラメータの
初期値として、不純物濃度プロファイルを求めるべき半
導体の不純物を拡散させる温度および時間を入力する請
求項4に記載の方法。
6. The method according to claim 4, wherein the temperature and time for diffusing the impurities of the semiconductor whose impurity concentration profile is to be determined are input to the process simulator as initial values of the parameters.
JP19945791A 1991-08-08 1991-08-08 Method for measuring and controlling concentration of element in semiconductor Withdrawn JPH0540087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19945791A JPH0540087A (en) 1991-08-08 1991-08-08 Method for measuring and controlling concentration of element in semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19945791A JPH0540087A (en) 1991-08-08 1991-08-08 Method for measuring and controlling concentration of element in semiconductor

Publications (1)

Publication Number Publication Date
JPH0540087A true JPH0540087A (en) 1993-02-19

Family

ID=16408133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19945791A Withdrawn JPH0540087A (en) 1991-08-08 1991-08-08 Method for measuring and controlling concentration of element in semiconductor

Country Status (1)

Country Link
JP (1) JPH0540087A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006093633A (en) * 2004-09-27 2006-04-06 Horiba Ltd Method for specifying film forming condition, film forming method, and manufacturing method for film body
JP2008122402A (en) * 2007-12-21 2008-05-29 Sharp Corp Micro object evaluation device
JP2010085330A (en) * 2008-10-01 2010-04-15 Toyota Motor Corp Method of evaluating quantum structure, method of manufacturing quantum structure, and quantum structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006093633A (en) * 2004-09-27 2006-04-06 Horiba Ltd Method for specifying film forming condition, film forming method, and manufacturing method for film body
JP2008122402A (en) * 2007-12-21 2008-05-29 Sharp Corp Micro object evaluation device
JP4680978B2 (en) * 2007-12-21 2011-05-11 シャープ株式会社 Fine object evaluation equipment
JP2010085330A (en) * 2008-10-01 2010-04-15 Toyota Motor Corp Method of evaluating quantum structure, method of manufacturing quantum structure, and quantum structure

Similar Documents

Publication Publication Date Title
Vedam Spectroscopic ellipsometry: a historical overview
Yao et al. Temperature dependence of optical properties of GaAs
Irene Applications of spectroscopic ellipsometry to microelectronics
Vuye et al. Temperature dependence of the dielectric function of silicon using in situ spectroscopic ellipsometry
Aspnes Analysis of semiconductor materials and structures by spectroellipsometry
Yakovlev et al. An Interface Enhanced Spectroscopic Ellipsometry Technique: Application to Si‐SiO2
Johs et al. Real-time monitoring and control of epitaxial semiconductor growth in a production environment by in situ spectroscopic ellipsometry
KR20010080237A (en) Layer Processing
Theeten et al. Depth profiling and interface analysis using spectroscopic ellipsometry
Stark et al. Deriving the kinetic parameters for Pt-silicide formation from temperature ramped in situ ellipsometric measurements
JPH0540087A (en) Method for measuring and controlling concentration of element in semiconductor
Zhaoxian et al. Generalized simulated annealing algorithm applied in the ellipsometric inversion problem
KR20000071553A (en) Method for processing silicon workpieces using hybrid optical thermometer system
Vasquez et al. Spectroscopic ellipsometry and x‐ray photoelectron spectroscopy studies of the annealing behavior of amorphous Si produced by Si ion implantation
Franke et al. Quantitative analysis of infrared reflection spectra from phosphosilicate glass films
Murthy et al. Application of spectroscopic ellipsometry for real-time control of CdTe and HgCdTe growth in an OMCVD system
Arakawa et al. Optical properties of metals by spectroscopic ellipsometry
Riedling Error effects in the ellipsometric investigation of thin films
Camagni et al. Growth of oxide films onto cleavage faces of crystalline UC
Sieg et al. Characterization of Si x Ge1− x/Si heterostructures for device applications using spectroscopic ellipsometry
JP3983093B2 (en) Composition determination method for polycrystalline compound semiconductor using spectroscopic ellipsometer
Ohlídal et al. Analysis of semiconductor surfaces with very thin native oxide layers by combined immersion and multiple angle of incidence ellipsometry
Garriga et al. Ellipsometry on very thick multilayer structures
Duncan et al. Real-time diagnostics of II–VI molecular beam epitaxy by spectral ellipsometry
Klimecky et al. Real-time reactive ion etch metrology techniques to enable in situ response surface process characterization

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981112