JPH0540063A - Temperature-sensitive sensor - Google Patents

Temperature-sensitive sensor

Info

Publication number
JPH0540063A
JPH0540063A JP19556891A JP19556891A JPH0540063A JP H0540063 A JPH0540063 A JP H0540063A JP 19556891 A JP19556891 A JP 19556891A JP 19556891 A JP19556891 A JP 19556891A JP H0540063 A JPH0540063 A JP H0540063A
Authority
JP
Japan
Prior art keywords
temperature
semiconductor
semiconductor photovoltaic
elements
electromotive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19556891A
Other languages
Japanese (ja)
Inventor
Atsushi Sakai
淳 阪井
Shigeaki Tomonari
恵昭 友成
Takuro Nakamura
卓郎 中邑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP19556891A priority Critical patent/JPH0540063A/en
Publication of JPH0540063A publication Critical patent/JPH0540063A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To enable sensitivity to be improved by connecting a plurality of semiconductor photovoltaic elements which constitute a temperature-sensitive portion in series and adding each electromotive force of these semiconductor photovoltaic elements. CONSTITUTION:A temperature-sensitive portion consists of an photo coupler where a semiconductor light-emitting device 1 and a semiconductor photovoltaic element 2 are built into a same package 1, thus enabling an electromotive force of the element 2 per one semiconductor photovoltaic element 2, namely approximately -2.5mV change to be generated at a temperature-detection signal for example when temperature is increased by 1 deg.C at the temperature- sensitive portion. When it is compared with 2 mV/ deg.C of a silicon transistor, the sensitivity is increased by 25%. In this case, if five elements 2 are connected in series, a change of an approximately -12.5mV occurs for a temperature increment of 1 deg.C at the temperature-sensitive portion. In this manner, when an addition electromotive force of a plurality of elements 2 is a temperature- detection signal, an extremely high sensitivity can be achieved and both the semiconductor light emitting device 1 and the semiconductor photovoltage element 2 to be miniaturized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、半導体式の感温セン
サに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor temperature sensor.

【0002】[0002]

【従来の技術】現在、各種の感温センサ(温度検出装
置)が実用に供されている。その中でも、温度検出信号
が電圧の形でもたらされる温度センサは、小型で経時変
化が少ない等の特徴を有しており、トランジスタ型のも
のや集積化された高機能型などの開発が進められてい
る。
2. Description of the Related Art Currently, various temperature sensitive sensors (temperature detecting devices) are put into practical use. Among them, the temperature sensor in which the temperature detection signal is provided in the form of voltage has characteristics such as small size and little change over time, and development of transistor type and integrated high-performance type has been promoted. ing.

【0003】しかしながら、シリコントランジスタの場
合、温度係数が2mV/℃と高精度の温度計測を目指す
にはいささか感度不足である。また、感温センサと制御
回路を組み合わせた過昇温防止装置がある。この過昇温
防止装置は一定の危険温度以上になると警報を発したり
負荷を遮断したりする働きをする装置である。只、従来
の過昇温防止装置は制御部が多くの部品で構成されてお
り、必然的に大型の装置にならざるを得なかった。過昇
温防止装置の小型化を可能とする温度センサが望まれて
いる。
However, in the case of the silicon transistor, the temperature coefficient is 2 mV / ° C., and the sensitivity is slightly insufficient for the purpose of highly accurate temperature measurement. There is also an excessive temperature rise prevention device that combines a temperature sensor and a control circuit. This excessive temperature rise prevention device is a device that issues an alarm or cuts off the load when the temperature exceeds a certain dangerous temperature. However, in the conventional overheat prevention device, the control unit is composed of many parts, and the device is inevitably large. There is a demand for a temperature sensor that enables downsizing of the excessive temperature rise prevention device.

【0004】[0004]

【発明が解決しようとする課題】この発明は、上記事情
に鑑み、十分な感度を有し、過昇温防止装置の小型化の
道をも拓く半導体式の感温センサを提供することを課題
とする。
SUMMARY OF THE INVENTION In view of the above circumstances, the present invention has an object to provide a semiconductor type temperature sensitive sensor which has sufficient sensitivity and opens the way for downsizing of an excessive temperature rise prevention device. And

【0005】[0005]

【課題を解決するための手段】前記課題を解決するた
め、この発明の感温センサでは、半導体発光素子とその
光を受けて起電力を発生する半導体光起電力素子とで感
温部が構成され、前記光起電力素子の出力を温度検出信
号とする構成をとっている。通常、この発明の感温セン
サでは、図1にみるように、半導体発光素子1と同発光
素子1の光を受けて起電力を発生する半導体光起電力素
子2とが同一のパッケージ3内に組み込まれている形態
をとる。そして、MOSトランジスタ(特にパワータイ
プが有用である)をも同一のパッケージ内に組み込み、
温度検出信号がゲート・ソース間に印加されるように構
成すれば、そのままで過昇温防止機能が備わり、超小型
の過昇温防止装置となる。
In order to solve the above-mentioned problems, in the temperature-sensitive sensor of the present invention, the temperature-sensitive portion is composed of a semiconductor light-emitting element and a semiconductor photovoltaic element which receives the light and generates an electromotive force. In addition, the output of the photovoltaic element is used as a temperature detection signal. Normally, in the temperature sensor of the present invention, as shown in FIG. 1, the semiconductor light emitting element 1 and the semiconductor photovoltaic element 2 which generates electromotive force by receiving light from the light emitting element 1 are provided in the same package 3. Takes the built-in form. And, MOS transistor (power type is especially useful) is also built in the same package,
If the temperature detection signal is applied between the gate and the source, the function of preventing excessive temperature rise is provided as it is, and the device becomes a microminiature excessive temperature rise prevention device.

【0006】この発明の感温センサの場合、より感度を
高めるということからすると、請求項2のように、感温
部を構成する半導体光起電力素子が複数個設けられ、こ
れらの半導体光起電力素子が各起電力が加算されるよう
に直列接続されており、全半導体光起電力素子の加算起
電力を温度検出信号とする形態や、請求項3のように、
半導体光起電力素子にアモルファスシリコン製の抵抗素
子(この抵抗素子も感温部の一部を構成することにな
る)が並列に接続されている形態は非常に有用である。
なお、半導体光起電力素子が複数ある場合(請求項2の
場合)は、普通、アモルファスシリコン製の抵抗素子が
各半導体光起電力素子の直列接続体に対し並列に接続さ
れる構成をとる。
In the case of the temperature-sensitive sensor of the present invention, from the standpoint of further increasing the sensitivity, a plurality of semiconductor photovoltaic elements forming the temperature-sensing portion are provided as in claim 2, and these semiconductor photovoltaic elements are provided. The power elements are connected in series so that the respective electromotive forces are added, and the added electromotive force of all the semiconductor photovoltaic elements is used as a temperature detection signal, or as in claim 3,
A form in which a resistance element made of amorphous silicon (this resistance element also constitutes a part of the temperature sensing portion) is connected in parallel to the semiconductor photovoltaic element is very useful.
When there are a plurality of semiconductor photovoltaic elements (Claim 2), the resistance element made of amorphous silicon is usually connected in parallel to the series connection body of the semiconductor photovoltaic elements.

【0007】半導体光起電力素子には単結晶シリコンを
用いたものとアモルファスシリコン(以下、「a−S
i」と言う)を用いたものとがあるが、後者のa−Si
の方が、製造コストが低く、直列接続体構成が容易にと
れるため好ましい。半導体光起電力素子の直列接続構成
にはタンデム型構造も有効である。a−Si製光起電力
素子としては、下部電極、Bがドープされたp型a−S
i層、ノンドープのa−Si層、Pがドープされたn型
a−Si層、上部電極を順次積層形成することで得られ
るpinタイプの太陽電池が挙げられる。この場合、a
−Si製の抵抗素子もp型a−Si層やn型a−Si層
を利用して同時形成が可能である。
Semiconductor photovoltaic devices using single crystal silicon and amorphous silicon (hereinafter referred to as "a-S").
i)), but the latter a-Si
Is preferable because the manufacturing cost is low and the serial connection structure can be easily obtained. A tandem structure is also effective for the series connection configuration of semiconductor photovoltaic elements. The a-Si photovoltaic element includes a lower electrode and a B-doped p-type a-S.
An example is a pin-type solar cell obtained by sequentially forming an i layer, a non-doped a-Si layer, a P-doped n-type a-Si layer, and an upper electrode. In this case, a
A resistance element made of -Si can be simultaneously formed by utilizing the p-type a-Si layer and the n-type a-Si layer.

【0008】感温センサと共にパワーMOSトランジス
タも組み込み過昇温防止装置となるように構成した場合
の等価回路を図2に示す。図2においては、半導体発光
素子1の光を受ける複数の半導体光起電力素子2・・・
が同一方向に直列に接続され、その直列接続体に対しa
−Si製の抵抗素子Rが並列に接続されており、直列接
続体の出力電圧がMOSトランジスタTRのゲート・ソ
ース間に印加されるように素子間の接続がなされてい
る。負荷はMOSトランジスタTRのソース・ドレイン
間に接続される。
FIG. 2 shows an equivalent circuit in the case where a power MOS transistor is incorporated together with the temperature-sensitive sensor to form an excessive temperature rise prevention device. In FIG. 2, a plurality of semiconductor photovoltaic elements 2, ...
Are connected in series in the same direction, and a is
The -Si resistance elements R are connected in parallel, and the elements are connected so that the output voltage of the series connection body is applied between the gate and source of the MOS transistor TR. The load is connected between the source and drain of the MOS transistor TR.

【0009】例えば、室温においてMOSトランジスタ
TRのゲート・ソース間にしきい値電圧以上の電圧が印
加されるようにしておくと、通常の状態ではMOSトラ
ンジスタTRが導通しており、負荷はオン状態にある。
温度が上昇すると出力電圧が徐々に低下し、ある温度に
なったところでしきい値電圧以下となり、MOSトラン
ジスタTRは遮断されるため、負荷がオフ状態になる。
光起電力素子2の出力電圧は直列接続する素子の数、抵
抗素子Rの抵抗値等によって調節できるため、過昇温動
作温度は広範囲の温度の中から自由に選んで設定でき
る。
For example, if a voltage equal to or higher than the threshold voltage is applied between the gate and source of the MOS transistor TR at room temperature, the MOS transistor TR is conductive in a normal state and the load is turned on. is there.
When the temperature rises, the output voltage gradually decreases, and when the temperature reaches a certain temperature, the output voltage drops below the threshold voltage and the MOS transistor TR is cut off, so that the load is turned off.
Since the output voltage of the photovoltaic element 2 can be adjusted by the number of elements connected in series, the resistance value of the resistance element R, etc., the overheating operation temperature can be freely selected and set from a wide range of temperatures.

【0010】この発明の感温センサの利用にあたって
は、パッケージングを行い、予め温度と出力電圧の関係
を調べておく。MOSを組み込んだ場合は、所定温度で
出力電圧がしきい値電圧となるようにさらに調節する。
そして、発光素子を発光させた状態で温度検知を行いた
い場所に設置するようにする。
When the temperature sensor of the present invention is used, packaging is performed and the relationship between the temperature and the output voltage is checked in advance. When a MOS is incorporated, the output voltage is further adjusted to a threshold voltage at a predetermined temperature.
Then, the light emitting element is placed in a place where temperature detection is to be performed while the light emitting element is emitting light.

【0011】[0011]

【作用】この発明の感温センサでは半導体発光素子と半
導体光起電力素子からなる光カプラで感温部が構成され
ており、感温部に1℃の温度上昇があった場合、半導体
光起電力素子1個当たり、光起電力素子の起電力すなわ
ち温度検出信号には約−2.5mVの変化が生じる。前
述のシリコントランジスタの2mV/℃と比べて感度は
25%も増すことになる。光起電力素子が5個直列に接
続されていれば、感温部の1℃の温度上昇に対し、約−
12.5mVの変化が生じる。このように、複数の半導
体光起電力素子の加算起電力が温度検出信号である場合
は非常に高感度となる。
In the temperature-sensitive sensor of the present invention, the temperature-sensitive portion is composed of the optical coupler consisting of the semiconductor light-emitting element and the semiconductor photovoltaic element, and when the temperature-sensing portion has a temperature rise of 1 ° C. A change of about -2.5 mV occurs in the electromotive force of the photovoltaic element, that is, the temperature detection signal, per power element. The sensitivity is increased by 25% as compared with 2 mV / ° C of the above-mentioned silicon transistor. If 5 photovoltaic elements are connected in series, the temperature rise of 1 ° C in the temperature sensing part will be about-
A change of 12.5 mV occurs. Thus, when the added electromotive force of the plurality of semiconductor photovoltaic elements is the temperature detection signal, the sensitivity becomes extremely high.

【0012】この発明の感温センサは、半導体発光素子
と半導体光起電力素子の両方とも非常に小型化できるも
のであるし、半導体光起電力素子は集積化容易であるた
め、多数個直列接続する形態をとっても素子の大きさは
殆ど変わらず、また、発光素子を増やす必要もなく、小
型化適性は全然失われない。さらに、MOSトランジス
タを組み込む程度で格別複雑な制御回路を付加せずに過
昇温防止機能をもたせられるため、非常に小型で安価な
過昇温防止装置の実現が可能となる。
In the temperature sensor of the present invention, both the semiconductor light emitting element and the semiconductor photovoltaic element can be extremely miniaturized, and since the semiconductor photovoltaic elements are easily integrated, a large number of them are connected in series. The size of the element is almost the same even if it takes such a form, and it is not necessary to increase the number of light emitting elements, and the suitability for miniaturization is not lost at all. Further, since the function of preventing excessive temperature rise can be provided without adding a particularly complicated control circuit to the extent of incorporating a MOS transistor, it is possible to realize a very small and inexpensive excessive temperature rise prevention device.

【0013】さらに、加えて、半導体光起電力素子側に
対して並列接続されるa−Si製の抵抗素子があれば、
この抵抗素子が半導体光起電力素子の出力電圧の対温度
変化量を大きくする働きをするため、より高感度とな
る。a−Si製の抵抗素子を光起電力素子に並列に接続
すると、図3にみるように、光起電力素子の発生電圧
は、抵抗素子の抵抗値で決定される動作点での電圧とな
る。一方、a−Siは欠陥準位が多いため、その抵抗値
は、図4にみるように、大きな負の温度係数をもつ(図
4はn型a−Si層の場合である)。したがって、温度
上昇があると抵抗値が減り、半導体光起電力素子の電流
が増え動作点は電流が増え低電圧側に移動する。その結
果、抵抗素子を設けない場合に比べ、1℃の温度変化に
伴う出力電圧の変化量が大きくなり、感度はさらに良く
なることになる。図5にa−Si製の抵抗素子の有る場
合(実線)とa−Si製の抵抗素子の無い場合(破線)
の出力電圧の対温度特性をそれぞれ示す。前者の方が傾
斜が強く感度が良くなっていることが良く分かる。
In addition, if there is a resistance element made of a-Si connected in parallel to the semiconductor photovoltaic element side,
Since this resistance element functions to increase the amount of change in the output voltage of the semiconductor photovoltaic element with respect to temperature, the sensitivity becomes higher. When the resistance element made of a-Si is connected in parallel with the photovoltaic element, as shown in FIG. 3, the generated voltage of the photovoltaic element becomes the voltage at the operating point determined by the resistance value of the resistance element. .. On the other hand, since a-Si has many defect levels, its resistance value has a large negative temperature coefficient as shown in FIG. 4 (FIG. 4 shows the case of the n-type a-Si layer). Therefore, when the temperature rises, the resistance value decreases, the current of the semiconductor photovoltaic element increases, and the operating point increases the current and moves to the low voltage side. As a result, the amount of change in the output voltage due to the temperature change of 1 ° C. is larger than that in the case where no resistance element is provided, and the sensitivity is further improved. FIG. 5 shows a case with a resistance element made of a-Si (solid line) and a case without resistance element made of a-Si (broken line).
The respective output voltage vs. temperature characteristics of are shown. It can be clearly seen that the former has a stronger inclination and better sensitivity.

【0014】[0014]

【実施例】以下、この発明の感温センサの実施例を説明
する。この発明は、下記の実施例に限らないことは言う
までもない。 −実施例1− 感温部を構成する半導体発光素子として高輝度型赤色L
ED(発光ダイオード)を準備した。
Embodiments of the temperature-sensitive sensor of the present invention will be described below. Needless to say, the present invention is not limited to the following embodiments. -Example 1-High-luminance red L as a semiconductor light-emitting element that constitutes the temperature sensing portion
An ED (light emitting diode) was prepared.

【0015】やはり感温部を構成する半導体光起電力素
子およびa−Si製の抵抗素子の組み合わせ体を以下の
ようにして作製準備した。まず、絶縁基板の上に電子ビ
ーム(EB)蒸着によりCr層を2000Å形成し、フ
ォトリソグラフィ技術でパターン化し所定形状の下部電
極を設けた。ついで、厚み100Åのp型a−Si層、
厚み5000Åのi型a−Si層および厚み100Åの
n型a−Si層を順次積層形成してからフォトリソグラ
フィ技術でパターン化し光電変換層を設け、続いて、電
子ビーム(EB)蒸着によりITO層を1000Å形成
し、パターン化し所定形状の上部電極を設けた。パター
ン構成は、0.2mm×0.4mmサイズのセルが9つ
直列接続されるとともに、n型a−Si層およびITO
層で半導体光起電力素子に並列接続される抵抗素子(5
MΩ)が同時に絶縁基板上に形成されるものにした。
A combination of a semiconductor photovoltaic element and a resistance element made of a-Si, which also constitutes the temperature sensing portion, was prepared as follows. First, a Cr layer of 2000 liters was formed on an insulating substrate by electron beam (EB) vapor deposition, and patterned by photolithography to provide a lower electrode having a predetermined shape. Next, a p-type a-Si layer with a thickness of 100Å,
An i-type a-Si layer having a thickness of 5000Å and an n-type a-Si layer having a thickness of 100Å are sequentially laminated and patterned by a photolithography technique to provide a photoelectric conversion layer, and then an ITO layer is formed by electron beam (EB) vapor deposition. Was formed to a thickness of 1000Å and patterned to provide an upper electrode having a predetermined shape. The pattern configuration is such that nine 0.2 mm × 0.4 mm size cells are connected in series, and an n-type a-Si layer and ITO are used.
Resistor element (5
MΩ) is simultaneously formed on the insulating substrate.

【0016】上記のように準備した高輝度型赤色LED
(発光ダイオード)と半導体光起電力素子およびa−S
i製抵抗素子を、0.5mmのギャップを隔てて対面さ
せ、図1にみるように、樹脂でパッケージングし感温セ
ンサを得た。高輝度型赤色LEDを5mAで駆動した時
の半導体光起電力素子の出力電圧の対温度特性を測った
ところ、図5に実線で図示した特性と同様の傾向の結果
であった。
High-brightness red LED prepared as described above
(Light emitting diode), semiconductor photovoltaic element, and aS
The resistance element made of i was made to face each other with a gap of 0.5 mm, and as shown in FIG. 1, it was packaged with resin to obtain a temperature sensitive sensor. When the high-brightness red LED was driven at 5 mA, the output voltage vs. temperature characteristic of the semiconductor photovoltaic element was measured, and the result showed the same tendency as the characteristic shown by the solid line in FIG.

【0017】−実施例2− 実施例1において、しきい値電圧3VのパワーMOSト
ランジスタを図2に示す電気的接続となるようにして同
時にパッケージングした。この場合、室温状態ではパワ
ーMOSトランジスタが導通状態であったが、約60℃
に上昇するとパワーMOSトランジスタが遮断状態とな
った。
Example 2 In Example 1, power MOS transistors having a threshold voltage of 3 V were packaged at the same time so as to have the electrical connection shown in FIG. In this case, the power MOS transistor was conductive at room temperature, but the temperature was about 60 ° C.
Then, the power MOS transistor was cut off.

【0018】[0018]

【発明の効果】以上に述べたように、この発明の感温セ
ンサでは半導体発光素子と半導体光起電力素子からなる
光カプラで感温部が構成されているため、非常に感度が
高く、小型の過昇温防止装置がMOSトランジスタの併
用で簡単に実現できるから、非常に有用である。
As described above, in the temperature-sensitive sensor of the present invention, the temperature-sensitive portion is composed of the optical coupler consisting of the semiconductor light-emitting element and the semiconductor photovoltaic element, so that the sensitivity is very high and the size is small. The device for preventing excessive temperature rise can be easily realized by using a MOS transistor together, and is therefore extremely useful.

【0019】請求項2の発明の感温センサは、加えて、
複数の半導体光起電力素子の加算起電力が温度検出信号
であるため、より高感度であるという利点がある。請求
項3の発明の感温センサは、加えて、並列接続されるa
−Si製の抵抗素子が半導体光起電力素子の出力電圧の
対温度変化量を大きくする働きをするため、より高感度
であるという利点がある。
In addition to the temperature sensor of the second aspect of the present invention,
Since the added electromotive force of the plurality of semiconductor photovoltaic elements is the temperature detection signal, there is an advantage that the sensitivity is higher. In addition, the temperature sensor of the invention of claim 3 is connected in parallel a
Since the resistance element made of -Si functions to increase the amount of change in the output voltage of the semiconductor photovoltaic element with respect to temperature, there is an advantage that the sensitivity is higher.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の感温センサの構成例をあらわす説明
図である。
FIG. 1 is an explanatory diagram showing a configuration example of a temperature sensor of the present invention.

【図2】この発明の感温センサを用いた過昇温防止装置
の構成例の等価回路図である。
FIG. 2 is an equivalent circuit diagram of a configuration example of an excessive temperature rise prevention device using the temperature sensor of the present invention.

【図3】半導体光起電力素子およびa−Si製の抵抗素
子の電圧−電流特性を示すグラフである。
FIG. 3 is a graph showing voltage-current characteristics of a semiconductor photovoltaic element and a resistance element made of a-Si.

【図4】n型a−Si製の抵抗素子の抵抗率の対温度特
性をあらわすグラフである。
FIG. 4 is a graph showing the resistance vs. temperature characteristic of the resistance element made of n-type a-Si.

【図5】並列接続されたa−Si製の抵抗素子が有る場
合と無い場合の半導体光起電力素子の出力電圧の対温度
特性をあらわすグラフである。
FIG. 5 is a graph showing a temperature characteristic of an output voltage of a semiconductor photovoltaic element with and without a resistance element made of a-Si connected in parallel.

【符合の説明】[Explanation of sign]

1 半導体発光素子 2 半導体光起電力素子 3 パッケージ R a−Si製の抵抗素子 TR MOSトランジスタ 1 Semiconductor Light Emitting Element 2 Semiconductor Photovoltaic Element 3 Package Ra-Si Made Resistor Element TR MOS Transistor

【手続補正書】[Procedure amendment]

【提出日】平成3年11月9日[Submission date] November 9, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図4[Name of item to be corrected] Fig. 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図4】 [Figure 4]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体発光素子とその光を受けて起電力
を発生する半導体光起電力素子とで感温部が構成され、
前記光起電力素子の出力が温度検出信号となっている感
温センサ。
1. A temperature-sensing section is composed of a semiconductor light-emitting element and a semiconductor photovoltaic element that receives the light to generate an electromotive force.
A temperature sensor in which the output of the photovoltaic element is a temperature detection signal.
【請求項2】 感温部を構成する半導体光起電力素子が
複数個設けられ、これらの半導体光起電力素子は各起電
力が加算されるように直列接続されており、全半導体光
起電力素子の加算起電力が温度検出信号となる請求項1
記載の感温センサ。
2. A plurality of semiconductor photovoltaic elements forming a temperature sensing portion are provided, and these semiconductor photovoltaic elements are connected in series so that the respective electromotive forces are added to each other. The added electromotive force of the element serves as a temperature detection signal.
The temperature sensor described.
【請求項3】 半導体光起電力素子にアモルファスシリ
コン製の抵抗素子が並列に接続されている請求項1また
は2記載の感温センサ。
3. The temperature sensor according to claim 1, wherein a resistance element made of amorphous silicon is connected in parallel to the semiconductor photovoltaic element.
JP19556891A 1991-08-05 1991-08-05 Temperature-sensitive sensor Pending JPH0540063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19556891A JPH0540063A (en) 1991-08-05 1991-08-05 Temperature-sensitive sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19556891A JPH0540063A (en) 1991-08-05 1991-08-05 Temperature-sensitive sensor

Publications (1)

Publication Number Publication Date
JPH0540063A true JPH0540063A (en) 1993-02-19

Family

ID=16343292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19556891A Pending JPH0540063A (en) 1991-08-05 1991-08-05 Temperature-sensitive sensor

Country Status (1)

Country Link
JP (1) JPH0540063A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1055571A2 (en) 1999-05-28 2000-11-29 Asmo Co., Ltd. Motor device to be easily fixed to a frame
WO2023116325A1 (en) * 2021-12-21 2023-06-29 华为技术有限公司 Integrated circuit and electronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1055571A2 (en) 1999-05-28 2000-11-29 Asmo Co., Ltd. Motor device to be easily fixed to a frame
WO2023116325A1 (en) * 2021-12-21 2023-06-29 华为技术有限公司 Integrated circuit and electronic device

Similar Documents

Publication Publication Date Title
TWI261934B (en) Infrared sensing IC, infrared sensor and method for producing the same
US8975645B2 (en) Optical filter
US5567976A (en) Position sensing photosensor device
JPS6161457A (en) Photosensor and manufacture thereof
US9478691B2 (en) Light-receiving and emitting device including integrated light-receiving and emitting element and sensor
JPH07202129A (en) Power mosfet with temperature detection diode
EP0307484A1 (en) Color sensor
US4698658A (en) Amorphous semiconductor device
JP5489922B2 (en) Improved photovoltaic power generation circuit
JPH0540063A (en) Temperature-sensitive sensor
JPH04291968A (en) Photodiode
Kunii et al. Performance of a high-resolution contact-type linear image sensor with a-Si: H/a-SiC: H heterojunction photodiodes
CN219610439U (en) Array type infrared sensor integrated with compensation element
JP2002162303A (en) Pressure sensor
JPH0964404A (en) Thin film semiconductor element
US20100084958A1 (en) LED Structure, Manufacturing Method Thereof and LED Module
JP2000156292A (en) Electric element
JP2002076425A (en) Photoelectric conversion device
JPS60224284A (en) Solar battery cell having reverse-flow preventing diode
JP3469061B2 (en) Solar cell
JPS60214204A (en) Strain gage sensor
JPH0673371B2 (en) Solid-state image sensor
JP2002368222A (en) Semiconductor device with overheating detecting function
JP3773894B2 (en) Optical sensor
JPH08181331A (en) Dynamic quantity sensor