JPH0539746A - Misfire judging device for spark-ignition engine - Google Patents

Misfire judging device for spark-ignition engine

Info

Publication number
JPH0539746A
JPH0539746A JP22092991A JP22092991A JPH0539746A JP H0539746 A JPH0539746 A JP H0539746A JP 22092991 A JP22092991 A JP 22092991A JP 22092991 A JP22092991 A JP 22092991A JP H0539746 A JPH0539746 A JP H0539746A
Authority
JP
Japan
Prior art keywords
cylinder
misfire
exhaust gas
value
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22092991A
Other languages
Japanese (ja)
Other versions
JP3312917B2 (en
Inventor
Toru Nakazono
徹 中園
Akihiro Nishimura
章広 西村
Koji Furuta
孝司 古田
Hironori Nishizawa
廣紀 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Diesel Engine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Diesel Engine Co Ltd filed Critical Yanmar Diesel Engine Co Ltd
Priority to JP22092991A priority Critical patent/JP3312917B2/en
Publication of JPH0539746A publication Critical patent/JPH0539746A/en
Application granted granted Critical
Publication of JP3312917B2 publication Critical patent/JP3312917B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To adequately judge misfire in a spark-ignition engine. CONSTITUTION:The exhaust gas temperatures of each cylinder depending upon operating state are stored in a storage means B and for each cylinder, the stored exhaust gas temperature is compared by a judging means C1 with the exhaust gas temperature detected by an exhaust gas temperature detection means A1. A misfire from the cylinder is confirmed if the difference between the two values is above a certain criteria. Therefore, a misfire is adequately judged even if there is scatter in the measured exhaust gas temperatures of each cylinder and the difference between those values is large and this constitution allows the reliability of judgement to be substantially improved compared with measurement using common thresholds.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、火花点火式内燃機関
における失火の判定を各気筒ごとに行うようにした失火
判定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a misfire determination device for determining a misfire in a spark ignition type internal combustion engine for each cylinder.

【0002】[0002]

【従来の技術】この種の失火判定装置としては、排気温
度に一定のしきい値を設定して各気筒の排気温度がしき
い値を下回ると失火と判定することが最も一般的であ
る。しかしながら、このような方式は比較的小形な機関
など各気筒の排気温度間の差が大きいものでは、適切な
失火判定が困難になる場合があった。また、希薄燃焼ガ
ス機関では混合気が薄いため排気温度が低く、上記のよ
うな判定方式では失火の検出が困難となる。更に、排気
温度の低下は失火が数回続かないと検出できないことが
多く、たまたま1回だけ失火してもこれを的確に検出す
ることは困難であり、また失火の回数から劣化の状況を
事前に把握することはできない。
2. Description of the Related Art In this type of misfire determination device, it is most common to set a certain threshold value for the exhaust gas temperature and determine a misfire when the exhaust gas temperature of each cylinder falls below the threshold value. However, in such a system, if the difference between the exhaust temperatures of the cylinders such as a relatively small engine is large, it may be difficult to appropriately determine the misfire. Further, in a lean burn gas engine, since the air-fuel mixture is thin, the exhaust gas temperature is low, and it is difficult to detect misfire by the above-mentioned determination method. Furthermore, it is often difficult to detect a decrease in exhaust temperature unless misfires continue for several times, and it is difficult to accurately detect even a single misfire. Can't figure out.

【0003】[0003]

【発明が解決しようとする課題】この発明はこれらの点
に着目し、火花点火式内燃機関における失火の判定を的
確に行うことを課題としてなされたものである。
SUMMARY OF THE INVENTION The present invention has been made in view of these points, and an object thereof is to accurately determine misfire in a spark ignition type internal combustion engine.

【0004】[0004]

【課題を解決するための手段】上記の課題を達成するた
めに、第1の発明では、排気温度を各気筒ごとに検出す
る排気温度検出手段と、正常運転時における負荷及び機
関回転数に応じた各気筒の排気温度を記憶する記憶手段
と、検出された排気温度を上記記憶手段に記憶された排
気温度と比較し、一定の判定値以上の差がある場合に該
当する気筒の失火と判定する判定手段、とを備えてい
る。図1はこの発明の構成を示す図であり、A1は排気
温度検出手段、Bは記憶手段、C1は判定手段、Dは負
荷検出手段、E1は回転数検出手段である。
In order to achieve the above object, in the first aspect of the invention, an exhaust gas temperature detecting means for detecting the exhaust gas temperature for each cylinder and a load and an engine speed during normal operation are provided. The storage means for storing the exhaust temperature of each cylinder and the detected exhaust temperature are compared with the exhaust temperature stored in the storage means, and if there is a difference equal to or more than a certain determination value, it is determined that the cylinder is misfiring. And a determining means for performing. FIG. 1 is a diagram showing a configuration of the present invention, in which A 1 is an exhaust gas temperature detecting means, B is a storing means, C 1 is a determining means, D is a load detecting means, and E 1 is a rotational speed detecting means.

【0005】また、第2の発明は希薄燃焼ガス機関に関
するものであって、一定速度で運転されている時に排気
温度を各気筒ごとに繰り返し検出する排気温度検出手段
と、全気筒の排気温度の平均値とこの平均値に対する各
気筒ごとの排気温度の偏差値を逐次算出する演算手段
と、算出された偏差値を一定の判定値と比較し、偏差値
が判定値を越えた場合に該当する気筒の失火と判定する
判定手段、とを備えている。図2はこの発明の構成を示
す図であり、A2は排気温度検出手段、Fは演算手段、
2は判定手段である。
A second aspect of the present invention relates to a lean burn gas engine, which includes exhaust temperature detecting means for repeatedly detecting the exhaust temperature of each cylinder when operating at a constant speed, and exhaust temperature of all cylinders. It corresponds to the case where the average value and the calculating means for sequentially calculating the deviation value of the exhaust temperature of each cylinder with respect to this average value and the calculated deviation value are compared with a certain judgment value, and the deviation value exceeds the judgment value. And a determination means for determining a cylinder misfire. FIG. 2 is a diagram showing a configuration of the present invention, in which A 2 is an exhaust gas temperature detecting means, F is a calculating means,
C 2 is a determination means.

【0006】また第3の発明では、機関回転数を常時検
出する回転数検出手段と、回転数の平均値を算出すると
共にこの平均値と検出された回転数を逐次比較し、一定
の判定値以上の差がある場合に回転数を低下させる原因
となった気筒を点火時期との関係から判別してその気筒
を失火と判定する判定手段、とを備えている。図3はこ
の発明の構成を示す図であり、E2は回転数検出手段、
Gは点火装置、C3は判定手段である。
Further, in the third aspect of the invention, a rotation speed detecting means for constantly detecting the engine rotation speed and an average value of the rotation speeds are calculated, and the average value and the detected rotation speeds are sequentially compared to obtain a constant judgment value. When there is the above difference, the determining means determines the cylinder causing the decrease in the rotation speed from the relationship with the ignition timing and determines that cylinder as a misfire. FIG. 3 is a diagram showing the configuration of the present invention, in which E 2 is the rotation speed detecting means,
G is an igniter, and C 3 is a determination means.

【0007】[0007]

【作用】第1の発明は、運転状態に応じた各気筒の排気
温度を記憶し、これと検出された排気温度とを各気筒ご
とに比較するので、共通のしきい値と比較する場合より
も個々の気筒の失火が的確に判定される。また第2の発
明は、一定速度での運転状態において全気筒の排気温度
の平均値に対する各気筒ごとの排気温度の偏差値を逐次
算出し、これを判定値と比較するので、排気温度が低い
希薄燃焼ガス機関であっても個々の気筒の失火が的確に
判定される。更に第3の発明は、回転数の平均値と検出
された回転数とを逐次比較し、回転数が低下した場合に
はその原因となった気筒を点火時期との関係から判別し
てその気筒を失火と判定するので、1回だけの失火でも
確実に検出される。
In the first aspect of the present invention, the exhaust gas temperature of each cylinder corresponding to the operating state is stored, and the detected exhaust gas temperature is compared for each cylinder. Also, the misfire of each cylinder is accurately determined. Further, in the second aspect of the invention, since the deviation value of the exhaust gas temperature of each cylinder with respect to the average value of the exhaust gas temperature of all the cylinders is sequentially calculated in the operating state at a constant speed and is compared with the determination value, the exhaust gas temperature is low. Even in a lean burn gas engine, the misfire of each cylinder is accurately determined. Furthermore, a third aspect of the present invention sequentially compares the average value of the number of revolutions with the detected number of revolutions, and when the number of revolutions decreases, the cylinder causing the decrease is discriminated from the relationship with the ignition timing to determine the cylinder. Is determined to be a misfire, so even a single misfire can be reliably detected.

【0008】[0008]

【第1の発明の実施例】以下、図示の実施例について説
明する。まず、図4乃至図6により第1の発明の実施例
を説明する。図4において、1は火花点火式の内燃機
関、2はマイコンを使用した制御部、3は機関1の吸気
負圧により負荷を検出する負荷センサ、4は機関1の各
気筒ごとにその排気管に設けられて排気温度を検出する
温度センサ、5は機関1の回転数を検出する回転数セン
サである。制御部2には各センサの検出信号が入力され
ており、制御部2は図5のような手順で失火判定を行っ
て判定出力信号6を出力し、例えば警報を発したり、機
関を停止したりするように構成してある。
[First Embodiment of the Invention] The illustrated embodiment will be described below. First, an embodiment of the first invention will be described with reference to FIGS. In FIG. 4, 1 is a spark ignition type internal combustion engine, 2 is a control unit using a microcomputer, 3 is a load sensor for detecting a load by the intake negative pressure of the engine 1, and 4 is an exhaust pipe for each cylinder of the engine 1. A temperature sensor 5 is provided to detect the exhaust gas temperature, and 5 are rotational speed sensors that detect the rotational speed of the engine 1. The detection signals of the respective sensors are input to the control unit 2, and the control unit 2 performs the misfire determination in the procedure as shown in FIG. 5 and outputs the determination output signal 6, for example, issues an alarm or stops the engine. It is configured to do.

【0009】図5において、ステップS1では負荷セン
サ3と回転数センサ5の出力が読み込まれてその時の負
荷と回転数が検出され、この運転状態での各気筒の正常
時の排気温度T1〜TnがステップS2で読み出され
る。機関の排気温度は、負荷と回転数が高いほど高くな
るが、各気筒の排気温度間にはかなりバラツキがあり、
しかもその高低の傾向はその時の運転状態、すなわち負
荷と回転数によって変化する。図6はその例であり、a
は低負荷時、bは中負荷時、cは高負荷時である。この
ように上記の排気温度T1〜Tnは運転状態ごとに異な
るものとなるので、このデータは例えば出荷運転の際に
あらかじめ制御部2のメモリ内にマップの形で記憶させ
ておき、あるいは実際の運転の際に逐次入力される各セ
ンサの出力を記憶させてこれを利用するのであり、該当
するデータが無ければ近いデータを利用して内挿法によ
って求められる。
In FIG. 5, in step S1, the outputs of the load sensor 3 and the rotation speed sensor 5 are read to detect the load and the rotation speed at that time, and the normal exhaust temperature T 1 to each cylinder in this operating state. Tn is read in step S2. The exhaust temperature of the engine increases as the load and the rotational speed increase, but there is considerable variation between the exhaust temperatures of the cylinders.
Moreover, the tendency of the height changes depending on the operating state at that time, that is, the load and the rotational speed. FIG. 6 shows an example of this.
Indicates a low load, b indicates a medium load, and c indicates a high load. As described above, the exhaust temperatures T 1 to Tn are different for each operating state, so this data is stored in the form of a map in the memory of the control unit 2 in advance, for example, at the time of shipping operation, or actually. The output of each sensor that is sequentially input at the time of driving is stored and used, and if there is no corresponding data, it can be obtained by the interpolation method using similar data.

【0010】次にステップS3で現在の各気筒の排気温
度t1〜tnが入力され、ステップS4で各気筒ごとに
正常時の排気温度との差ΔTi=Ti−tiが算出され
る。そしてステップS5で失火判定値H1と比較し、差
が小さくてH1>ΔTiであれば正常と判定し、差が大
きくてH1>ΔTiでなければi番目の気筒が失火して
いると判定し、判定出力信号6が出力されるのである
(ステップS6)。なお、失火判定値H1は試験運転等に
より適切な値をあらかじめ選定してある。
Next, in step S3, the current exhaust gas temperatures t 1 to tn of the respective cylinders are input, and in step S4, a difference ΔTi = Ti-ti from the normal exhaust temperature is calculated for each cylinder. Then, in step S5, a comparison is made with the misfire determination value H 1, and if the difference is small and H 1 > ΔTi, it is determined to be normal, and if the difference is large and H 1 > ΔTi, the i-th cylinder is misfiring. The judgment is made and the judgment output signal 6 is outputted.
(Step S6). As the misfire determination value H 1, an appropriate value is selected in advance by test operation or the like.

【0011】以上のように、この実施例ではその時の運
転状態における正常な排気温度と検出された排気温度と
を各気筒ごとに比較するので、気筒間に排気温度の差が
ありしかも運転状態が変化しても、個々の気筒の失火を
的確に判定できる。また上述のように正常運転時の排気
温度を逐次入力して記憶するという学習機能を利用すれ
ば、その変化から劣化の状況を判断することも可能とな
るのである。
As described above, in this embodiment, the normal exhaust temperature and the detected exhaust temperature in the operating state at that time are compared for each cylinder, so that there is a difference in the exhaust temperature between the cylinders and the operating state is different. Even if it changes, the misfire of each cylinder can be accurately determined. Further, if the learning function of sequentially inputting and storing the exhaust gas temperature during normal operation as described above is used, it is possible to judge the state of deterioration from the change.

【0012】[0012]

【第2の発明の実施例】図7乃至図9は第2の発明の実
施例であり、図7において、11は一定速度で運転され
る希薄燃焼ガス機関、12はマイコンを使用した制御
部、13は機関11の各気筒ごとに設けられている排気
温度検出用の温度センサ、14は過給機、15はインタ
ークーラ、16はガバナ、17はガスレギュレータ、1
8はガス遮断弁、19は空気取り入れ管である。
[Embodiment of the Second Invention] FIGS. 7 to 9 show an embodiment of the second invention. In FIG. 7, 11 is a lean burn gas engine operated at a constant speed, and 12 is a control unit using a microcomputer. , 13 is a temperature sensor for detecting the exhaust gas temperature provided for each cylinder of the engine 11, 14 is a supercharger, 15 is an intercooler, 16 is a governor, 17 is a gas regulator, 1
8 is a gas cutoff valve, and 19 is an air intake pipe.

【0013】この実施例では、図8に示すようにまずス
テップS11で各気筒の排気温度を読み込み、ステップ
S12でその平均値M1とこの平均値に対する各気筒ご
との排気温度の偏差値Siが算出される。そしてステッ
プS13でこの偏差値Siをあらかじめ選定された失火
判定値H2と順次比較し、Si>H2であればi番目の気
筒が失火していると判定してガス遮断弁18を閉じる
(ステップS14)。またSi>H2でなければ次のステ
ップS15に進み、失火判定値H2よりも低い値に設定
してあるしきい値Kと比較し、Si>Kであれば完全失
火と判定してガス遮断弁18を閉じるのである。なお、
以上の失火の判定は運転の開始時と終了時には行わず、
所定の回転数で運転されている期間内でのみ行われる。
In this embodiment, as shown in FIG. 8, the exhaust gas temperature of each cylinder is first read in step S11, and the average value M 1 and the deviation value Si of the exhaust gas temperature of each cylinder from this average value are read in step S12. Is calculated. Then, in step S13, the deviation value Si is sequentially compared with the preselected misfire determination value H 2, and if Si> H 2 , it is determined that the i-th cylinder is misfiring and the gas cutoff valve 18 is closed.
(Step S14). If Si> H 2 is not reached, the process proceeds to the next step S15 and the threshold value K set to a value lower than the misfire determination value H 2 is compared. The shutoff valve 18 is closed. In addition,
The above misfire determination is not performed at the start and end of operation,
It is performed only during a period of operation at a predetermined rotation speed.

【0014】すなわち、この実施例では全気筒の排気温
度の平均値と各気筒の排気温度とを比較するので、排気
温度が低い希薄燃焼ガス機関であっても個々の気筒の失
火を的確に判定することができる。またこの判定機能だ
けでは、完全失火の場合に全気筒の排気温度の平均値も
低下し、個々の気筒の排気温度との差が小さくなって失
火の判定ができないため、共通のしきい値による判定も
併用することにより完全失火の判定も支障なく行うこと
ができる。このため、この実施例でのしきい値Kは従来
のしきい値よりもかなり低く、例えば250〜300℃
程度に設定されている。図9は各気筒の排気温度と平均
値M1、しきい値K等の関係を例示したものである。
That is, in this embodiment, since the average value of the exhaust temperature of all the cylinders is compared with the exhaust temperature of each cylinder, even in a lean burn gas engine having a low exhaust temperature, the misfire of each cylinder can be accurately determined. can do. Also, with this judgment function alone, the average value of the exhaust temperature of all cylinders decreases in the case of complete misfire, and the difference with the exhaust temperature of each cylinder becomes small, so misfire judgment cannot be performed. By using the judgment together, it is possible to judge the complete misfire without any trouble. Therefore, the threshold value K in this embodiment is considerably lower than the conventional threshold value, for example, 250 to 300 ° C.
It is set to a degree. FIG. 9 exemplifies the relationship between the exhaust temperature of each cylinder and the average value M 1 , the threshold value K, and the like.

【0015】[0015]

【第3の発明の実施例】図10乃至図12は第3の発明
の実施例であり、図10において、21は機関、22は
マイコンを使用した制御部、23はイグナイタ、24は
点火コイル、25は点火パルサ、26は回転数センサ、
27はF/Vコンバータとバンドパスフィルタからなる
入力変換部である。制御部22には点火パルサ25から
の点火信号と、入力変換部27からの機関回転数を電圧
に変換した電圧信号Vが入力されており、制御部2は図
11の手順で失火を判定するように構成されている。
[Third Embodiment of the Invention] FIGS. 10 to 12 show an embodiment of the third invention. In FIG. 10, 21 is an engine, 22 is a control section using a microcomputer, 23 is an igniter, and 24 is an ignition coil. , 25 is an ignition pulser, 26 is a rotation speed sensor,
Reference numeral 27 is an input conversion unit including an F / V converter and a bandpass filter. An ignition signal from the ignition pulser 25 and a voltage signal V obtained by converting the engine speed into a voltage from the input conversion unit 27 are input to the control unit 22, and the control unit 2 determines misfire by the procedure of FIG. 11. Is configured.

【0016】まず、ステップS21で電圧信号Vが入力
され、平均値M2が算出される。機関は各気筒の燃焼行
程ごとに加速されるので、電圧信号Vは図12の(b)に
示すように細かく周期的に変動している。波形の数字は
気筒番号であり、例えば2番気筒が失火すると2番気筒
の燃焼行程での加速が行われないので、(b)の破線のよ
うに2番気筒の燃焼行程に対応する時刻の電圧信号Vが
低下する。ステップS22ではこの電圧信号Vを平均値
2よりあらかじめ設定された失火判定値H3だけ低い値
と比較し、V<M2−H3であれば失火が生じていると判
定される。
First, in step S21, the voltage signal V is input and the average value M 2 is calculated. Since the engine is accelerated in each combustion stroke of each cylinder, the voltage signal V fluctuates finely and periodically as shown in FIG. 12 (b). The numbers in the waveform are the cylinder numbers. For example, if the No. 2 cylinder misfires, acceleration in the No. 2 cylinder's combustion stroke is not performed. Therefore, as indicated by the broken line in (b), The voltage signal V drops. Step S22 In this voltage signal V as compared with only low average M 2 misfire judgment value H 3 pre set from misfire if V <M 2 -H 3 is determined to have occurred.

【0017】一方、制御部22には点火パルサ25から
の点火信号が図12の(a)に示すように入力されている
ので、制御部22ではこの信号の入力時刻と失火が生じ
ていると判定されるまでの経過時間Lから失火したのが
2番気筒であることを判別するのである。なお、以上の
失火の判定は運転の開始時と終了時には行わず、所定の
回転数で運転されている期間内でのみ行われる。このよ
うな手順で失火と判定されると、次のステップS23で
その回数nが加算され、あらかじめ設定された基準値J
を越えると警報を発し、機関の運転が停止されるのであ
る(ステップS24)。
On the other hand, since the ignition signal from the ignition pulsar 25 is input to the control unit 22 as shown in FIG. 12 (a), the control unit 22 determines that the input time of this signal and misfire have occurred. It is determined from the elapsed time L until the determination is made that the misfire is in the second cylinder. It should be noted that the above misfire determination is not performed at the start and end of the operation, but is performed only during the period of operation at a predetermined rotation speed. When the misfire is determined by such a procedure, the number of times n is added in the next step S23, and the preset reference value J is set.
When it exceeds the threshold, an alarm is issued and the operation of the engine is stopped (step S24).

【0018】すなわち、この実施例では回転数の平均値
と検出された回転数を逐次比較し、回転数の低下から失
火した気筒を判定するので、1回だけの失火でも確実に
検出され、しかもこの判定は排気温度による場合のよう
な遅れはなくリアルタイムで行われるため、速やかな対
応が可能となる。また、失火の回数をカウントできるの
で劣化の状況を事前に判断し、点検等の準備を余裕をも
って行うことも可能となる。また排気温度センサを各気
筒ごとに配置する必要がなく、構造が簡単となりコスト
も低減される。
That is, in this embodiment, the average value of the number of revolutions and the detected number of revolutions are sequentially compared, and the cylinder that has misfired is judged from the decrease in the number of revolutions. Therefore, even one misfire is surely detected, and Since this determination is performed in real time without a delay as in the case of the exhaust temperature, it is possible to take prompt action. In addition, since the number of misfires can be counted, it is possible to judge the state of deterioration in advance and prepare for inspection and the like with a margin. Further, it is not necessary to dispose an exhaust temperature sensor for each cylinder, which simplifies the structure and reduces the cost.

【0019】[0019]

【発明の効果】以上の説明から明らかなように、この出
願の第1の発明は、運転状態の変化に応じた各気筒の排
気温度を記憶し、この記憶された排気温度と検出された
排気温度とを各気筒ごとに比較するようにしたものであ
る。従って、各気筒の排気温度にバラツキがあり、しか
もその差が大きい場合でも個々の気筒の失火を的確に判
定することができ、共通のしきい値と比較していた従来
例と比べて判定の信頼度が大幅に向上される。
As is apparent from the above description, the first invention of this application stores the exhaust gas temperature of each cylinder according to the change in the operating state, and the stored exhaust gas temperature and the detected exhaust gas temperature. The temperature is compared for each cylinder. Therefore, even if there is a variation in the exhaust temperature of each cylinder, and even if the difference is large, it is possible to accurately determine the misfire of each cylinder, and it is possible to make a determination as compared with the conventional example that is compared with a common threshold value. The reliability is greatly improved.

【0020】また第2の発明は、一定速度で運転される
希薄燃焼ガス機関において、全気筒の排気温度の平均値
に対する各気筒ごとの排気温度の偏差値を判定値と比較
するようにしたものである。従って、排気温度が低い希
薄燃焼ガス機関であっても個々の気筒の失火を的確に判
定することが容易となり、判定の信頼度が大幅に向上さ
れる。更に第3の発明は、回転数の平均値と検出された
回転数を比較し、回転数の低下原因となった気筒を判別
して失火と判定するようにしたものである。従って、排
気温度によって失火を判定する場合のように判定が遅れ
たり失火が検出されなかったりすることがなく、1回だ
けの失火でも確実に検出される。また失火の回数から劣
化の状況を事前に把握することができるので、点検等の
準備等を的確に行うことも可能となる。
A second aspect of the present invention is a lean burn gas engine operated at a constant speed, wherein the deviation value of the exhaust temperature of each cylinder with respect to the average value of the exhaust temperature of all cylinders is compared with a determination value. Is. Therefore, even with a lean burn gas engine having a low exhaust temperature, it is easy to accurately determine misfire of each cylinder, and the reliability of the determination is significantly improved. Further, a third aspect of the present invention is to compare the average value of the number of revolutions with the detected number of revolutions, to discriminate the cylinder causing the lowering of the number of revolutions, and to determine the misfire. Therefore, unlike the case where the misfire is determined based on the exhaust gas temperature, the determination is not delayed or the misfire is not detected, and even a single misfire is reliably detected. In addition, since the state of deterioration can be grasped in advance from the number of misfires, it is possible to make appropriate preparations such as inspections.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の発明の構成を示す図である。FIG. 1 is a diagram showing a configuration of a first invention.

【図2】第2の発明の構成を示す図である。FIG. 2 is a diagram showing a configuration of a second invention.

【図3】第3の発明の構成を示す図である。FIG. 3 is a diagram showing a configuration of a third invention.

【図4】第1の発明の一実施例の概略構成図である。FIG. 4 is a schematic configuration diagram of an embodiment of the first invention.

【図5】同実施例の制御の手順を示すフローチャートで
ある。
FIG. 5 is a flowchart showing a control procedure of the embodiment.

【図6】同実施例における気筒の排気温度のバラツキを
例示したグラフである。
FIG. 6 is a graph exemplifying variations in exhaust temperature of cylinders in the same example.

【図7】第2の発明の一実施例の概略構成図である。FIG. 7 is a schematic configuration diagram of an embodiment of the second invention.

【図8】同実施例の制御の手順を示すフローチャートで
ある。
FIG. 8 is a flowchart showing a control procedure of the embodiment.

【図9】同実施例における気筒の排気温度を例示したグ
ラフである。
FIG. 9 is a graph illustrating an exhaust temperature of a cylinder in the same example.

【図10】第3の発明の一実施例の概略構成図である。FIG. 10 is a schematic configuration diagram of an embodiment of the third invention.

【図11】同実施例の制御の手順を示すフローチャート
である。
FIG. 11 is a flowchart showing a control procedure of the embodiment.

【図12】同実施例における機関回転数の変動を例示し
たグラフである。
FIG. 12 is a graph exemplifying a variation in engine speed in the example.

【符号の説明】[Explanation of symbols]

1,11,21 機関 2,12,22 制御部 3 負荷センサ 4,13 温度センサ 5,26 回転数センサ 14 過給機 18 ガス遮断弁 25 点火パルサ 27 入力変換部 1,11,21 Engine 2,12,22 Control Unit 3 Load Sensor 4,13 Temperature Sensor 5,26 Rotation Speed Sensor 14 Supercharger 18 Gas Cutoff Valve 25 Ignition Pulser 27 Input Converter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西澤 廣紀 大阪市北区茶屋町1番32号 ヤンマーデイ ーゼル株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Hironori Nishizawa 1-32 Chayamachi, Kita-ku, Osaka Yanmar Daisel Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 排気温度を各気筒ごとに検出する排気温
度検出手段と、正常運転時における負荷及び機関回転数
に応じた各気筒の排気温度を記憶する記憶手段と、検出
された排気温度を上記記憶手段に記憶された排気温度と
比較し、一定の判定値以上の差がある場合に該当する気
筒の失火と判定する判定手段、とを備えたことを特徴と
する火花点火式内燃機関の失火判定装置。
1. An exhaust temperature detection means for detecting the exhaust temperature for each cylinder, a storage means for storing the exhaust temperature of each cylinder according to the load and the engine speed during normal operation, and the detected exhaust temperature. Of the spark ignition internal combustion engine, characterized in that the exhaust temperature stored in the storage means is compared with the determination means for determining the misfire of the corresponding cylinder when there is a difference equal to or greater than a certain determination value. Misfire determination device.
【請求項2】 希薄燃焼ガス機関において、一定速度で
運転されている時に排気温度を各気筒ごとに繰り返し検
出する排気温度検出手段と、全気筒の排気温度の平均値
とこの平均値に対する各気筒ごとの排気温度の偏差値を
逐次算出する演算手段と、算出された偏差値を一定の判
定値と比較し、偏差値が判定値を越えた場合に該当する
気筒の失火と判定する判定手段、とを備えたことを特徴
とする火花点火式内燃機関の失火判定装置。
2. In a lean burn gas engine, an exhaust gas temperature detecting means for repeatedly detecting an exhaust gas temperature for each cylinder when operating at a constant speed, an average value of the exhaust gas temperature of all cylinders, and each cylinder for this average value. A calculating means for sequentially calculating the deviation value of the exhaust temperature for each, comparing the calculated deviation value with a constant judgment value, and judging means for judging the misfire of the corresponding cylinder when the deviation value exceeds the judgment value, A misfire determination device for a spark ignition type internal combustion engine, comprising:
【請求項3】 機関回転数を常時検出する回転数検出手
段と、回転数の平均値を算出すると共にこの平均値と検
出された回転数を逐次比較し、一定の判定値以上の差が
ある場合に回転数を低下させる原因となった気筒を点火
時期との関係から判別してその気筒を失火と判定する判
定手段、とを備えたことを特徴とする火花点火式内燃機
関の失火判定装置。
3. A rotational speed detecting means for constantly detecting the engine rotational speed and an average value of the rotational speeds are calculated, and the average value and the detected rotational speeds are sequentially compared with each other, and there is a difference of a certain judgment value or more. In this case, a misfire determination device for a spark ignition type internal combustion engine, comprising: a determination unit that determines the cylinder that has caused a decrease in the number of revolutions from the relationship with the ignition timing and determines that cylinder as a misfire. ..
JP22092991A 1991-08-05 1991-08-05 Misfire determination device for spark ignition type internal combustion engine Expired - Fee Related JP3312917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22092991A JP3312917B2 (en) 1991-08-05 1991-08-05 Misfire determination device for spark ignition type internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22092991A JP3312917B2 (en) 1991-08-05 1991-08-05 Misfire determination device for spark ignition type internal combustion engine

Publications (2)

Publication Number Publication Date
JPH0539746A true JPH0539746A (en) 1993-02-19
JP3312917B2 JP3312917B2 (en) 2002-08-12

Family

ID=16758769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22092991A Expired - Fee Related JP3312917B2 (en) 1991-08-05 1991-08-05 Misfire determination device for spark ignition type internal combustion engine

Country Status (1)

Country Link
JP (1) JP3312917B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100401837B1 (en) * 2000-12-23 2003-10-17 현대자동차주식회사 Method for controlling fuel injection according to misfire and over-risen temperature of exhaust gas
GB2512102A (en) * 2013-03-20 2014-09-24 Perkins Engines Co Ltd Method and apparatus for identifying unstable combustion in an internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100401837B1 (en) * 2000-12-23 2003-10-17 현대자동차주식회사 Method for controlling fuel injection according to misfire and over-risen temperature of exhaust gas
GB2512102A (en) * 2013-03-20 2014-09-24 Perkins Engines Co Ltd Method and apparatus for identifying unstable combustion in an internal combustion engine
GB2512102B (en) * 2013-03-20 2016-03-30 Perkins Engines Co Ltd Method and apparatus for identifying unstable combustion in an internal combustion engine

Also Published As

Publication number Publication date
JP3312917B2 (en) 2002-08-12

Similar Documents

Publication Publication Date Title
US5044195A (en) Misfire detection in an internal combustion engine
US5095742A (en) Determining crankshaft acceleration in an internal combustion engine
US5109695A (en) Misfire detection in an internal combustion engine
US5044194A (en) Misfire detection in an internal combustion engine
KR100557667B1 (en) Process for detecting a misfire in an internal combustion engine and system for carrying out said process
US6243641B1 (en) System and method for detecting engine cylinder misfire
US20090182490A1 (en) Exhaust gas oxygen sensor monitoring
JP4484772B2 (en) Misfire detection device for internal combustion engine
JPH0586956A (en) Missfire detecting device for internal combustion engine
US20090120174A1 (en) Misfire detecting apparatus for an internal combustion engine
US5214958A (en) Misfiring detecting apparatus for an internal combustion device
JPH03501148A (en) Engine misfire detection and exhaust system
JPH05141227A (en) Control device for internal combustion engine provided with exhaust gas purifying catalyser and method and device for diagnosing deterioration of this catalyser
JP2712332B2 (en) Cylinder abnormality detection device for internal combustion engine
JPH06146998A (en) Combustion condition detector for internal combustion engine
US7461545B2 (en) Method and apparatus for monitoring cyclic variability in reciprocating engines
JPH06101560A (en) Device for detecting combustion of internal combustion engine
US6801848B1 (en) Methods and apparatus for sensing misfire in an internal combustion engine
EP3369918B1 (en) Control device for internal combustion engine
JPH0783108A (en) Combustion condition detecting device for internal combustion engine
JPH0539746A (en) Misfire judging device for spark-ignition engine
US5747668A (en) Diagnostic process for an exhaust gas sensor
JP2527798B2 (en) Combustion state detection device for internal combustion engine
JPH0754704A (en) Combustion state judgement device for internal combustion engine
JPH045701Y2 (en)

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees