JPH0539506Y2 - - Google Patents

Info

Publication number
JPH0539506Y2
JPH0539506Y2 JP1985056527U JP5652785U JPH0539506Y2 JP H0539506 Y2 JPH0539506 Y2 JP H0539506Y2 JP 1985056527 U JP1985056527 U JP 1985056527U JP 5652785 U JP5652785 U JP 5652785U JP H0539506 Y2 JPH0539506 Y2 JP H0539506Y2
Authority
JP
Japan
Prior art keywords
exo
photocathode
channel plate
video signal
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1985056527U
Other languages
Japanese (ja)
Other versions
JPS61173078U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985056527U priority Critical patent/JPH0539506Y2/ja
Publication of JPS61173078U publication Critical patent/JPS61173078U/ja
Application granted granted Critical
Publication of JPH0539506Y2 publication Critical patent/JPH0539506Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 イ 産業上の利用分野 本考案はX線用の一次元的或は二次元的なイメ
ージセンサに関する。
[Detailed Description of the Invention] A. Field of Industrial Application The present invention relates to a one-dimensional or two-dimensional image sensor for X-rays.

ロ 従来の技術 従来X線画像を得るには銀ハロゲン系の乳剤を
用いた写真法が用いられていた。しかしこの方法
は現像処理を要するため現像操作が面倒でかつX
線画像を見得るまでに時間がかゝると云う欠点が
ある。近年X線写真のデイジタル化及び低線量化
に対して輝尽性蛍光体を用いたX線イメージング
プレートが開発された。これは輝尽性蛍光体にX
線像を投射して記憶させ、これを光ビームで走査
すると、光ビームで照射された所からX線像に対
応した蛍光を発するので、この蛍光を光フアイバ
ーで光電子増倍管に送り電気信号にしてメモリに
格納するものである。この方法は湿式現像の過程
が不要でX線像が直ぐに得られること、また従来
の写真法に比し低線量でX線像が得られること等
の利点があるが、人体のX線画像を得る場合、安
全の面からはより一層の低線量化が望まれてい
る。
B. Prior Art Conventionally, a photographic method using a silver-halogen emulsion has been used to obtain an X-ray image. However, this method requires development processing, which makes the development operation troublesome and
The disadvantage is that it takes time to see the line image. In recent years, an X-ray imaging plate using a stimulable phosphor has been developed for digitalizing X-ray photography and reducing the dose. This is X for the stimulable phosphor.
When a ray image is projected and stored and then scanned with a light beam, fluorescence corresponding to the X-ray image is emitted from the area irradiated with the light beam, and this fluorescence is sent to a photomultiplier tube using an optical fiber and sent as an electrical signal. and stores it in memory. This method has the advantage of being able to obtain an X-ray image immediately without the need for a wet development process, and that it can obtain an X-ray image with a lower dose of radiation compared to conventional photography methods. From the standpoint of safety, even lower doses are desired.

上述した輝尽性蛍光体を用いたX線イメージン
グプレート法では輝尽性蛍光体から発せられる蛍
光を集めて電気信号に変換しているが、蛍光体か
ら発せられる蛍光を全部光電変換部に導くことは
できず、即ち蛍光体に蓄積されたX線像の再生効
率が低くて、これが感度低下、ダイナミツクレン
ジの低下を来たしているのである。このためエキ
ゾ物質を利用するX線像撮像装置が提案されてい
る。即ちエキゾ物質層に電子像を投射して電子像
を記録し、このエキゾ層を光ビームで走査するこ
とで、入射電子線量に応じた電子を放出させて映
像信号を得るもので、X線をシンチレータで光に
変え、この光を光電面で電子に変え、この電子を
チヤンネルプレートで増倍した後エキゾ物質層に
入射させて電子像を蓄積させ、そのエキゾ物質層
を光ビームで走査して、エキゾ物質層から映像信
号を取出すものであり、チヤンネルプレートで電
子増倍することにより感度向上を得るのである。
In the X-ray imaging plate method using the stimulable phosphor described above, the fluorescence emitted from the stimulable phosphor is collected and converted into an electrical signal, but all the fluorescence emitted from the phosphor is guided to the photoelectric conversion unit. In other words, the reproduction efficiency of the X-ray image accumulated in the phosphor is low, which causes a decrease in sensitivity and a decrease in dynamic range. For this reason, an X-ray image pickup device using an exo substance has been proposed. That is, an electron image is recorded by projecting an electron image onto an exo material layer, and by scanning this exo layer with a light beam, electrons corresponding to the incident electron dose are emitted and a video signal is obtained. A scintillator converts the light into light, a photocathode converts the light into electrons, a channel plate multiplies the electrons, and the electrons enter the exo material layer to accumulate an electron image.The exo material layer is scanned with a light beam. The image signal is extracted from the exo material layer, and the sensitivity is improved by multiplying the electrons in the channel plate.

ハ 考案が解決しようとする問題点 上述したエキゾ物質を利用する方法はチヤンネ
ルプレートによる電子増倍のステツプが入るため
感度向上、ダイナミツクレンジの拡大の効果が得
られているが、X線像の被写体である人体のX線
照射量を低減させるため、X線像撮像装置にはよ
り一層の感度向上が望まれている。このため本考
案は上述したエキゾ物質を利用したX線像撮像装
置の感度を更に一層向上させようとするものであ
る。
C. Problems to be solved by the invention The above-mentioned method using exo materials involves a step of electron multiplication using a channel plate, which improves sensitivity and expands the dynamic range. In order to reduce the amount of X-ray irradiation on the human body, which is a subject, it is desired that X-ray image pickup apparatuses have further improved sensitivity. Therefore, the present invention aims to further improve the sensitivity of the X-ray imaging device using the above-mentioned exo substances.

ニ 問題点解決のための手段 エキゾ物質が照射電子線量をその照射位置に記
憶し、光照射によつてその記憶に応じた電子を放
出する性質を利用し、シンチレータ層に光電面を
密接形成し、光電面の背後に画素分割された電子
増倍チヤンネルプレートを配置し、この電子増倍
チヤンネルプレートの背後にエキゾ物質膜を配置
し、このエキゾ物質膜を背面より光ビームで走査
し、この走査によりエキゾ物質膜から放出された
電子を上記チヤンネルプレートに逆方向から入射
させ、このときチヤンネルプレートの上記光電面
側から出射される電子を上記光電面或はこの光電
面とチヤンネルプレートとの間に配置した電極に
より捕捉して映像信号を取出すようにした。
D. Means for solving the problem Utilizing the property of an exo material to memorize the irradiated electron dose at its irradiation position and emit electrons according to the memorization upon light irradiation, a photocathode is closely formed on the scintillator layer. , a pixel-divided electron multiplication channel plate is placed behind the photocathode, an exo material film is placed behind the electron multiplication channel plate, and a light beam scans this exo material film from the back. The electrons emitted from the exo material film are made to enter the channel plate from the opposite direction, and the electrons emitted from the photocathode side of the channel plate are sent to the photocathode or between the photocathode and the channel plate. The video signal was captured by arranged electrodes and extracted.

ホ 作用 シンチレータ層と光電面が密接形成されてX線
感応膜を構成し、この膜面にX線像を投射する
と、入射X線はその位置で光に変換され、その光
はその位置で直ちに光電面で光電子に変換されて
背面から放出され、放出された光電子は電子増倍
チヤンネルプレートで増倍されてチヤンネルプレ
ート背後のエキゾ物質膜に入射して、この膜にX
線画像を蓄積する。次にこのエキゾ物質膜を背後
からレーザビームで走査すると、エキゾ物質膜か
らは蓄積画像に応じた電子放出が行われ、この電
子は上記したチヤンネルプレートを反対方向に通
過してその間に再び増倍される。この電子をチヤ
ンネルプレートとシンチレータ光電面との間に配
設したグリツドによつて集めて電子信号としてメ
モリに格納する。
E. Effect The scintillator layer and the photocathode are closely formed to form an X-ray sensitive film, and when an X-ray image is projected onto this film surface, the incident X-rays are converted into light at that position, and the light is immediately emitted at that position. The photoelectrons are converted into photoelectrons at the photocathode and emitted from the back surface, and the emitted photoelectrons are multiplied by the electron multiplication channel plate and enter the exo material film behind the channel plate, where they are exposed to X.
Accumulate line images. Next, when this exo material film is scanned from behind with a laser beam, electrons are emitted from the exo material film according to the accumulated image, and these electrons pass through the channel plate described above in the opposite direction, during which they are multiplied again. be done. These electrons are collected by a grid placed between the channel plate and the scintillator photocathode and stored in a memory as an electronic signal.

上の構成によるとX線は光電子に変換され、光
電子のは電界に吸引加速されてチヤンネルプレー
トに入射するから、蛍光を光フアイバーで光電変
換器に導くときの光損失のような変換損失がな
く、更にこのようにして得られた光電子をエキゾ
物質を利用して往復二回に亘つてチヤンネルプレ
ートで増倍して電気信号に変換しているので高
S/N比、低線量化の効果が顕著で、S/N比の
向上により広いダイナミツクレンジが得られるよ
うになる。
According to the above configuration, X-rays are converted into photoelectrons, and the photoelectrons are attracted and accelerated by the electric field and enter the channel plate, so there is no conversion loss like the optical loss when guiding fluorescence to a photoelectric converter with an optical fiber. Furthermore, the photoelectrons obtained in this way are multiplied by the channel plate twice using exo materials and converted into electrical signals, resulting in a high S/N ratio and low radiation dose. This is remarkable, and a wide dynamic range can be obtained by improving the S/N ratio.

ヘ 実施例 第1図は本考案の一実施例の断面を示す。図で
X線は上方から照射され、ハの項で言う背面、背
後とは図で下方のことである。全体は偏平な箱状
のガラス真空容器1内に収納されている。この容
器1の上面内側にシンチレータ層2が形成され、
その表面(図で下面)に光電面3が真空蒸着され
ている。4は光電面3の下方に光電面3と平行に
張設されたグリツドで、切換えによつて光電子加
速電極ともなり、電気信号取出し電極ともなる。
5は画素分割された電子増倍マイクロチヤンネル
プレートである。このチヤンネルプレートは厚さ
約1mm、1チヤンネルは20μm径である。このチ
ヤンネルプレートの下方に第2のグリツド6がチ
ヤンネルプレート5と平行に張設してあり、真空
容器1の底内面と対向させてある。真空容器1の
底内面には透明電極層7が形成してあり、その上
にエキゾ物質層8が形成してある。
F. Embodiment FIG. 1 shows a cross section of an embodiment of the present invention. In the figure, X-rays are irradiated from above, and the term "back" or "behind" in section C refers to the lower side in the figure. The whole is housed in a flat box-shaped glass vacuum container 1. A scintillator layer 2 is formed inside the upper surface of this container 1,
A photocathode 3 is vacuum-deposited on its surface (lower surface in the figure). Reference numeral 4 denotes a grid extending below the photocathode 3 in parallel with the photocathode 3, and by switching, it also serves as a photoelectron accelerating electrode and an electric signal extraction electrode.
5 is a pixel-divided electron multiplication microchannel plate. This channel plate has a thickness of about 1 mm, and one channel has a diameter of 20 μm. A second grid 6 is stretched below the channel plate in parallel with the channel plate 5, and is opposed to the bottom inner surface of the vacuum vessel 1. A transparent electrode layer 7 is formed on the bottom inner surface of the vacuum container 1, and an exotic material layer 8 is formed thereon.

エキゾ物質はBeOとかCaSO4等の絶縁性物質
で電子線とかX線を照射すると照射位置が照射線
量に応じて一種の励起状態(固体内の電子エネル
ギー帯で価電子帯の電子が放射線の作用で価電子
帯の上にある格子欠陥等によるトラツプ準位にト
ラツプされた状態)になり、光を照射すると励起
状態の部分からは先の照射線量に応じた個数の電
子が放出される(トラツプ準位にトラツプされて
いた電子が光励起によつて放出される)。電子放
出が可能なのはエキゾ物質の表面から数100A以
内の極く薄い層に限られるから、第1図のエキゾ
物質層8はなるべく薄く形成しておくことが望ま
しい。
Exo materials are insulating materials such as BeO or CaSO 4. When irradiated with electron beams or When the electrons are irradiated with light, the number of electrons corresponding to the previous irradiation dose is emitted from the excited state (trapped state). (electrons trapped in this level are released by photoexcitation). Since electron emission is possible only in an extremely thin layer within several hundred amps from the surface of the exo material, it is desirable to form the exo material layer 8 in FIG. 1 as thin as possible.

上述構成でエキゾ物質層8にX線像が蓄積する
場合には、第2図に示すように光電面3を接地
し、グリツド4、チヤンネルプレート5の上面、
同下面、グリツド6の順に順次高電圧を印加し、
透明電極7をグリツド6と同電位にしておいて、
真空容器1上面にX線像を投射する。ホ作用の項
で述べたように、シンチレータ層2でX線は光に
変換され、この光は光電面3で光電子に変換さ
れ、この光電子は光電面から垂直下方に向う電界
に引かれて光電面を垂直に発進して加速されチヤ
ンネルプレート5で増倍されてエキゾ物質層8に
入射せしめられ、エキゾ物質層8にX線像を蓄積
する。この過程はX線写真における撮影過程に相
当し、図示の真空容器1はX線フイルム或はそれ
を収納したカセツテに相当している。
When an X-ray image is accumulated in the exo material layer 8 with the above configuration, the photocathode 3 is grounded as shown in FIG.
High voltage is applied sequentially to the lower surface and grid 6,
The transparent electrode 7 is set at the same potential as the grid 6,
An X-ray image is projected onto the top surface of the vacuum container 1. As mentioned in the section on the effect, X-rays are converted into light in the scintillator layer 2, and this light is converted into photoelectrons at the photocathode 3, and these photoelectrons are attracted by an electric field directed vertically downward from the photocathode to generate photoelectric currents. The rays are launched perpendicularly to the surface, accelerated, multiplied by the channel plate 5, and made incident on the exotic material layer 8, where they accumulate an X-ray image. This process corresponds to the photographing process in X-ray photography, and the illustrated vacuum container 1 corresponds to an X-ray film or a cassette containing the same.

次に上述した所によつてエキゾ物質層に蓄積さ
れたX線像を電気の映像信号に変換する操作を述
べる。これはX線写真の現像過程に相当する。第
3図に示すように、透明電極7を接地し、グリツ
ド6、チヤンネルプレート5の下面、同上面、グ
リツド4の順に順次高電圧を印加し、真空容器1
の下方からエキゾ物質層8を制御回路11により
駆動される光ビーム走査手段12によつてレーザ
ビームで走査する。透明電極7が設けてあるのは
エキゾ物質は絶縁性であるので、電子を放出する
と正に帯電して電子放出を阻げるので、エキゾ物
質にグラフアイトを混合して導電性を持たせると
共に、電極7をアースして、正の帯電を逃がすの
である。
Next, the operation of converting the X-ray image accumulated in the exo material layer as described above into an electric video signal will be described. This corresponds to the development process of an X-ray photograph. As shown in FIG. 3, the transparent electrode 7 is grounded, and a high voltage is applied in this order to the grid 6, the lower surface of the channel plate 5, the upper surface of the channel plate 5, and the grid 4.
Exo material layer 8 is scanned with a laser beam from below by light beam scanning means 12 driven by control circuit 11 . The reason why the transparent electrode 7 is provided is that the exo material is insulating, so when it emits electrons, it becomes positively charged and prevents electron emission. Therefore, graphite is mixed with the exo material to make it conductive. , the electrode 7 is grounded to release the positive charge.

さてレーザビームで走査するとエキゾ物質層8
の光照射を受けた個所からは蓄積像の濃度に比例
した個数の電子が放出され、この電子は真空容器
1の底面に垂直に上方に向う電界の作用で加速さ
れ、チヤンネルプレート5で増倍されてグリツド
4に捕捉され電気映像信号となつて、A/D変換
器9を経て画像メモリ10に格納される。なお、
光電面3をグリツド4に代えて映像信号取出し電
極に使うことも可能であり、チヤンネルプレート
端面を電子加速電極に代えることで、グリツド
4,8はなしにすることができる。
Now, when scanning with a laser beam, the exotic material layer 8
A number of electrons proportional to the density of the accumulated image are emitted from the area irradiated with light, and these electrons are accelerated by the action of an upward electric field perpendicular to the bottom of the vacuum chamber 1, and multiplied by the channel plate 5. The signal is captured by the grid 4, becomes an electrical video signal, and is stored in the image memory 10 via the A/D converter 9. In addition,
It is also possible to use the photocathode 3 as a video signal extraction electrode instead of the grid 4, and the grids 4 and 8 can be omitted by replacing the end face of the channel plate with an electron accelerating electrode.

ト 効果 本考案によればX線の電子変換効率が良く、ま
た二回にわたつて電子増倍手段で信号増幅を行つ
ているので高感度、高S/N比が得られる。また
エキゾ物質は電子の透過性から電子放出可能な深
さが数100Åしかないので、直接X線照射によつ
てX線像を蓄積し得る性質を有していても、数
100Åの厚さではX線は殆んど透過してしまつて
エキゾ電子への変換効率はきわめて低いものにな
つてしまうのであるが、本考案ではX線像を電子
像に変えてエキゾ物質に蓄積させることで、画像
入力の効率を高めかつ、画像蓄積時と画像を映像
信号に変換する時の両方で電子増倍による信号増
幅を行い得るようにしたものである。
Effects According to the present invention, the electron conversion efficiency of X-rays is high, and since signal amplification is performed twice by the electron multiplier, high sensitivity and high S/N ratio can be obtained. Furthermore, due to the electron transparency of exo materials, the depth at which they can emit electrons is only a few hundred angstroms, so even if they have the property of accumulating an X-ray image by direct X-ray irradiation,
At a thickness of 100 Å, most of the X-rays pass through and the conversion efficiency into exo-electrons becomes extremely low.However, in this invention, the X-ray image is converted into an electron image and accumulated in the exo-material. By doing so, it is possible to increase the efficiency of image input and to perform signal amplification by electron multiplication both during image storage and when converting the image into a video signal.

なお、本考案の構成でシンチレータ層を省いた
ものは光電面に光像を投写することで、光像の蓄
積、映像信号への変換手段となるものである。
Note that the structure of the present invention in which the scintillator layer is omitted projects an optical image onto a photocathode, thereby serving as a means for accumulating the optical image and converting it into a video signal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例の縦断側面図、第2
図は同実施例の画像蓄積時の結線を示す図、第3
図は同じく映像信号変換時の結線を示す図であ
る。
Fig. 1 is a longitudinal cross-sectional side view of one embodiment of the present invention;
The figure is a diagram showing the wiring during image storage in the same embodiment.
The figure is also a diagram showing connections during video signal conversion.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 偏平箱状の真空容器内にX線照射側から順に、
シンチレータ層、同層に密接させた光電面、電子
増倍チヤンネルプレート、エキゾ物質を平行配置
し、エキゾ物質層を光ビームで走査する手段を設
け、X線像蓄積時には光電面からエキゾ物質層に
向つて高電位になる電位勾配を印加し、映像信号
取出し時にはエキゾ物質層の側から光電面に向つ
て高電位になる電位勾配を印加し得るようにする
と共に、光電面或は光電面とチヤンネルプレート
との間に配置された電極により映像信号を取出す
ようにし、映像信号取出し時に上記光ビーム走査
手段を作動させるようにしてなるX線像撮像装
置。
In order from the X-ray irradiation side in a flat box-shaped vacuum container,
A scintillator layer, a photocathode in close contact with the same layer, an electron multiplication channel plate, and an exo material are arranged in parallel, and a means for scanning the exo material layer with a light beam is provided. When extracting a video signal, a potential gradient that becomes high potential can be applied from the side of the exo material layer toward the photocathode. An X-ray image pickup device configured to extract a video signal by an electrode disposed between the plate and to operate the light beam scanning means when the video signal is extracted.
JP1985056527U 1985-04-16 1985-04-16 Expired - Lifetime JPH0539506Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985056527U JPH0539506Y2 (en) 1985-04-16 1985-04-16

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985056527U JPH0539506Y2 (en) 1985-04-16 1985-04-16

Publications (2)

Publication Number Publication Date
JPS61173078U JPS61173078U (en) 1986-10-28
JPH0539506Y2 true JPH0539506Y2 (en) 1993-10-06

Family

ID=30580206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985056527U Expired - Lifetime JPH0539506Y2 (en) 1985-04-16 1985-04-16

Country Status (1)

Country Link
JP (1) JPH0539506Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60203880A (en) * 1984-03-28 1985-10-15 Toshiba Corp Radiation diagnozing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60203880A (en) * 1984-03-28 1985-10-15 Toshiba Corp Radiation diagnozing device

Also Published As

Publication number Publication date
JPS61173078U (en) 1986-10-28

Similar Documents

Publication Publication Date Title
US2555423A (en) Image intensifying tube
US6078643A (en) Photoconductor-photocathode imager
US4554453A (en) Apparatus for recording X-ray images
US2525832A (en) Tube with composite photocathode for conversion and intensification of x-ray images
EP0092157B1 (en) Two-dimensional radiation detecting apparatus
US4069438A (en) Photoemissive cathode and method of using comprising either cadmiumtelluride or cesium iodide
US2700116A (en) Device for intensification of X-ray images
JPH0539506Y2 (en)
US7022994B2 (en) Radiation converter
US2690516A (en) Method and device for producing neutron images
US4647811A (en) Image intensifier tube target and image intensifier tube with a video output provided with such a target
US4886970A (en) X-ray diagnostic device with an X-ray converter
JPH07294644A (en) Two-dimensional radiation detector
US5811932A (en) X-ray detector having an entrance section including a low energy x-ray filter preceding a conversion layer
JP2541925B2 (en) Radiation image detector
US4058721A (en) Gamma camera
JPH05146426A (en) Scattering line tomography and scattering line tomography device
Chang 3-ns flash X-radiography
US20190006159A1 (en) A Photomultiplier and Methods of Making It
Goetze et al. Recent applications of transmission secondary emission amplification
JPS61253753A (en) X-ray image sensor
JPS60190884A (en) Conversion of radiation image
JP2000221623A (en) Planar image intensifier and radiation image forming method
Alsberg et al. High resolution electron microscope imaging with silicon diode array target vidicons
JPH059898B2 (en)