JPH053914B2 - - Google Patents

Info

Publication number
JPH053914B2
JPH053914B2 JP22023284A JP22023284A JPH053914B2 JP H053914 B2 JPH053914 B2 JP H053914B2 JP 22023284 A JP22023284 A JP 22023284A JP 22023284 A JP22023284 A JP 22023284A JP H053914 B2 JPH053914 B2 JP H053914B2
Authority
JP
Japan
Prior art keywords
resin
alanine
amount
parts
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22023284A
Other languages
Japanese (ja)
Other versions
JPS6197585A (en
Inventor
Yosuke Morita
Tadao Seguchi
Takuji Kojima
Ryuichi Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP22023284A priority Critical patent/JPS6197585A/en
Priority to US06/770,948 priority patent/US4668714A/en
Publication of JPS6197585A publication Critical patent/JPS6197585A/en
Publication of JPH053914B2 publication Critical patent/JPH053914B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明はγ線、線、電子線、重荷電粒子線お
よび䞭性子線などの電離性攟射線による吞収線量
を正確、か぀、簡䟿に枬定する暹脂成圢䜓線量蚈
に関し、アラニン線量蚈の甚途を拡倧するもので
ある。 埓来の技術 近幎、原子力発電所、攟射線廃棄物凊理斜蚭な
どの攟射性物質を取扱う倧型斜蚭や粒子線、γ線
などの各皮の照射斜蚭等が普及しおきた。これら
の斜蚭では、通垞の環境䞋はもちろん、枩床や湿
床が高いなどの環境䞋で広い線量範囲にわた぀お
正確か぀簡䟿に攟射線の線量を枬定するこずが求
められおいる。本発明はこれらの諞斜蚭での線量
枬定、各皮攟射線を甚いる研究・実隓のための線
量枬定、および照射斜蚭間の線量盞互比范に優れ
た効果を発揮する。 埓来の10Gyから100KGyの䞭、高レベルの線量
枬定を目的ずした固䜓の攟射線線量蚈ずしおは熱
ルミネツセンス線量蚈、ラむオルミネツセンス線
量蚈、ポリメチルメタアクリレヌト線量蚈、ラゞ
アクロミツクダむフむルム線量蚈、コバルトガラ
ス線量蚈などが公知である。これらはいずれも攟
射線を固䜓玠子に照射埌、固䜓玠子からの発光量
や特定波長の光の吞収を枬定しお、これから照射
線量を求めるものである。 しかしながら、これらの線量蚈は次のような欠
点を有する。 (1)同䞀の照射条件、環境条件でも線量応答す
なわち、発光量や光の吞収量などのばら぀きが
倧きいガラス線量蚈を陀く、(2)照射埌の線量
応答が経時倉化する、いわゆる、プむテむング
珟象を瀺す熱ルミネツセンス線量蚈、ラゞアク
ロミツクダむフむルム線量蚈を陀く、(3)有効な
線量枬定範囲か狭い、(4)ラゞアクロミツクダむフ
むルム線量蚈、ラむオルミネツセンス線量蚈では
照射時の環境、すなわち、枩床あるいは湿床など
により線量応答のばら぀きが倧きい。 アミノ酞の䞀皮であるアラニンは結晶状態で攟
射線を照射するずその吞収線量に比䟋しお安定な
固有のラゞカル遊離基を生じるため、単䜍重
量あたりの生成ラゞカル濃床を垞磁性共鳎吞収装
眮ESRにお求めるこずによ぀お線量を枬定
するこずが可胜であるCEA−−3913、フラ
ンス1970。本線量枬定法は䞊述の各線量蚈にお
いお問題ずな぀おいる欠点をもたない。すなわ
ち、照射によるラゞカルがアラニンの結晶内に生
成するのでラゞカルが安定であり、このためラゞ
カル濃床の経時倉化が極めお少なく、たた、同様
の理由からラゞカルは熱および氎分に察しお比范
的安定である。埓぀お、線量枬定の粟床が高く、
枬定倀の再珟性が良い。さらに、有効な線量枬定
範囲も10Gyから100KGyであり、他の線量蚈より
も䞭・高レベルでの広い線量域の枬定ができる。 しかしながら、アラニン結晶粉末そのものは、
氎に可溶であるため、氎蒞気䞭および高湿床の空
気䞭ではこれらの圱響をうける、たた、埮现な粉
末であるために取扱いにきわめお䞍䟿であり、さ
らに、粉末がすぐに静電気を垯びるため正確な秀
量や詊料管ぞの挿入も困難である。これらの理由
からアラニン結晶粉末そのたゝでは実甚的な線量
蚈ずしおの䟡倀に乏しい。このため、アラニン結
晶粉末の特長を生かした線量蚈を開発する研究が
行われおきた。 これたでの研究成果の䞭では固圢化剀ずしおパ
ラフむンないしは粉末セルロヌスを甚い、このな
かにアラニン結晶粉末を分散させた埌、圧瞮成圢
しおペレツト状のものを䜜成し、これを線量蚈玠
子ずしお甚いる方法が暙準的なものずしお知られ
おいるInter.J.Appl.Radt.Isotope、33、1101
1982Rad.Protection、EUR7448−EN Vo12、
4891982。しかし、この方法においおもパラフ
むンやセルロヌスを固圢化剀ずした成圢䜓はもろ
く、成圢埌も倖力や振動により圢くずれや欠萜を
起こし、このため、正確な線量枬定ができない。
たた、成圢法が圧瞮成圢パラフむン、セルロヌ
スないしは鋳造法パラフむンしか甚いられ
ないため、埗られる成圢䜓がペレツト状ないしは
短い円柱や角柱状のものに限定される。そしお、
圢くずれしやすいパラフむンやセルロヌスを固圢
化剀ずした䞊蚘の方法では成圢䜓を倧量生産する
こずは殆んど䞍可胜である。以䞊の他にも、パラ
フむンを甚いた堎合は融点の最も高いものでも玄
70℃であるため、枩床が高いずころ、䟋えば、金
属容噚等を高線量率で照射する堎合ではパラフむ
ンが融解するため䜿甚できない。䞀方、セルロヌ
スを甚いた堎合はセルロヌス自䜓が照射により過
酞化ラゞカルを生じるので、アラニン結晶に生成
したラゞカルず重なりESRによりアラニン結晶
のみの正確なラゞカル濃床を求めるこずが困難ず
なる。このためセルロヌスの堎合は線量枬定が䞍
正確になり、埓぀お、枬定できる線量域がアラニ
ン単独の堎合より狭い範囲に限定される。たた、
セルロヌスの堎合はアラニン粉末ずセルロヌス粉
末ずの混合ずなるため均䞀な組成のものが埗難
く、成圢䜓箇々の組成のばら぀きが倧きいなどの
欠点を有する。 発明が解決しようずする問題 本発明の目的はアラニン結晶粉末を甚いた新芏
な実甚性のある暹脂成圢䜓線量蚈を提䟛するこず
である。本発明は䞊述したアラニン結晶粉末の実
甚的な線量蚈ずしおの課題を解決するために攟射
線照射により生成するラゞカル量がきわめお少な
いか、ないしは、照射埌暹脂に生成したラゞカル
が急速に枛衰するような暹脂を固圢化剀ずしお甚
い、これずアラニン結晶粉末ずから成る線量蚈を
提䟛する。たた、暹脂に耐攟射線性付䞎剀、たた
は、暹脂分子の動きやすさを増倧せしめお暹脂に
生成したラゞカルを急速に枛衰、消滅させる添加
剀を盞圓量加えた暹脂組成物を固圢化剀ずしお甚
い、これずアラニン結晶粉末ずから成る線量蚈を
提䟛する。 問題点を解決するための手段 線量枬定を粟床良く行うには、電離性攟射線の
照射により暹脂に生成するラゞカルの量が、同様
の照射によりアラニン結晶に生成するラゞカルの
量の1/10以䞋である必芁がある。 即ち、通垞アラニン結晶に×103Gyの攟射線
が照射されるず、4.8×1017スピンのラゞカ
ルが発生するが、同様の照射䞋における線量蚈に
含たれる合成暹脂のラゞカル発生量が4.8×
1017スピン×線量蚈に含たれるアラニンの
組成重量の1/10以䞋であれば、線量枬定が粟
床良く行われるずいうこずである。このために
は、照射により暹脂に生成するラゞカル量が少な
いか、ないしは、暹脂に生成したラゞカルが15〜
25℃の宀枩附近で〜時間皋床の短時間内に枛
衰しおアラニン結晶ラゞカルの1/10以䞋にな
るこずが必芁である。さらに、アラニン結晶ず暹
脂ずを混合し、成圢するためには暹脂の軟化点や
融点がアラニン結晶の融点293℃以䞋である
こずが望たしい。このこずから、本発明で甚いら
れる合成暹脂ずしおは、照射によるラゞカル生成
量の少ない暹脂ずしおはポリスチレン暹脂、アク
リロニトリル−スチレン暹脂、硬質アクリロニト
リル−ブタゞ゚ン−スチレン暹脂、ポリブチレン
テレフタレヌト暹脂、ポリ゚チレンテレフタレヌ
ト暹脂、ポリカヌボネヌト暹脂などが䟋瀺され、
たた、生成ラゞカルが急速に枛衰する暹脂ずしお
䜎密床ポリ゚チレンラゞカル生成量も少ない、
ポリプロピレン、ポリ゚ステル暹脂などが䟋瀺さ
れる。さらに高密床ポリ゚チレン、ナむロン−12
では耐攟射線性付䞎剀ずしお−ゞプニル
−パラプニレンゞアミン、プロピルフルオラン
センなどを盞圓量添加した暹脂組成物が有効であ
る。たた、塩化ビニル暹脂では䞊述の化合物の他
にリン酞トリスむ゜プロピルプニル、やオ
クチルゞプニルホスプヌトなどの塩化ビニル
分子のモビリテむヌを増倧させる添加剀を加えた
暹脂組成物も有効である。これらの添加剀は圓然
のこずながら、すでに述べたポリスチレンや䜎密
床ポリ゚チレン等に加えるずさらに有効であるこ
ずは蚀うたでもない。 本発明におけるこれらの暹脂ずアラニン結晶粉
末ずの配合割合は䞊限においおは、これら成圢䜓
を取扱うに際しお実甚的な機械的物性を保持しお
いるか吊かにより、䞋限においおは線量蚈ずしお
有効なアラニン量を含んでいるか吊かにより定め
られるが通垞、圓該暹脂重量100に察しおアラニ
ン結晶粉末10から500重量郚の範囲にあるものが
実甚的である。 暹脂ずアラニン粉末ずの均䞀な混合はミキシン
グロヌルたたはバンバリヌミキサヌ等によりアラ
ニン結晶にあたり匷い力が加わらない皋床で効率
よく行ない、混合混緎枩床は宀枩からアラニ
ン結晶の融点293℃以䞋の適圓な枩床で行な
うこずができるが、通垞、暹脂等の混緎枩床であ
る100〜230℃の範囲で行なうのが劥圓である。こ
のようにしお埗られた暹脂ずアラニンの均䞀な組
成物は同様に通垞100〜250℃などの適圓な枩床で
加圧成圢や抌出成圢等を行な぀お各成圢䜓やフむ
ルムずする。 本発明の組成物に成圢䜓やフむルム䜜補を容易
にするため、ないしは、補品の品質向䞊のため特
にアラニンラゞカルの生成に察する圱響の少ない
補匷材、増量材、顔料、滑材、あるいは酞化防止
材、熱安定剀等を加えるこずは䜕ら差支えない。
次に実斜䟋により本発明の構成および効果をより
具䜓的に説明する。なお、配合量は暹脂量100に
察する重量郚Phrで衚瀺した。 実斜䟋  䜎密床ポリ゚チレン宇郚興産、UBE−C400
および、ポリスチレン䞉菱モンサント、ダむダ
レツクスHH−102の各々を130℃のミキシング
ロヌル二本ロヌル䞊で緎りながら、少量ず぀
200PhrのDL−アラニン結晶粉末和光玔薬(æ ª)、
特玚を加え均䞀な混緎組成物ずした。この埌、
組成物を130℃のホツト・プレスで加圧ゲヌゞ
圧、100Kgcm2しお厚さmmのポリ゚チレンシ
ヌト成圢䜓およびポリスチレンシヌト成圢䜓を䜜
補した。以䞊のシヌトからmm角で長さcmの小
片を切り出し、60Co−γ線を宀枩にお×102Gy
照射した埌、ESRJEOR−FF3Xで盞察的なラ
ゞカル濃床を求めたポリ゚チレン成圢䜓では照
射埌時間のうち。 本来、生成したラゞカル濃床はESRの積分吞
収ピヌクの面積から求められるが、ここではより
簡䟿に埮分曲線のピヌク間の高さをも぀お代甚し
た。各成圢䜓線量蚈玠子のESRチダヌトを第
図実線に瀺す。ESR枬定は倉調呚波数100K
Hz、Mod2G、Power0.1、宀枩で枬定した。
比范䟋同じく第図の点線及び鎖線に
瀺すアラニン粉末のみのESRチダヌトずの比范
から各暹脂に生成したラゞカル量はきわめお少な
いこずが分かる。 実斜䟋  実斜䟋の方法にお䜜補した各成圢䜓線蚈玠子
のESRピヌクの単䜍重量圓りの高さ生成ラゞ
カル濃床に比䟋ず吞収線量の関係を第図に瀺
す。ESR枬定条件は実斜䟋ず同じであり、照
射は60Co−γ線を宀枩にお行ない、暙準線量蚈ず
しおフリツケ線量蚈にお吞収線量を校正した。図
で○および●は各々ポリスチレンおよびポリ゚チ
レン成圢䜓玠子である。各々の成圢䜓玠子は
100Gyから10KGy以䞊たで吞収線量の察数倀ず
ESRピヌクの高さは盎線的な関係を瀺し、線量
蚈ずしお䜿甚できるこずを瀺す。 実斜䟋  実斜䟋ず同様の条件にお、各皮暹脂成圢䜓線
量蚈玠子を䜜補し、各々のESRピヌク高さラ
ゞカル濃床を求めた結果を衚に瀺す。 各々の暹脂においおも、ポリスチレンや䜎密床
ポリ゚チレンず同様の倀を瀺し、線量蚈ずしお有
効であるこずが分か぀た。 実斜䟋  実斜䟋の各暹脂成圢䜓に぀いおIzod衝撃詊隓
を行な぀た。結果を衚に瀺す。 暹脂成圢䜓はパラフむンおよびセルロヌスを固
圢化剀ずしお甚いた堎合比范䟋にくらべ、
すぐれた暹脂的性質を瀺した。このこずから暹脂
成圢䜓線量蚈は枬定あるいはこれを郵送する堎合
などに加わるずみられる力や振動、衝撃などにも
十分に耐えるこずが分か぀た。 実斜䟋  ポリ塩化ビニル日本れオン(æ ª)、PE−3002
を120℃のミキシングロヌル䞊で緎りながらプロ
ピルフルオランセン を加え、さらに、少量ず぀200PhrのDLアラニン
結晶粉末を加え均䞀な混緎組成物ずした。この
埌、組成物を120℃のホツト・プレスで加圧ゲ
ヌゞ圧、100Kgcm2しお厚さmmのポリ塩化ビ
ニルシヌト成圢䜓を䜜補した。このシヌトから
mm角で長さcmの小片を切り出し、60Co−γ線を
宀枩にお×102Gy照射した埌、ESR枬定を行な
぀た。ESR図は第図のポリ゚チレン成圢䜓
玠子の堎合ずほゞ同様ずな぀た。 比范䟋  DLアラニン粉末和光玔薬、特玚を60Co−
γ線にお×102Gy照射した堎合のESRチダヌト
を第図点線及び鎖線に瀺す。たた、ア
ラニン粉末ずセルロヌス粉末旭化成、アビセル
PH102ずを重量比で乳鉢柱で十分に混
合しこれを埄mmφ、長さcmの圢にコヌルド・
プレス宀枩にお圧瞮成圢ゲヌゞ圧、150
Kgcm2した。これに䞊蚘ず同様のγ線を照射し
た堎合のESRチダヌトを同じく第図点線
に瀺す。 セルロヌスを固圢化剀ずした玠子は混合、圧瞮
成圢においお、非垞に取扱いにくく、たた、圢く
ずれを起こすため高圧にお成圢する必芁があ぀
た。しかも、照射物は図に瀺すようにセルロヌス
過酞化ラゞカルずアラニンラゞカルのESRピヌ
クが重さなり、図圢が非察称ずなり、か぀、前者
のラゞカルのため経時倉化を瀺し、線量枬定の粟
床を䜎䞋させる。 比范䟋  アラニン粉末をパラフむン和光玔薬、mp68
〜70℃、䞀玚䞭に100℃の溶融状態にお懞濁さ
せ、分にかきたぜお混合した埌、これを冷华する
組成はパラフむンアラニン、重量
比。これを厚さmm、巟10mm、長さcmの圢に
コヌルド・プレスにお圧瞮成圢ゲヌゞ圧150
Kgcm2した。セルロヌスずアラニンの混合物に
぀いおも比范䟋ず同様にしお厚さmm、巟10
mm、長さcmの成圢䜓を䜜補した。 これらのIzod衝撃詊隓結果を衚に瀺す。この
結果、これらの成圢䜓は非垞にもろく、容易に圢
くずれや欠萜を起こすこずが分か぀た。 比范䟋  実斜䟋からプロピルフルオランセンを陀いた
詊料60Co−γ線、×102Gy照射のESRを枬
定した。この堎合はポリ塩化ビニルのブロヌドな
ESR吞収ピヌクずアラニンのESR吞収ピヌクが
重なり、ピヌクの高さは230mmずな぀た。これは、
実斜䟋の倀の135mmに察し、170に盞圓し、ポ
リ塩化ビニルラゞカルの圱響の倧きいこずを瀺
す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a resin molded dosimeter that accurately and conveniently measures the absorbed dose due to ionizing radiation such as gamma rays, X-rays, electron beams, heavily charged particle beams, and neutron beams. This will expand the applications of the meter. BACKGROUND ART In recent years, large-scale facilities that handle radioactive materials, such as nuclear power plants and radioactive waste treatment facilities, and various irradiation facilities, such as particle beams and gamma rays, have become widespread. These facilities are required to accurately and easily measure radiation doses over a wide dose range, not only under normal conditions but also under conditions of high temperature and humidity. The present invention exhibits excellent effects on dose measurements at these facilities, dose measurements for research and experiments using various types of radiation, and dose comparisons between irradiation facilities. Conventional solid-state radiation dosimeters aimed at high-level dose measurements from 10Gy to 100KGy include thermoluminescence dosimeters, liyoluminescence dosimeters, polymethyl methacrylate dosimeters, and radial chromic die film dosimeters. , cobalt glass dosimeters, etc. are well known. In all of these methods, after irradiating a solid-state element with radiation, the amount of light emitted from the solid-state element and the absorption of light at a specific wavelength are measured, and the irradiation dose is determined from this. However, these dosimeters have the following drawbacks. (1) Even under the same irradiation and environmental conditions, the dose response (i.e., the amount of light emitted and the amount of light absorbed) varies widely (excluding glass dosimeters); (2) the dose response after irradiation changes over time; It exhibits the so-called phaating phenomenon (excluding thermoluminescence dosimeters and radial chromic die-film dosimeters), (3) the effective dose measurement range is narrow, and (4) radial chromic die-film dosimeters and liyoluminescent dosimeters. The dose response varies greatly depending on the environment at the time of irradiation, such as temperature or humidity. When alanine, a type of amino acid, is irradiated with radiation in a crystalline state, it produces unique radicals (free radicals) that are stable in proportion to the absorbed dose. (CEA-R-3913, France 1970). This dosimetry method does not have the drawbacks of the above-mentioned dosimeters. In other words, radicals are generated within the alanine crystals due to irradiation, so the radicals are stable, and therefore the radical concentration changes over time very little, and for the same reason, the radicals are relatively stable against heat and moisture. . Therefore, the accuracy of dose measurement is high;
Good reproducibility of measured values. Furthermore, the effective dose measurement range is from 10Gy to 100KGy, making it possible to measure a wider dose range at medium and high levels than other dosimeters. However, alanine crystal powder itself is
Because it is soluble in water, it is affected by water vapor and high humidity air, and because it is a fine powder, it is extremely inconvenient to handle.Furthermore, the powder quickly becomes charged with static electricity, making it difficult to accurately handle it. It is also difficult to weigh and insert into sample tubes. For these reasons, alanine crystal powder as it is has little value as a practical dosimeter. For this reason, research has been conducted to develop a dosimeter that takes advantage of the features of alanine crystal powder. Among the research results to date, paraffin or powdered cellulose is used as a solidifying agent, and after dispersing alanine crystal powder in this, compression molding is performed to create pellets, which are used as dosimeter elements. The method is known as standard (Inter.J.Appl.Radt.Isotope, 33 , 1101
(1982) Rad.Protection, EUR7448−EN Vo12,
489 (1982)). However, even with this method, the molded product using paraffin or cellulose as a solidifying agent is brittle, and even after molding, it can become deformed or chipped due to external force or vibration, making it impossible to accurately measure the dose.
In addition, since only compression molding (paraffin, cellulose) or casting method (paraffin) is used as the molding method, the molded bodies obtained are limited to pellet-like shapes or short cylindrical or prismatic shapes. and,
It is almost impossible to mass-produce molded articles using the above-mentioned method in which paraffin or cellulose, which easily loses its shape, is used as a solidifying agent. In addition to the above, when paraffin is used, even the one with the highest melting point has a
Since the temperature is 70°C, paraffin cannot be used in high temperature areas, such as when irradiating metal containers at high dose rates, as the paraffin will melt. On the other hand, when cellulose is used, the cellulose itself generates peroxide radicals upon irradiation, which overlap with the radicals generated in the alanine crystals, making it difficult to determine the accurate radical concentration of only the alanine crystals by ESR. This results in inaccurate dose measurements in the case of cellulose, and the measurable dose range is therefore limited to a narrower range than in the case of alanine alone. Also,
In the case of cellulose, since it is a mixture of alanine powder and cellulose powder, it is difficult to obtain a product with a uniform composition, and there are drawbacks such as large variations in the composition of each molded product. Problems to be Solved by the Invention An object of the present invention is to provide a novel and practical resin molded dosimeter using alanine crystal powder. In order to solve the above-mentioned problem of using alanine crystal powder as a practical dosimeter, the present invention aims to solve the problem of using alanine crystal powder as a practical dosimeter. A dosimeter is provided using a resin as a solidifying agent and comprising the same and alanine crystal powder. In addition, a resin composition in which a considerable amount of a radiation resistance imparting agent or an additive that increases the mobility of resin molecules and rapidly attenuates and eliminates radicals generated in the resin is used as a solidifying agent. , and an alanine crystal powder. Measures to solve the problem In order to accurately measure the dose, the amount of radicals generated in the resin by irradiation with ionizing radiation must be less than 1/10 of the amount of radicals generated in the alanine crystal by the same irradiation. There needs to be. In other words, when an alanine crystal is normally irradiated with 1×10 3 Gy of radiation, 4.8×10 17 spins/g of radicals are generated, but the amount of radicals generated in the synthetic resin contained in the dosimeter under the same irradiation is (4.8×
10 17 spins/g) x (compositional weight of alanine contained in the dosimeter, g), dose measurement can be performed with high accuracy. For this purpose, either the amount of radicals generated in the resin due to irradiation is small, or the radicals generated in the resin are
It is necessary that it decays within a short time of about 1 to 3 hours at around room temperature of 25°C and becomes less than 1/10 of the alanine (crystal) radical. Furthermore, in order to mix and mold alanine crystals and resin, it is desirable that the softening point and melting point of the resin be lower than the melting point of alanine crystals (293° C.). From this, the synthetic resins used in the present invention include polystyrene resins, acrylonitrile-styrene resins, hard acrylonitrile-butadiene-styrene resins, polybutylene terephthalate resins, polyethylene terephthalate resins, and polycarbonate resins that generate a small amount of radicals upon irradiation. Examples include resin,
In addition, low-density polyethylene (which also produces a small amount of radicals) is a resin that rapidly attenuates the generated radicals.
Examples include polypropylene and polyester resin. Furthermore, high-density polyethylene, nylon-12
In this case, a resin composition to which a considerable amount of N,N-diphenyl-paraphenylenediamine, propylfluoranthene, etc. is added as a radiation resistance imparting agent is effective. For vinyl chloride resins, resin compositions containing additives that increase the mobility of vinyl chloride molecules, such as phosphoric acid (trisisopropylphenyl) and octyl diphenyl phosphate, in addition to the above-mentioned compounds, are also effective. It goes without saying that these additives are even more effective when added to the already mentioned polystyrene, low density polyethylene, etc. The upper limit of the blending ratio of these resins and alanine crystal powder in the present invention depends on whether or not practical mechanical properties are maintained when handling these molded objects, and the lower limit is the amount of alanine that is effective as a dosimeter. It is determined depending on whether the alanine crystal powder contains 10 to 500 parts by weight of the alanine crystal powder per 100 parts by weight of the resin. Uniform mixing of the resin and alanine powder is carried out efficiently using a mixing roll or a Banbury mixer without applying too much force to the alanine crystals, and the mixing (kneading) temperature is kept from room temperature to below the melting point of the alanine crystals (293°C). Although it can be carried out at any suitable temperature, it is usually appropriate to carry out the process at a temperature in the range of 100 to 230°C, which is the kneading temperature of resins and the like. The homogeneous composition of resin and alanine thus obtained is similarly subjected to pressure molding, extrusion molding, etc., usually at a suitable temperature such as 100 to 250°C, to form various molded articles or films. In order to facilitate the production of molded bodies and films, or to improve the quality of products, the composition of the present invention may contain reinforcing materials, fillers, pigments, lubricants, or antioxidants that have little effect on the generation of alanine radicals. There is no problem in adding a heat stabilizer or the like.
Next, the configuration and effects of the present invention will be explained in more detail with reference to Examples. The blending amount is expressed in parts by weight (Phr) based on 100 resin amounts. Example 1 Low density polyethylene (Ube Industries, UBE-C400)
And polystyrene (Mitsubishi Monsanto, Dialex HH-102) was kneaded in small amounts on a mixing roll (two rolls) at 130°C.
200Phr DL-alanine crystal powder (Wako Pure Chemical Industries, Ltd.)
(Special grade) was added to make a uniform kneaded composition. After this,
The composition was pressurized (gauge pressure, 100 Kg/cm 2 ) using a hot press at 130° C. to produce a polyethylene sheet molded body and a polystyrene sheet molded body each having a thickness of 2 mm. A small piece of 2 mm square and 3 cm long was cut out from the above sheet and exposed to 5 x 10 2 Gy of 60 Co-γ rays at room temperature.
After irradiation, the relative radical concentration was determined using ESR (JEOR-FF3X) (for polyethylene molded bodies, within 2 hours after irradiation). Originally, the concentration of generated radicals can be determined from the area of the integral absorption peak of ESR, but here, the height between the peaks of the differential curve was used as a substitute for the convenience. The first ESR chart of each molded body dosimeter element
Shown in the figure (solid line). ESR measurement is modulation frequency 100K
Measured at Hz, Mod2G, Power 0.1mW, and room temperature.
A comparison with the ESR chart containing only alanine powder shown in Comparative Example 1 (dotted line a and chain line b in FIG. 1) reveals that the amount of radicals generated in each resin is extremely small. Example 2 FIG. 2 shows the relationship between the height per unit weight of the ESR peak (proportional to the concentration of generated radicals) and the absorbed dose of each molded wiremeter element produced by the method of Example 1. The ESR measurement conditions were the same as in Example 1, and irradiation was performed with 60 Co-γ rays at room temperature, and the absorbed dose was calibrated using a Fritzke dosimeter as a standard dosimeter. In the figure, ○ and ● are polystyrene and polyethylene molded elements, respectively. Each molded element is
Logarithmic value of absorbed dose from 100Gy to 10KGy or more
The height of the ESR peak shows a linear relationship, indicating that it can be used as a dosimeter. Example 3 Various resin molded dosimeter elements were produced under the same conditions as in Example 1, and the ESR peak height (radical concentration) of each was determined. Table 1 shows the results. Each resin showed values similar to those of polystyrene and low-density polyethylene, and was found to be effective as a dosimeter. Example 4 An Izod impact test was conducted on each resin molded article of Example 3. The results are shown in Table 2. Compared to the case where paraffin and cellulose were used as solidifying agents (Comparative Example 2), the resin molded article
It showed excellent resin properties. This indicates that the resin molded dosimeter can withstand the forces, vibrations, and shocks that are likely to be applied during measurements or when mailing the dosimeter. Example 5 Polyvinyl chloride (Nippon Zeon Co., Ltd., PE-3002)
Propyl fluoranthene is mixed while kneading on a mixing roll at 120℃. was added, and furthermore, 200 Phr of DL alanine crystal powder was added little by little to obtain a uniform kneaded composition. Thereafter, the composition was pressed with a hot press at 120° C. (gauge pressure, 100 Kg/cm 2 ) to produce a 2 mm thick polyvinyl chloride sheet molded body. 2 from this sheet
A small piece of mm square and 3 cm in length was cut out and irradiated with 5 x 10 2 Gy of 60 Co-γ rays at room temperature, followed by ESR measurement. The ESR diagram was almost the same as that for the polyethylene molded element shown in FIG. 1b. Comparative example 1 DL alanine powder (Wako Pure Chemical, special grade) was added to 60 Co−
An ESR chart in the case of 5×10 2 Gy irradiation with γ-rays is shown in FIG. 1 (dotted line a and chain line b). In addition, alanine powder and cellulose powder (Asahi Kasei, Avicel
PH102) at a weight ratio of 1:1 in a mortar post, and then cold molded into a shape with a diameter of 3 mmφ and a length of 3 cm.
Compression molding in a press (room temperature) (gauge pressure, 150
Kg/cm 2 ). The ESR chart when this is irradiated with gamma rays similar to the above is also shown in Figure 1 (dotted line a).
Shown below. Elements using cellulose as a solidifying agent are extremely difficult to handle during mixing and compression molding, and they also need to be molded under high pressure to avoid deformation. Furthermore, as shown in the figure, the ESR peaks of cellulose peroxide radicals and alanine radicals overlap in the irradiated object, resulting in an asymmetrical shape, and because of the former radical, it shows changes over time, reducing the accuracy of dose measurement. Comparative Example 2 Alanine powder was mixed with paraffin (Wako Pure Chemical, mp68
The suspension was suspended in a molten state at 100°C in 100°C (70°C, first grade), stirred for several minutes, and then cooled (composition: paraffin:alanine = 1:1, weight ratio). This was compression molded using a cold press into a shape with a thickness of 2 mm, a width of 10 mm, and a length of 3 cm (gauge pressure 150
Kg/cm 2 ). A mixture of cellulose and alanine was prepared in the same manner as in Comparative Example 1, with a thickness of 2 mm and a width of 10 mm.
A molded body with a length of 3 cm and a length of 3 cm was produced. The results of these Izod impact tests are shown in Table 2. As a result, it was found that these molded bodies were very brittle and easily deformed or chipped. Comparative Example 3 The ESR of a sample from Example 4 except for propylfluoranthene (irradiated with 60 Co-γ rays, 5×10 2 Gy) was measured. In this case, polyvinyl chloride broad
The ESR absorption peak and the ESR absorption peak of alanine overlapped, and the peak height was 230 mm. this is,
This corresponds to 170% of the value of 135 mm in Example 4, indicating that the influence of polyvinyl chloride radicals is large.

【衚】【table】

【衚】【table】

【衚】 ツチなし。
発明の効果 (1) 本発明による暹脂成圢䜓線量蚈では暹脂のラ
ゞカル生成量がアラニンラゞカルの生成量にく
らべ1/10以䞋ず少ないため、正確な線量枬定を
行なうこずができる。たた、枬定できる線量範
囲もアラニン結晶そのものず同様に10Gy〜
100Gyず広範囲である。 (2) 暹脂成圢䜓線量蚈は照射時の環境による圱響
が少なく埓぀お、線量枬定の粟床が高く、枬定
倀の再珟性が良い。すなわち、枬定の可胜な枩
床範囲の䞊限はアラニンラゞカルが枩床の圱響
を受ける玄150℃皋床ず高い。そしお、この堎
合、暹脂は䞊限枩床を芏制する芁因にはな぀お
いない。たた、これらの暹脂のほずんどが氎に
察する芪和性がなくアラニンの氎に察する溶解
性の欠点をこれら暹脂の固圢化剀が保護する圹
割をはたす。埓぀お、暹脂成圢䜓線量蚈では枬
定時の空気䞭の湿床や氎蒞気雰囲気䞋の環境で
も再珟性の良い枬定を行なうこずができる。 (3) 暹脂成圢䜓線量蚈は通垞の暹脂成圢䜓ずほゞ
同様に非垞に取扱いやすく、たた、匷床が倧き
いために、倚少の匷い力を加えおも圢くずれや
欠萜を起さない。埓぀お、簡䟿にしかも正確な
線量枬定を行うこずができる。たた、この線量
は長い垯状、シヌト状、長い線状の成圢䜓を抌
出成圢等により䜜成するこずができるこずか
ら、耇雑な圢状の被照射䜓内の線量分垃を枬定
するこずができる。 (4) 暹脂成圢䜓線量蚈は加圧成圢、抌出成圢等の
倚くの成圢法が可胜であり、か぀、これらの成
圢法により均䞀な暹脂成圢䜓線量蚈を倧量生産
するこずが容易である。 (5) 暹脂成圢䜓線量蚈は倚少の匷い力や振動、衝
撃にも耐えるため、各斜蚭で照射した暹脂成圢
䜓線量蚈を正しく線量校正されたESR装眮を
有する暙準機関に郵送しお集䞭的、か぀、統䞀
的に線量評䟡や線量比范を行うこずができる。 などの倚くの特長を有する。そしお、䞊述の
皮々の暹脂ず組合せるこずにより、アラニン結晶
粉末の線量枬定法ずしおの欠点をほゞ完党に取り
陀くこずができる。
[Table] No tsuchi.
Effects of the Invention (1) In the resin molded dosimeter according to the present invention, the amount of radicals produced in the resin is less than 1/10 of the amount of alanine radicals produced, so that accurate dose measurement can be performed. In addition, the measurable dose range is 10Gy to 10Gy, similar to the alanine crystal itself.
It is a wide range of 100Gy. (2) Resin molded dosimeters are less affected by the environment during irradiation, and therefore have high dose measurement accuracy and good reproducibility of measured values. That is, the upper limit of the measurable temperature range is as high as about 150°C, where alanine radicals are affected by temperature. In this case, the resin is not a factor regulating the upper limit temperature. Furthermore, most of these resins have no affinity for water, and the solidifying agent of these resins serves to protect against the drawback of alanine's solubility in water. Therefore, the resin molded dosimeter can perform measurements with good reproducibility even in environments with atmospheric humidity or water vapor at the time of measurement. (3) Resin molded dosimeters are very easy to handle, just like ordinary resin molded products, and because they are strong, they do not deform or break even if a certain amount of strong force is applied. Therefore, dose measurement can be performed simply and accurately. Furthermore, since this dose can be produced by extrusion molding into a long belt-shaped, sheet-shaped, or long linear shaped body, it is possible to measure the dose distribution inside a complex-shaped irradiated body. (4) Many molding methods such as pressure molding and extrusion molding are possible for resin molded dosimeters, and it is easy to mass-produce uniform resin molded dosimeters using these molding methods. (5) Resin molded dosimeters can withstand some strong forces, vibrations, and shocks, so the resin molded dosimeters irradiated at each facility are mailed to standards organizations that have ESR equipment with correct dose calibration. , and it is possible to uniformly perform dose evaluation and dose comparison. It has many features such as By combining it with the various resins mentioned above, the drawbacks of alanine crystal powder as a dosimetry method can be almost completely eliminated.

【図面の簡単な説明】[Brief explanation of drawings]

第図およびは本発明の実斜䟋および比范
䟋で補造した成圢䜓線量蚈玠子のESRチダヌト
である。第図は実斜䟋で補造した成圢䜓線量蚈
玠子のESRピヌク高さず吞収線量の関係を瀺す
グラフである。
FIGS. 1a and 1b are ESR charts of molded dosimeter elements manufactured in Examples and Comparative Examples of the present invention. FIG. 2 is a graph showing the relationship between the ESR peak height and absorbed dose of the molded body dosimeter elements manufactured in Examples.

Claims (1)

【特蚱請求の範囲】  電離性攟射線の照射により暹脂に生成するラ
ゞカル量が同様の照射によりアラニン結晶に生成
するラゞカル量の1/10以䞋である合成暹脂に、ア
ラニン結晶粉末を配合し成圢しお成る暹脂成圢䜓
線量蚈。  アラニン結晶粉末が合成暹脂の重量100に察
しお10乃至500重量郚配合されるこずを特城ずす
る特蚱請求の範囲第項蚘茉の線量蚈。  電離性攟射線の照射により暹脂に生成するラ
ゞカルが䞍安定で宀枩にお短時間内に枛衰しお同
等の照射によりアラニン結晶に生成するラゞカル
量の1/10以䞋ずなる合成暹脂に、アラニン結晶粉
末を配合しお成圢しお成る暹脂成圢䜓線量蚈。  アラニン結晶粉末が合成暹脂の重量100に察
しお10乃至500重量郚配合されるこずを特城ずす
る特蚱請求の範囲第項蚘茉の線量蚈。  暹脂に耐攟射線性付䞎剀を加えるこずによ぀
お電離性攟射線の照射により暹脂に生成するラゞ
カル量がアラニン結晶に生成するラゞカル量の1/
以䞋ずなる暹脂組成物に、アラニン結晶粉末を
配合し成圢しお成る暹脂成圢䜓線量蚈。  耐攟射線性付䞎剀が暹脂100重量郚に察しお
0.5乃至30重量郚加えられるこずを特城ずする特
蚱請求の範囲第項蚘茉の線量蚈。  アラニン結晶粉末が暹脂組成物100重量郚に
察しお10乃至500重量郚配合されるこずを特城ず
する特蚱請求の範囲第第項蚘茉の線量蚈。  暹脂に暹脂䞭のラゞカルの枛衰を促進する添
加剀を加えるこずによ぀お電離性攟射線の照射に
より暹脂に存圚するラゞカル量が同等の照射によ
りアラニン結晶に生成するラゞカル量の1/10以䞋
ずなる暹脂組成物に、アラニン結晶粉末を配合し
成圢しお成る暹脂成圢䜓線量蚈。  暹脂䞭のラゞカルの枛衰を促進する添加剀が
暹脂100重量郚に察しお0.5乃至30重量郚加えられ
るこずを特城ずする特蚱請求の範囲第項蚘茉の
線量蚈。  アラニン結晶粉末が暹脂組成物100重量郹
に察しお10乃至500重量郚配合されるこずを特城
ずする特蚱請求の範囲第項蚘茉の線量蚈。
[Claims] 1. A synthetic resin in which the amount of radicals generated in the resin by irradiation with ionizing radiation is 1/10 or less of the amount of radicals generated in alanine crystals by the same irradiation, and alanine crystal powder is blended and molded. A resin molded dosimeter made of 2. The dosimeter according to claim 1, wherein the alanine crystal powder is blended in an amount of 10 to 500 parts by weight per 100 parts by weight of the synthetic resin. 3 The radicals generated in the resin by irradiation with ionizing radiation are unstable and attenuate within a short time at room temperature, and the amount of radicals generated in the alanine crystal by equivalent irradiation is less than 1/10. A resin molded dosimeter made by blending and molding powder. 4. The dosimeter according to claim 3, wherein the alanine crystal powder is blended in an amount of 10 to 500 parts by weight per 100 parts by weight of the synthetic resin. 5 By adding a radiation resistance imparting agent to the resin, the amount of radicals generated in the resin by irradiation with ionizing radiation is reduced to 1/1 of the amount of radicals generated in the alanine crystal.
A resin molded dosimeter made by blending alanine crystal powder into a resin composition with a concentration of 10 or less and molding the mixture. 6 Radiation resistance imparting agent per 100 parts by weight of resin
6. The dosimeter according to claim 5, wherein 0.5 to 30 parts by weight are added. 7. The dosimeter according to claim 5, wherein the alanine crystal powder is blended in an amount of 10 to 500 parts by weight based on 100 parts by weight of the resin composition. 8 By adding additives to the resin that promote the attenuation of radicals in the resin, the amount of radicals present in the resin due to ionizing radiation irradiation is reduced to 1/10 or less of the amount of radicals generated in alanine crystals by the same irradiation. A resin molded dosimeter made by blending alanine crystal powder into a resin composition and molding it. 9. The dosimeter according to claim 8, wherein 0.5 to 30 parts by weight of an additive that promotes attenuation of radicals in the resin is added to 100 parts by weight of the resin. 10. The dosimeter according to claim 8, wherein the alanine crystal powder is blended in an amount of 10 to 500 parts by weight based on 100 parts by weight of the resin composition.
JP22023284A 1984-08-30 1984-10-19 Dosimeter for resin molding Granted JPS6197585A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP22023284A JPS6197585A (en) 1984-10-19 1984-10-19 Dosimeter for resin molding
US06/770,948 US4668714A (en) 1984-08-30 1985-08-29 Molded dosimeter containing a rubber and powdered crystalline alanine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22023284A JPS6197585A (en) 1984-10-19 1984-10-19 Dosimeter for resin molding

Publications (2)

Publication Number Publication Date
JPS6197585A JPS6197585A (en) 1986-05-16
JPH053914B2 true JPH053914B2 (en) 1993-01-18

Family

ID=16747953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22023284A Granted JPS6197585A (en) 1984-08-30 1984-10-19 Dosimeter for resin molding

Country Status (1)

Country Link
JP (1) JPS6197585A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697262B2 (en) * 1987-07-21 1994-11-30 日立電線株匏䌚瀟 Fine-grained amino acid radiation dosimeter element
JPH077061B2 (en) * 1987-08-15 1995-01-30 日立電線株匏䌚瀟 Dosimeter compound cable
JPS6446678A (en) * 1987-08-17 1989-02-21 Hitachi Cable Article used in radiation environment
BR112017021328A2 (en) * 2015-04-07 2018-06-26 Xyleco Inc monitoring methods and systems for biomass processing

Also Published As

Publication number Publication date
JPS6197585A (en) 1986-05-16

Similar Documents

Publication Publication Date Title
US4668714A (en) Molded dosimeter containing a rubber and powdered crystalline alanine
US3743846A (en) Plastic radiation indicator of the color change type
JPH053914B2 (en)
JPH053548B2 (en)
Boutillon Perturbation correction for ionometric determination of absorbed dose in a graphite phantom for 60Co gamma rays
JP2651585B2 (en) Human soft tissue equivalent material
JPH054038B2 (en)
Maghraby et al. Taurine-EVA copolymer-paraffin rods dosimeters for EPR high-dose radiation dosimetry
JPH0559391B2 (en)
JPH02295955A (en) Raw material for measuring dose
JPS58201099A (en) Structure for neutron shield
JPS63113384A (en) Resin-molded dosimeter element
CN115975310B (en) Flexible protective material and preparation method and application thereof
JPH01102388A (en) Thin film radiation dosimeter element
JPS63113382A (en) Resin-molded dosimeter element
JPH0697264B2 (en) Polyethylene radiation dosimeter element
US3607321A (en) Glass materials for silver-activated phosphate glass dosimeter
JPS63113386A (en) Rubber of resin-molded dosimeter element
Murthy et al. Measurements of backscatter and transmission factors for beta rays using thermoluminescence dosemeters
JPH0574026B2 (en)
Dolo et al. Progress in quality control of alanine dosimeters
JPH0525078B2 (en)
Adams et al. FEASIBILITY STUDY OF DUPOLY TO RECYCLE DEPLETED URANIUM.
Razzak et al. Preparation of alanine/ESR dosimeter using different binder of polymer blend
Gantchew et al. The influence of the composition of LiF TLD materials on their sensitivity to high energy electrons

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term