JPH053893B2 - - Google Patents

Info

Publication number
JPH053893B2
JPH053893B2 JP59280934A JP28093484A JPH053893B2 JP H053893 B2 JPH053893 B2 JP H053893B2 JP 59280934 A JP59280934 A JP 59280934A JP 28093484 A JP28093484 A JP 28093484A JP H053893 B2 JPH053893 B2 JP H053893B2
Authority
JP
Japan
Prior art keywords
gas detection
detection piece
type
oxygen
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59280934A
Other languages
Japanese (ja)
Other versions
JPS61155745A (en
Inventor
Kazuko Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsuda KK
Original Assignee
Matsuda KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsuda KK filed Critical Matsuda KK
Priority to JP28093484A priority Critical patent/JPS61155745A/en
Publication of JPS61155745A publication Critical patent/JPS61155745A/en
Publication of JPH053893B2 publication Critical patent/JPH053893B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 この発明はn形金属酸化物半導体とp形金属酸
化物半導体とを組み合せた排ガスセンサの改良に
関し、エンジンやボイラーの空燃比の制御や、ス
トーブの不完全燃焼の防止等に適したもので有
る。 〔従来技術〕 特公昭57−37824号は、n形金属酸化物半導体
とp形金属酸化物半導体とを組み合せた排ガスセ
ンサを開示する。この技術の特長は、2つの半導
体の組み合わせにより、センサの温度依存性の補
償と空燃比(λ)への検出信号の倍増とを図つた
点に有る。 このような排ガスセンサへの要求は、 (1) 酸素に高感度で有ること、 (2) 可燃性ガスへの感度を抑制し、酸素感度とバ
ランスさせること、これによつて未反応の可燃
性ガスの残存による検出誤差が抑制される、 の2点で有る。 〔発明の課題〕 この発明の課題は、酸素に高感度で、未反応の
可燃性ガスと酸素との共存による検出誤差の小さ
い、排ガスセンサを提供することに有る。 〔発明の構成〕 この発明の排ガスセンサは、 (1) n形金属酸化物半導体はASnO3−δ、ここ
にAはBaおよびRaからなる群の少くとも一員
の元素を、δは非化学量論的パラメータを現
す、と、 (2) p形金属酸化物半導体のBTiO3−δ、ここ
にBはSrおよびCaからなる群の少くとも一員
の元素を、δは非化学量論的パラメータを現
す、 とを組み合せたことを特徴とする。 〔表記法〕 以下では非化学量論的パラメータδを除いて化
合物を表示する。また酸素感度を示す概念とし
て、酸素勾配(n)を導入し、 Rs=K・Po2 n、(Rs;半導体の抵抗値)として
定義する。 〔実施例〕 (A) 排ガスセンサの構造 第1図と第2図とにより、排ガスセンサの構
造を説明する。図において2はアルミナ製の6
穴管基体で、その先端にはヒータ内蔵のセラミ
ツクス管4が取り付けてある。このセラミツク
ス管4は、内部にタングステンや白金等の膜ヒ
ータ6を設けたもので、n形ガス検出片8やp
形ガス検出片10を一定温度に加熱するための
もので有る。なおヒータについては、図示の膜
ヒータ6以外にも種々のものを用い得る。 基体2とセラミツクス管4との間のくぼみ部
には、しきい部12を介してn形ガス検出片8
とp形ガス検出片10とを設ける。 ここでn形ガス検出片8は、BaSnO3
RaSnO3、Ba0.7Ra0.3SnO3等のn形ペロブスカ
イト化合物に少量の貴金属触媒と、SiO2等の
ゲルとを加えたもので有る。貴金属触媒は、可
燃性ガスへの感度を抑制し、酸素感度とのバラ
ンスを達成するためのもので、Pt、Ir、Ru、
Os、Rh等の貴金属やこれらの混合物を用い
る。添加量は金属に換算して、AnSnO31g当
り10μg〜5mgが適当である。SiO2等のゲルは
酸素増感剤として用いるもので、SiO2、GeO2
ZrO2、HfO2の非晶質、非ガラス質のゲルを用
いる。なおここでいう非晶質とは、X線回折よ
り求めた半値幅が60Å以下で有ることを意味す
る。SiO2等の添加量はASnO31モル当り1〜30
モル%が好ましい。貴金属触媒やSiO2等は加
えなくても良い。 n形ガス検出片8の他の問題は、化合物
AnSnO3が基本2のアルミナ等と反応して、
AAl2O4とSnO2とに分解することを防止する点
に有る。 そこでn形ガス検出片8周囲を、化合物
AnSnO3と反応しない物質で被覆する。被覆材
には、ムライトやスピネル、コーデイエライ
ト、あるいは前記のSiO2やGeO2等のゲル等を
用いる。 第3図により、n形ガス検出片8の構造をよ
り詳細に説明すると、14はASnO3の多孔質
焼結体、16,18は貴金属電極、20は厚さ
100μ程度のムライトの保護膜で有る。 p形ガス検出片10は、SrTiO3、CaTiO3
Sr0.7Ra0.3TiO3等のp形ペロブスカイト化合物
に、図示しない一対の貴金属電極を接続したも
ので有る。BTiO3は多孔質の焼結体として用
い、10〜600μg/gの貴金属触媒を添加する。
触媒の意義や組成の基準は、n形の場合と同じ
で、添加量はBTiO31g当り金属換算で10〜
600μgが好ましい。もちろん触媒は加えなく
ても良い。 周知のようにペロブスカイト化合物は、置換
に鈍感な物質で有り、例えばA元素やSn元素、
B元素やTi元素を10モル%程度他の元素で置
換しても良い。またASnO3やBTiO3は、その
抵抗値が支配的となる範囲で、他の化合物と混
合して用いても良い。 第1図、第2図にもどつて、22はセンサを
自動車エンジンの排気管やストーブやボイラー
等の燃焼室等に取り付けるための金具である。
また24,26は膜ヒータ6に接続したリード
ピン、28,30はn形ガス検出片8に接続し
たリードピン32,34はp形ガス検出片10
に接続したリードピンで有る。 (B) 付帯回路 第4図に付帯回路例を示すと、ガス検出片
8,10に負荷抵抗R1,R2を接続してブリツ
ジ回路とし、電源EBを接続する。また各負荷
抵抗R1,R2への印加電圧を増幅器A1,A2
を介して取り出す。 ここでASnO3とBTiO3とを比較すると、リ
ーン領域中の700℃での抵抗値はASnO3
10KΩ強、BTiO3で100KΩ弱となる。またリー
ン領域での500℃と900℃の抵抗値の比は、
ASnO3で100倍強、BTiO3で1000倍弱で有る。
そこで抵抗R1,R2の値や、増幅器A1,A2
のゲインを調整し、抵抗値をマツチングさせ
る。またn形ガス検出片8からの出力を、1.5
乗程度のべき乗回路M1に接続し、温度係数も
マツチングさせる。べき乗回路M1はなくても
良い。 べき乗回路M1と増幅器A2の出力を、除算
回路D1に入力し、温度補償済みの出力を制御
回路40に加えて、空燃比を制御する。 一方、排ガスセンサの温度を一定とするた
め、膜ヒーター6への印加電圧のデユーテイ比
を制御する。べき乗回路M1と増幅器A2の出
力を、乗算回路M2に加えて、温度にのみ依存
する信号を得る。発振回路42の出力パルスの
幅を、電圧−パルス幅変調回路44で乗算回路
M2の出力により変化させ、スイツチングトラ
ンジスタ46のオン時間を変化させる。このよ
うにして電源EB′から膜ヒータ6への印加電力
を排ガスセンサの温度により変化させて、加熱
温度を一定とする。 (C) ガス検出片8,10の製造 アルカリ土類の炭酸塩とSnO2やTiO2を混合
し、1200℃で仮焼してASnO3やBTiO3とする。
これらの物質の粉砕後、1300℃で焼成しガス検
出片8,10とする。好ましい変形範囲は
ASnO3について焼成条件を1200〜1500℃とす
ることで仮焼条件は重要ではない。BTiO3
ついては、焼成温度を1200〜1300℃とすること
で、仮焼温度は焼成温度と同一または100℃低
い温度する。 酸素増感剤の添加は、仮焼後にゾルやゲルの
形態で行うのが良く、貴金属触媒は焼成後に含
浸させ900〜1000℃程度で熱分解して担持させ
るのが良い。また保護膜20は焼成後に、溶射
や塗布後の焼結等により設けるのが良い。 なお比較例として、La2(CO33とCoOとを
1200℃で仮焼、1300℃焼成したLaCoO3(p形)
を用いた。また1200℃で仮焼1300℃で焼成した
TiO2(n形)を他の比較例とした。これらの比
較例の試料には、いずれも1g当り100μgの
Ptを加えた。 (D) 当量点(λ=1)付近の特性 ASnO3とBTiO3とを組み合せたものも、
TiO2とLaCoO3とを組み合せたものも、当量点
付近の特性はほぼ等しい。 (E) 酸素感度 表1に、各ガス検出片8,10の酸素勾配を
示す。ASnO3の酸素勾配はTiO2よりも約50%
大きく、BTiO3の酵素勾配はLaCoO3の約2倍
となる。つぎにBaSnO3とRaSnO3、CaTiO3
SrTiO3とは相互に均等物で有る。なおBa0.7
Ra0.3SnO3の特性はBaSnO3に、Sr0.7Ca0.3TiO3
の特性はSrTiO3に、酷似する。またPtの添加
は、酸素勾配には影響しなかつた。 表2に、ASnO3へのSiO2等の添加効果を示
す。SiO2等の添加により酸素勾配は0.03〜0.04
改善される。
[Field of Application of the Invention] This invention relates to the improvement of an exhaust gas sensor that combines an n-type metal oxide semiconductor and a p-type metal oxide semiconductor, and is useful for controlling the air-fuel ratio of engines and boilers, preventing incomplete combustion in stoves, etc. It is suitable for [Prior Art] Japanese Patent Publication No. 57-37824 discloses an exhaust gas sensor that combines an n-type metal oxide semiconductor and a p-type metal oxide semiconductor. The feature of this technology is that by combining two semiconductors, it is possible to compensate for the temperature dependence of the sensor and double the detection signal for the air-fuel ratio (λ). These requirements for exhaust gas sensors are: (1) to be highly sensitive to oxygen; (2) to suppress sensitivity to flammable gases and balance it with oxygen sensitivity; There are two points: Detection errors due to residual gas are suppressed. [Problem of the Invention] An object of the present invention is to provide an exhaust gas sensor that is highly sensitive to oxygen and has a small detection error due to the coexistence of unreacted combustible gas and oxygen. [Structure of the Invention] The exhaust gas sensor of the present invention has the following features: (1) The n-type metal oxide semiconductor is ASnO 3 -δ, where A is at least a member of the group consisting of Ba and Ra, and δ is a non-stoichiometric amount. (2) BTiO 3 -δ of a p-type metal oxide semiconductor, where B is at least a member of the group consisting of Sr and Ca, and δ is a non-stoichiometric parameter. It is characterized by a combination of . [Notation] In the following, compounds are represented without the non-stoichiometric parameter δ. Further, as a concept indicating oxygen sensitivity, an oxygen gradient (n) is introduced and defined as Rs=K·Po 2 n , (Rs: resistance value of semiconductor). [Example] (A) Structure of exhaust gas sensor The structure of the exhaust gas sensor will be explained with reference to FIG. 1 and FIG. 2. In the figure, 2 is alumina 6
It is a hole tube base, and a ceramic tube 4 with a built-in heater is attached to its tip. This ceramic tube 4 is equipped with a film heater 6 made of tungsten, platinum, etc. inside, and has an n-type gas detection piece 8 and a
This is for heating the shaped gas detection piece 10 to a constant temperature. Note that various types of heaters can be used in addition to the membrane heater 6 shown in the figure. An n-type gas detection piece 8 is inserted into the recess between the base 2 and the ceramic tube 4 via the threshold 12.
and a p-type gas detection piece 10 are provided. Here, the n-type gas detection piece 8 is made of BaSnO 3 ,
It is made by adding a small amount of a noble metal catalyst and a gel such as SiO 2 to an n-type perovskite compound such as RaSnO 3 or Ba 0.7 Ra 0.3 SnO 3 . Precious metal catalysts are used to suppress sensitivity to combustible gases and achieve a balance with oxygen sensitivity, and include Pt, Ir, Ru,
Precious metals such as Os and Rh or mixtures thereof are used. The appropriate amount of addition is 10 μg to 5 mg per 1 g of AnSnO 3 in terms of metal. Gels such as SiO 2 are used as oxygen sensitizers, and SiO 2 , GeO 2 ,
Amorphous, non-vitreous gels of ZrO 2 and HfO 2 are used. Note that amorphous herein means that the half width determined by X-ray diffraction is 60 Å or less. The amount of SiO 2 etc. added is 1 to 30 per mole of ASnO 3
Mol% is preferred. It is not necessary to add a noble metal catalyst, SiO 2 or the like. Another problem with the n-type gas detection piece 8 is that
AnSnO 3 reacts with basic 2 alumina etc.,
The purpose is to prevent decomposition into AAl 2 O 4 and SnO 2 . Therefore, the area around the n-type gas detection piece 8 is
Cover with a substance that does not react with AnSnO 3 . As the coating material, mullite, spinel, cordierite, or the aforementioned gel such as SiO 2 or GeO 2 is used. To explain the structure of the n-type gas detection piece 8 in more detail with reference to FIG. 3, 14 is a porous sintered body of ASnO3 , 16 and 18 are noble metal electrodes, and 20 is a thickness.
It is a protective film of mullite of about 100μ. The p-type gas detection piece 10 is made of SrTiO 3 , CaTiO 3 ,
A pair of noble metal electrodes (not shown) are connected to a p-type perovskite compound such as Sr 0.7 Ra 0.3 TiO 3 . BTiO 3 is used as a porous sintered body, and 10 to 600 μg/g of noble metal catalyst is added.
The significance and composition standards of the catalyst are the same as for the n-type, and the amount added is 10 to 10% in terms of metal per 1g of BTiO3 .
600μg is preferred. Of course, it is not necessary to add a catalyst. As is well known, perovskite compounds are substances that are insensitive to substitution, such as A element, Sn element,
About 10 mol% of the B element and the Ti element may be replaced with other elements. Furthermore, ASnO 3 and BTiO 3 may be used in combination with other compounds within a range where their resistance value becomes dominant. Returning to FIGS. 1 and 2, 22 is a metal fitting for attaching the sensor to an exhaust pipe of an automobile engine, a combustion chamber of a stove, a boiler, or the like.
Further, 24 and 26 are lead pins connected to the membrane heater 6, and 28 and 30 are lead pins 32 and 34 connected to the n-type gas detection piece 8, and the lead pins 32 and 34 are connected to the p-type gas detection piece 10.
It is a lead pin connected to. (B) Ancillary circuit An example of ancillary circuit is shown in Fig. 4. Load resistors R 1 and R 2 are connected to the gas detection pieces 8 and 10 to form a bridge circuit, and a power source E B is connected. In addition, the voltage applied to each load resistor R 1 and R 2 is applied to the amplifier A1 and A2.
Take out via. Comparing ASnO 3 and BTiO 3 here, the resistance value at 700℃ in the lean region is ASnO 3 .
Just over 10KΩ, with BTiO 3 it's just under 100KΩ. Also, the ratio of resistance values at 500℃ and 900℃ in the lean region is
ASnO 3 has a strength of over 100 times, and BTiO 3 has a strength of just under 1000 times.
Therefore, the values of resistors R 1 and R 2 and the amplifiers A1 and A2
Adjust the gain and match the resistance value. In addition, the output from the n-type gas detection piece 8 is 1.5
It is connected to an exponentiation circuit M1 of the order of magnitude, and the temperature coefficient is also matched. The exponentiation circuit M1 may be omitted. The outputs of the exponentiation circuit M1 and the amplifier A2 are input to the division circuit D1, and the temperature-compensated output is applied to the control circuit 40 to control the air-fuel ratio. On the other hand, in order to keep the temperature of the exhaust gas sensor constant, the duty ratio of the voltage applied to the membrane heater 6 is controlled. The outputs of exponentiation circuit M1 and amplifier A2 are applied to multiplier circuit M2 to obtain a signal that depends only on temperature. The width of the output pulse of the oscillation circuit 42 is varied by the output of the multiplier circuit M2 in the voltage-pulse width modulation circuit 44, and the on-time of the switching transistor 46 is varied. In this way, the power applied from the power source E B ' to the membrane heater 6 is varied depending on the temperature of the exhaust gas sensor, and the heating temperature is kept constant. (C) Manufacture of gas detection pieces 8 and 10 Alkaline earth carbonate and SnO 2 or TiO 2 are mixed and calcined at 1200°C to form ASnO 3 or BTiO 3 .
After pulverizing these substances, they are fired at 1300°C to form gas detection pieces 8 and 10. The preferred deformation range is
The calcination conditions are not important as the calcination conditions for ASnO 3 are 1200-1500°C. Regarding BTiO 3 , the calcination temperature is set to 1200 to 1300°C, so that the calcination temperature is the same as or 100°C lower than the calcination temperature. The oxygen sensitizer is preferably added in the form of a sol or gel after calcination, and the noble metal catalyst is preferably impregnated after calcination and supported by thermal decomposition at about 900 to 1000°C. Further, the protective film 20 is preferably provided after firing by thermal spraying, sintering after coating, or the like. As a comparative example, La 2 (CO 3 ) 3 and CoO
LaCoO 3 (p-type) calcined at 1200℃ and fired at 1300℃
was used. It was also calcined at 1200℃ and fired at 1300℃.
TiO 2 (n-type) was used as another comparative example. All of these comparative samples contained 100 μg/g.
Added Pt. (D) Characteristics near the equivalence point (λ=1) A combination of ASnO 3 and BTiO 3 also has
The combination of TiO 2 and LaCoO 3 also has almost the same characteristics near the equivalence point. (E) Oxygen Sensitivity Table 1 shows the oxygen gradient of each gas detection piece 8, 10. The oxygen gradient of ASnO3 is about 50% more than that of TiO2
Largely, the enzyme gradient of BTiO 3 is about twice that of LaCoO 3 . Next, BaSnO 3 , RaSnO 3 , CaTiO 3 and
They are mutually equivalent to SrTiO 3 . Furthermore, Ba 0.7
The properties of Ra 0.3 SnO 3 are BaSnO 3 , Sr 0.7 Ca 0.3 TiO 3
The properties of SrTiO3 are very similar. Also, the addition of Pt had no effect on the oxygen gradient. Table 2 shows the effect of adding SiO 2 etc. to ASnO 3 . Oxygen gradient is 0.03-0.04 due to addition of SiO2 etc.
Improved.

【表】【table】

【表】 第5図に、BaSnO3とSrTiO3とを組み合せ
た、実施例と、TiO2とLaCoO3とを組み合せた
比較例の酸素感度を示す。測定は700℃のN2
ランスで行い、n形ガス検出片8とp形ガス検
出片10の抵抗値の比、(酸素分圧1%で1と
規格化)、を出力として示す。 (F) 可燃性ガス感度 リーンバーン領域での検出誤差は、未反応の
可燃性ガスへの感度と酸素感度とがバランスし
ないことから生ずる。 COとH2とを代表するものとしてCOを、炭
化水素類を代表するものとしてプロピレンを用
い、可燃性ガスを感度を表3に示す。なお試料
9、10については、n形ガス検出片8とp形ガ
ス検出片10の抵抗値の比の変化を示す。
[Table] Figure 5 shows the oxygen sensitivity of an example in which BaSnO 3 and SrTiO 3 are combined and a comparative example in which TiO 2 and LaCoO 3 are combined. The measurement was carried out in N2 balance at 700° C., and the ratio of the resistance values of the n-type gas detection piece 8 and the p-type gas detection piece 10 (normalized to 1 at an oxygen partial pressure of 1%) is shown as the output. (F) Sensitivity to combustible gas Detection errors in the lean burn region arise from an imbalance between sensitivity to unreacted combustible gas and oxygen sensitivity. Table 3 shows the sensitivity of flammable gases using CO as a representative of CO and H 2 and propylene as a representative of hydrocarbons. For samples 9 and 10, changes in the ratio of the resistance values of the n-type gas detection piece 8 and the p-type gas detection piece 10 are shown.

〔発明の効果〕〔Effect of the invention〕

この発明では、酸素に高感度で、未反応の可燃
性ガスの残存による検出誤差の小さい排ガスセン
サが得られる。
The present invention provides an exhaust gas sensor that is highly sensitive to oxygen and has small detection errors due to residual unreacted combustible gas.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例の排ガスセンサの部分切り欠き
部付き斜視図、第2図はその長手方向断面図、第
3図は実施例に用いるn形ガス検出片の断面図で
ある。第4図は付帯回路のブロツク図、第5図〜
第6図は、実施例の排ガスセンサの特性図で有
る。 2……基体、4……セラミツクス、6……膜ヒ
ータ、8……n形ガス検出片、10……p形ガス
検出片。
FIG. 1 is a perspective view with a partial cutout of an exhaust gas sensor according to an embodiment, FIG. 2 is a longitudinal sectional view thereof, and FIG. 3 is a sectional view of an n-type gas detection piece used in the embodiment. Figure 4 is a block diagram of the auxiliary circuit, Figure 5~
FIG. 6 is a characteristic diagram of the exhaust gas sensor of the example. 2...Substrate, 4...Ceramics, 6...Membrane heater, 8...N-type gas detection piece, 10...P-type gas detection piece.

Claims (1)

【特許請求の範囲】 1 n形金属酸化物半導体を用いたn形ガス検出
片と、p形金属酸化物半導体を用いたp形ガス検
出片とを組み合わせた排ガスセンサにおいて、 前記n形金属酸化物半導体はASnO3−δ、(こ
こにAはBaおよびRaからなる群の少くとも一員
の元素を、δは非化学量論的パラメータを現す)、
で有り、 前記p形金属酸化物半導体はBTiO3−δ、(こ
こにBはSrおよびCaからなる群の少くとも一員
の元素を、δは非化学量論的パラメータを現す)、
で有ることを特徴とする排ガスセンサ。
[Scope of Claims] 1. In an exhaust gas sensor that combines an n-type gas detection piece using an n-type metal oxide semiconductor and a p-type gas detection piece using a p-type metal oxide semiconductor, the n-type metal oxide The physical semiconductor is ASnO 3 −δ, (where A is at least a member of the group consisting of Ba and Ra, and δ represents a non-stoichiometric parameter),
and the p-type metal oxide semiconductor is BTiO 3 -δ, (where B is at least a member of the group consisting of Sr and Ca, and δ represents a non-stoichiometric parameter),
An exhaust gas sensor characterized by:
JP28093484A 1984-12-27 1984-12-27 Exhaust gas sensor Granted JPS61155745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28093484A JPS61155745A (en) 1984-12-27 1984-12-27 Exhaust gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28093484A JPS61155745A (en) 1984-12-27 1984-12-27 Exhaust gas sensor

Publications (2)

Publication Number Publication Date
JPS61155745A JPS61155745A (en) 1986-07-15
JPH053893B2 true JPH053893B2 (en) 1993-01-18

Family

ID=17631958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28093484A Granted JPS61155745A (en) 1984-12-27 1984-12-27 Exhaust gas sensor

Country Status (1)

Country Link
JP (1) JPS61155745A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101038636B1 (en) * 2009-07-17 2011-06-03 손윤호 Pin type electronic measuring apparatus for safety

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5119592A (en) * 1974-08-09 1976-02-16 Nissan Motor Gasunodo kenshutsuki
JPS55165504A (en) * 1979-06-09 1980-12-24 Matsushita Electric Ind Co Ltd Temperature and humidity detecting elements and detector using same
JPS5689048A (en) * 1979-12-21 1981-07-20 Matsushita Electric Ind Co Ltd Exhaust gas sensor
JPS57106568A (en) * 1980-12-22 1982-07-02 Murata Manufacturing Co Moisture sensitive ceramic

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5119592A (en) * 1974-08-09 1976-02-16 Nissan Motor Gasunodo kenshutsuki
JPS55165504A (en) * 1979-06-09 1980-12-24 Matsushita Electric Ind Co Ltd Temperature and humidity detecting elements and detector using same
JPS5689048A (en) * 1979-12-21 1981-07-20 Matsushita Electric Ind Co Ltd Exhaust gas sensor
JPS57106568A (en) * 1980-12-22 1982-07-02 Murata Manufacturing Co Moisture sensitive ceramic

Also Published As

Publication number Publication date
JPS61155745A (en) 1986-07-15

Similar Documents

Publication Publication Date Title
US4453397A (en) Gas detecting sensor
US4387359A (en) Titania oxygen sensor with chrome oxide compensator
JPS6149623B2 (en)
JP2811976B2 (en) Oxide semiconductor gas sensor
US4658632A (en) Sensor
JPH053893B2 (en)
JPH053900B2 (en)
JPH053901B2 (en)
JP2815125B2 (en) Contact combustion type gas detection element
JPS637342B2 (en)
JP2847979B2 (en) Oxide semiconductor gas sensor
JPH052097B2 (en)
JPS6012575B2 (en) gas component detector
JPH053902B2 (en)
JPH053903B2 (en)
JPH053898B2 (en)
JPS60205343A (en) Air-fuel ratio detector for lean burn
JPS61147148A (en) Waste gas sensor
JP2008286569A (en) Sensor element, and gas sensor equipped with the sensor element
JPS61155945A (en) Oxygen sensor
JPH0283442A (en) Oxygen sensor for internal combustion engine
JPH05256816A (en) Oxygen sensor and its manufacture
JPH01213567A (en) Oxygen detecting element
JPH0514861B2 (en)
JPS61137053A (en) Lambda sensor