JPH0538141A - Power supply device generating plural secondary power supplies - Google Patents
Power supply device generating plural secondary power suppliesInfo
- Publication number
- JPH0538141A JPH0538141A JP18470291A JP18470291A JPH0538141A JP H0538141 A JPH0538141 A JP H0538141A JP 18470291 A JP18470291 A JP 18470291A JP 18470291 A JP18470291 A JP 18470291A JP H0538141 A JPH0538141 A JP H0538141A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- power supply
- secondary power
- control
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Dc-Dc Converters (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、共通の1次電源から複
数の2次電源を生成する電源装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply device for generating a plurality of secondary power supplies from a common primary power supply.
【0002】[0002]
【従来の技術】図3に、共通の1次電源から複数の2次
電源を生成する電源装置の一般的構成を示す。同図にお
いて、フィルター回路10と整流器21および平滑コン
デンサ22を含む整流回路20とから1次電源が構成さ
れ、この1次電源は電圧制御回路30(パワーMOS3
3,PWM制御IC34,ホトカプラ受光器35)を介
して、トランスTrの1次巻線(制御巻線31,ベース
巻線32)に接続されている。2. Description of the Related Art FIG. 3 shows a general configuration of a power supply device for generating a plurality of secondary power supplies from a common primary power supply. In the figure, a primary power source is composed of a filter circuit 10 and a rectifier circuit 20 including a rectifier 21 and a smoothing capacitor 22, and this primary power source is a voltage control circuit 30 (power MOS 3
3, PWM control IC 34, photocoupler light receiver 35), and is connected to the primary winding (control winding 31, base winding 32) of the transformer Tr.
【0003】一方、2次電源は、トランスTrの別巻回
された2次巻線CL1から引出した第1の2次電源系路
L1と2次巻線CL2から引出した第2の2次電源系路
L2とからなる2つ(複数)とされている。On the other hand, the secondary power source is a first secondary power source system path L1 drawn from the secondary winding CL1 of the transformer Tr, which is separately wound, and a second secondary power source system drawn from the secondary winding CL2. There are two (a plurality of) roads L2.
【0004】第1の2次電源系路L1には、抵抗R11
0と信号発生素子(ホトカプラ発光器)41と制御用素
子(シャントレギュレータ)42を直列接続された電圧
信号発生回路が設けられている。シャントレギュレータ
(42)の駆動電圧Vd1は制御用抵抗分圧回路(R1
1,R12)の抵抗間電圧として生成され、また、ホト
カプラ発光器(41)の端子電圧Vs1は、抵抗R11
0を含む電圧信号発生回路(R110,41,42)自
体の回路定数で生成される。なお、第1の2次電源系路
L1には、直流生成用のダイオードD1、平滑用のコン
デンサC11,C12が含まれる。A resistor R11 is provided in the first secondary power supply path L1.
0, a signal generating element (photocoupler light emitter) 41, and a control element (shunt regulator) 42 are connected in series to provide a voltage signal generating circuit. The drive voltage Vd1 of the shunt regulator (42) is equal to the control resistance voltage dividing circuit (R1
1, R12), and the terminal voltage Vs1 of the photocoupler light emitter (41) is the resistance R11.
It is generated by the circuit constant of the voltage signal generation circuit (R110, 41, 42) itself including 0. The first secondary power supply system path L1 includes a direct current generating diode D1 and smoothing capacitors C11 and C12.
【0005】次に、第2の2次電源系路L2は、トラン
スTrの他の2次巻線CL2から引出され、電圧制御I
C45、直流生成用のダイオードD2、平滑用のコンデ
ンサC21,C22を含み形成されている。Next, the second secondary power system path L2 is drawn from the other secondary winding CL2 of the transformer Tr, and the voltage control I
C45, a diode D2 for generating direct current, and capacitors C21 and C22 for smoothing are formed.
【0006】かかる構成の電源装置では、第1の2次電
源(+V1〜GND)の電圧(+V1)が変動し設定電
圧よりも高くなり、これに伴って高まった駆動電圧Vd
1が基準電圧以上となるとシャントレギュレータ(4
2)がONとなり、ホトカプラ発光器41から電圧信号
(光量)が発生される。したがって、ホトカプラ受光器
35で受けた電圧信号(光量)に応じて電圧制御回路3
0(33,34,35)がトランスTr(31)への1
次電源を制御する。ここに、第1の2次電源電圧(+V
1)が設定電圧に戻されて安定化が図られる。In the power supply device having such a configuration, the voltage (+ V1) of the first secondary power supply (+ V1 to GND) fluctuates and becomes higher than the set voltage, and the drive voltage Vd increased accordingly.
When 1 becomes higher than the reference voltage, the shunt regulator (4
2) is turned on, and a voltage signal (light amount) is generated from the photocoupler light emitter 41. Therefore, according to the voltage signal (light quantity) received by the photocoupler light receiver 35, the voltage control circuit 3
0 (33, 34, 35) is 1 to the transformer Tr (31)
Control the next power supply. Here, the first secondary power supply voltage (+ V
1) is returned to the set voltage for stabilization.
【0007】一方、電圧(+V1)が低くなり、これに
伴って低くなった駆動電圧Vd1が基準電圧未満となる
とシャントレギュレータ(42)がOFFとなるから、
ホトカプラ発光器41から電圧信号(光量)が発せられ
ない。この場合、電圧制御回路30は、1次側から2次
側への流れ込み(1次電源電流I1)を増大するように
制御する。したがって、第1の2次電源電流I2を増大
しつつ2次電圧(+V1)の安定化が図られる。On the other hand, when the voltage (+ V1) becomes low and the driving voltage Vd1 which becomes low due to this becomes less than the reference voltage, the shunt regulator (42) is turned off.
No voltage signal (amount of light) is emitted from the photocoupler light emitter 41. In this case, the voltage control circuit 30 controls to increase the inflow (primary power supply current I1) from the primary side to the secondary side. Therefore, the secondary voltage (+ V1) is stabilized while increasing the first secondary power supply current I2.
【0008】なお、この電源装置は、いわゆるフライバ
ック方式であるから、1次電源側電流I1と第1の2次
電源側電流I2とは、図4に示す関係となる。Since this power supply device is a so-called flyback system, the primary power supply side current I1 and the first secondary power supply side current I2 have the relationship shown in FIG.
【0009】これに対して、第2の2次電源(+V2〜
GND)の電圧(+V2)変動は、トランスTrの巻線
比と電圧制御用IC45とで制御される。つまり、第1
の2次電源系路L1とは異なり、当該2次電源電圧+V
2をフィードバック信号として制御されていない。On the other hand, the second secondary power source (+ V2−
The voltage (+ V2) fluctuation of (GND) is controlled by the winding ratio of the transformer Tr and the voltage control IC 45. That is, the first
The secondary power supply voltage + V
2 is not controlled as a feedback signal.
【0010】このように、共通の1次電源から複数の2
次電源を生成する電源装置では、例えばプリンタに用い
る場合、キャリアや印字ヘッドの駆動電源が24V〜4
0V,0〜20Aで、ロジック用電源が5V〜12V,
0〜2Aであるとすると、基本的には負荷変動の大きな
2次電源系路(L1)に検出部つまり電圧信号発生回路
(R110,41,42)を設け、電圧制御回路(3
3,34,35)で1次電源をコントロールして、当該
2次電源の電圧安定化を図るように構成せざるを得な
い。As described above, a plurality of secondary
In the power supply device that generates the next power supply, for example, when used in a printer, the drive power supply for the carrier and print head is 24V to 4V.
0V, 0-20A, logic power supply 5V-12V,
If it is 0 to 2 A, the detection unit, that is, the voltage signal generation circuit (R110, 41, 42) is basically provided in the secondary power supply path (L1) where the load fluctuation is large, and the voltage control circuit (3
3, 34, 35) must control the primary power supply to stabilize the voltage of the secondary power supply.
【0011】[0011]
【発明が解決しようとする課題】したがって、電圧信号
発生回路(R110,41,42)が設けられていない
第2の2次電源系路L2(電圧+V2)は、単にトラン
スTrの巻線比だけで間接制御されるので、電圧+V2
が非常に不安定である。すなわち、第2の2次電源電圧
(+V2)が変動してその値が高くあるいは低くなって
も、1次電源が共通でかつトランスTrの巻線比が一定
である限り、電圧制御IC45の能力を越えた場合には
制御しようがない。したがって、負荷が増大すると第2
の2次電源電圧は、図5に示すように、非常に低下して
しまう不都合が生ずる。Therefore, the second secondary power supply path L2 (voltage + V2) in which the voltage signal generating circuit (R110, 41, 42) is not provided is simply the winding ratio of the transformer Tr. Since it is indirectly controlled by, voltage + V2
Is very unstable. That is, even if the second secondary power supply voltage (+ V2) fluctuates and its value becomes high or low, the capability of the voltage control IC 45 is maintained as long as the primary power supply is common and the winding ratio of the transformer Tr is constant. If it exceeds, there is no control. Therefore, if the load increases, the second
As shown in FIG. 5, the secondary power supply voltage of 1 is extremely lowered, which is a disadvantage.
【0012】また、第1の2次電源の電圧(+V1)が
低くなり、1次電源が電圧制御回路30によって制御さ
れると、これに追従して電圧(+V2)も高まる方向に
変動されてしまう。もっとも、電圧制御用IC45が働
くが、この場合の電力損失は大きく発熱する。これとは
逆に、第2の2次電源電圧(+V2)が、1次電源つま
り第1の2次電源電圧(+V1)にふられて、低く変動
する場合も生ずる。Further, when the voltage (+ V1) of the first secondary power source is lowered and the primary power source is controlled by the voltage control circuit 30, the voltage (+ V2) is also changed in accordance with the control so that the voltage (+ V2) is increased. I will end up. Although the voltage control IC 45 works, the power loss in this case is large and heat is generated. On the contrary, a case where the second secondary power supply voltage (+ V2) fluctuates low due to the primary power supply, that is, the first secondary power supply voltage (+ V1) may occur.
【0013】以上の問題は、2次電源の数を増大するほ
どに顕著に現れる。すなわち、図3に2点鎖線で示すよ
うにトランスTrの第3の2次巻線CL3から引出した
一段と簡単構造の第3の2次電源系路L3(D3,C
3)で、第3の2次電源(+V3〜GND)を生成する
場合、この電圧(+V3)は上記理由から非常に不安定
となってしまう。The above problems become more prominent as the number of secondary power supplies is increased. That is, as shown by the chain double-dashed line in FIG. 3, the third secondary power supply system path L3 (D3, C3) having a simpler structure extracted from the third secondary winding CL3 of the transformer Tr.
In 3), when the third secondary power source (+ V3 to GND) is generated, this voltage (+ V3) becomes very unstable for the above reason.
【0014】なお、各2次電源(+V2,+V3)を、
電圧制御されている2次電源(+V1)を基準に例えば
チョッパーやドロッパー等を使用して、それぞれに電圧
制御すれば電圧不安定は改善されるが、非常にコスト高
となり、また大型してしまう欠点があり採用し難い。Each secondary power source (+ V2, + V3)
Voltage instability can be improved by using a chopper or dropper, for example, with a voltage-controlled secondary power source (+ V1) as a reference, but this is extremely costly and large. It has drawbacks and is difficult to adopt.
【0015】さらに、上記従来電源装置では、各2次電
源系路(L1,L2)を共通のトランスTrの別々の2
次巻線(CL1,CL2)から引出すので、益々高周波
傾向にある現今ではトランスTrの巻線が小さく、2次
電源の数を増大できないとの問題もある。Further, in the above conventional power supply device, each secondary power supply system path (L1, L2) is provided with two separate transformers of the common transformer Tr.
Since it is drawn from the secondary windings (CL1, CL2), there is a problem that the winding of the transformer Tr is small at present with the tendency toward higher frequencies and the number of secondary power sources cannot be increased.
【0016】なお、以上の問題は、図6に示す構成で図
7に示す電圧−電流関係となるフォワード方式の場合で
も同様に内在する。因みに、各2次電源系路L1,L2
には、ダイオードD12,D22とコイルCL11,C
L21とが設けられる。The above problem is inherently present even in the case of the forward system having the voltage-current relationship shown in FIG. 7 in the configuration shown in FIG. By the way, each of the secondary power supply paths L1 and L2
Includes diodes D12 and D22 and coils CL11 and C
L21 and are provided.
【0017】ここに、本発明の目的は、2次電源電圧の
変動が小さく構造簡単で小型かつ低コストの複数の2次
電源を生成する電源装置を提供することにある。It is an object of the present invention to provide a power supply device for generating a plurality of secondary power supplies which has a small fluctuation in the secondary power supply voltage, a simple structure, a small size, and a low cost.
【0018】[0018]
【課題を解決するための手段】本発明は、1次電源から
トランスを介して複数の2次電源を生成し、かつ直列接
続された信号発生素子と制御用素子とを有する2次電源
側に設けられた電圧信号発生回路と1次電源側に設けら
れた電圧制御回路との協働によって2次電源の電圧安定
化を図るように構成された複数の2次電源を生成する電
源装置において、複数の2次電源系路を前記トランスの
共通2次巻線から引出しかつグランドを共通として形成
し、各2次電源系路のそれぞれに当該2次電源電圧に応
じた前記信号発生素子の端子電圧を生成する信号用抵抗
分圧回路と前記制御用素子の駆動電圧を生成する制御用
抵抗分圧回路とを設ける、とともに各2次電源系路の2
次電源電圧が設定電圧にある場合において各信号用抵抗
分圧回路が生成する各端子電圧値が同一かつ各制御用抵
抗分圧回路が生成する各駆動電圧値が同一となるように
形成し、前記電圧信号発生回路を各2次電源系路に共通
として接続したことを特徴とする。According to the present invention, a secondary power source, which generates a plurality of secondary power sources from a primary power source via a transformer and has a signal generating element and a control element connected in series, is provided. In a power supply device that generates a plurality of secondary power supplies configured to stabilize the voltage of the secondary power supply by the cooperation of the provided voltage signal generation circuit and the voltage control circuit provided on the primary power supply side, A plurality of secondary power supply system paths are drawn from a common secondary winding of the transformer and have a common ground, and each secondary power supply system path has a terminal voltage of the signal generating element corresponding to the secondary power supply voltage. And a control resistance voltage divider circuit for generating a drive voltage for the control element, and two secondary power supply paths.
When the next power supply voltage is at the set voltage, it is formed so that each terminal voltage value generated by each signal resistance voltage divider circuit is the same and each drive voltage value generated by each control resistance voltage divider circuit is the same, It is characterized in that the voltage signal generating circuit is commonly connected to each secondary power supply system path.
【0019】[0019]
【作用】上記構成の本発明では、どの2次電源系路の電
圧がその設定電圧より高くなっても、当該制御用抵抗分
圧回路で生成した駆動電圧が基準電圧以上に高くなるの
で、制御用素子はONされる。また、信号発生素子の端
子電圧も当該信号用抵抗分圧回路が働くので変動した当
該2次電源電圧に応じて高くなる。したがって、電圧信
号発生回路を形成するホトカプラ発光器から当該電圧変
動に相応した大きさの電圧信号(光量)が発せられる結
果、電圧制御回路が当該2次電源電圧を設定電圧に戻す
ように1次電源をコントロールする。In the present invention having the above-mentioned structure, even if any secondary power supply system voltage becomes higher than the set voltage, the drive voltage generated by the control resistance voltage dividing circuit becomes higher than the reference voltage. The device for use is turned on. Further, the terminal voltage of the signal generating element also increases in accordance with the changed secondary power source voltage because the signal resistance voltage dividing circuit operates. Therefore, as a result of the voltage signal (light amount) having a magnitude corresponding to the voltage fluctuation being emitted from the photocoupler light emitting device forming the voltage signal generating circuit, the primary voltage control circuit returns the secondary power supply voltage to the set voltage. Control the power supply.
【0020】この際、各信号用抵抗分圧回路、各制御用
抵抗分圧回路は、各2次電源電圧が設定電圧にある場合
に、各駆動電圧値,各端子電圧値がそれぞれ同一となる
ものと形成されているので、廻り込みがなく電圧信号発
生回路としての電流ループは形成されない。したがっ
て、電圧変動幅が一番大きい2次電源電圧を設定電圧に
戻す制御を正確に行える。他の2次電源電圧の電圧変動
幅はそれとともに当該設定電圧に戻される。In this case, the drive voltage value and the terminal voltage value of the signal resistance voltage dividing circuit and the control resistance voltage dividing circuit become the same when the secondary power supply voltage is at the set voltage. Since it is formed as one, there is no sneak and no current loop as a voltage signal generating circuit is formed. Therefore, it is possible to accurately control the secondary power supply voltage having the largest voltage fluctuation range to the set voltage. The voltage fluctuation width of the other secondary power supply voltage is returned to the set voltage accordingly.
【0021】一方、いずれかの2次電源電圧が低くなっ
ても、当該制御用抵抗分圧回路および信号用抵抗分圧回
路が働き、当該2次電源電圧に応じた駆動電圧と端子電
圧が生じる。すると、制御用素子はOFFされ信号発生
素子からの電圧信号は消滅する。したがって、電圧制御
回路は、当該2次電源電圧を設定電圧とする方向に1次
電源をコントロールする。On the other hand, even if any one of the secondary power supply voltages becomes low, the control resistance voltage dividing circuit and the signal resistance voltage dividing circuit operate to generate a drive voltage and a terminal voltage corresponding to the secondary power supply voltage. .. Then, the control element is turned off and the voltage signal from the signal generating element disappears. Therefore, the voltage control circuit controls the primary power supply in the direction in which the secondary power supply voltage is the set voltage.
【0022】よって、いずれの2次電源電圧が変動して
も、その変動幅の一番大きな2次電源電圧を当該設定電
圧にコントロールするので、いずれの2次電源電圧をも
同時的に安定化できる。Therefore, even if any of the secondary power supply voltages fluctuates, the secondary power supply voltage having the largest fluctuation range is controlled to the set voltage, so that any of the secondary power supply voltages is stabilized at the same time. it can.
【0023】[0023]
【実施例】以下、本発明の実施例を図1を参照して説明
する。複数の2次電源を生成する電源装置は、図1に示
すように、基本構成(整流回路20,電圧制御回路30
等)が従来例(図3)と同じフライバック方式とされて
いるが、各2次電源系路L1,L2はトランスTrの共
通2次巻線CLからグランドGNDを共通として引出し
形成され、かつ各2次電源系路L1,L2のそれぞれに
信号用抵抗分圧回路R110,R100、R120,R
100と制御用抵抗分圧回路R11,R12、R21,
R22とを設ける、とともに各2次電源電圧+V1,+
V2が設定電圧状態にある場合において信号発生素子4
1の各端子電圧値Vs1,Vs2が同一(Vs1=Vs
2)で、制御用素子42の各駆動電圧値Vd1,Vd2
が同一(Vd1=Vd2)となるように構成し、2次電
源側に共通として設けた1つの電圧信号発生回路(4
1,42)と1次電源側に設けた1つの電圧制御回路3
0(33,34,35)で、一番電圧変動幅の大きな2
次電源電圧を当該設定電圧とするようにコントロールし
て、いずれの2次電源電圧も同時的に電圧安定化できる
ように形成されている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. A power supply device that generates a plurality of secondary power supplies has a basic configuration (rectifier circuit 20, voltage control circuit 30 as shown in FIG.
Etc. is the same flyback method as in the conventional example (FIG. 3), but the secondary power supply paths L1 and L2 are formed by drawing the ground GND from the common secondary winding CL of the transformer Tr in common, and The signal resistance voltage dividing circuits R110, R100, R120, R are provided in the respective secondary power supply paths L1, L2.
100 and control resistance voltage dividing circuits R11, R12, R21,
R22 and each secondary power supply voltage + V1, +
The signal generating element 4 when V2 is in the set voltage state
1 has the same terminal voltage values Vs1 and Vs2 (Vs1 = Vs
2), the driving voltage values Vd1 and Vd2 of the control element 42
Are configured to be the same (Vd1 = Vd2), and one voltage signal generation circuit (4
1, 42) and one voltage control circuit 3 provided on the primary power supply side.
0 (33, 34, 35), 2 with the largest voltage fluctuation range
The secondary power supply voltage is controlled to be the set voltage, and any secondary power supply voltage can be simultaneously stabilized.
【0024】なお、フィルター回路,整流回路,電圧制
御回路等々、従来例(図3)と同一または共通する部分
については、同一の符号を付しその説明は簡略または省
略する。The same or common parts as those of the conventional example (FIG. 3) such as the filter circuit, the rectifier circuit, the voltage control circuit and the like are designated by the same reference numerals and the description thereof will be simplified or omitted.
【0025】図1において、2つ(複数)の2次電源系
路L1,L2は、トランスTrの共通2次巻線CLから
引出され、グラントGNDも共通とされている。第2の
2次電源系路L2の共通2次巻線CLからの引出位置A
は、第1の2次電源の設定電圧値(+V1)と第2の2
次電源の設定電圧値(+V2)との比に基づいて決定さ
れている。したがって、1次電源電圧に対して2次電源
電圧+V1と+V2との比率は一定である。In FIG. 1, the two (plural) secondary power supply paths L1 and L2 are drawn from the common secondary winding CL of the transformer Tr, and the ground GND is also common. Extraction position A from the common secondary winding CL of the second secondary power supply path L2
Is the set voltage value (+ V1) of the first secondary power source and the second
It is determined based on the ratio with the set voltage value (+ V2) of the next power source. Therefore, the ratio of the secondary power supply voltages + V1 and + V2 to the primary power supply voltage is constant.
【0026】さて、各信号用抵抗分圧回路は、抵抗R1
00を共通としてなる。第1(第2)の2次電源系路L
1(L2)に設けた信号用抵抗分圧回路は、2次電源
(+V1〜GND)〔(+V2〜GND)〕間に直列接
続された抵抗R110,R100(R120,R10
0)から形成され、第1(第2)の2次電源電圧+V1
(+V2)が設定電圧の場合に信号発生素子(ホトカプ
ラ発光器)41の端子電圧がVs1(Vs2)となり、
かつVs1=Vs2となるように各抵抗R110,R1
20,R100の抵抗値が決定されている。By the way, the resistance voltage dividing circuit for each signal has a resistor R1.
00 becomes common. First (second) secondary power supply path L
The resistor voltage divider circuit for signal provided in 1 (L2) includes resistors R110, R100 (R120, R10) connected in series between the secondary power sources (+ V1 to GND) [(+ V2 to GND)].
0) and the first (second) secondary power supply voltage + V1
When (+ V2) is the set voltage, the terminal voltage of the signal generating element (photocoupler light emitter) 41 becomes Vs1 (Vs2),
And the resistors R110 and R1 so that Vs1 = Vs2.
The resistance values of R20 and R100 are determined.
【0027】すなわち、いずれの2次電源電圧+V1,
+V2についても、その設定電圧に対する電圧変動幅が
同じであれば、信号発生素子41からのフィードバック
用の電圧信号(光量)の変動幅が同じでかつ絶対量も同
一となる。That is, which secondary power supply voltage + V1,
Also for + V2, if the voltage fluctuation range with respect to the set voltage is the same, the fluctuation range of the voltage signal (light amount) for feedback from the signal generating element 41 is the same and the absolute amount is also the same.
【0028】一方、第1(第2)の2次電源系路L1
(L2)に設けた制御用抵抗分圧回路は、2次電源(+
V1〜GND)〔(+V2〜GND)〕間に直列接続さ
れた抵抗R11,R12(R21,R22)から形成さ
れ、第1(第2)の2次電源電圧+V1(+V2)が設
定電圧の場合に制御用素子(シャントレギュレータ)4
2を駆動(ON−OFF)するための駆動電圧がVd1
(Vd2)となり、かつVd1=Vd2となるように各
抵抗R11,R12,R21,R22の抵抗値が決定さ
れている。On the other hand, the first (second) secondary power supply path L1
The control resistance voltage dividing circuit provided in (L2) is the secondary power source (+
V1 to GND) [(+ V2 to GND)] connected in series between resistors R11 and R12 (R21 and R22), where the first (second) secondary power supply voltage + V1 (+ V2) is the set voltage Control element (shunt regulator) 4
The drive voltage for driving 2 (ON-OFF) is Vd1
The resistance values of the resistors R11, R12, R21, R22 are determined such that (Vd2) and Vd1 = Vd2.
【0029】したがって、いずれの2次電源電圧+V
1,+V2についても、その設定電圧に対する電圧変動
幅が同じであれば、駆動電圧Vd1,Vd2の変動幅が
同じでかつ絶対値も同一となる。なお、この実施例のシ
ャントレギュレータ(42)は、駆動電圧Vd1=Vd
2が基準電圧2.5V以上でONとなり、2.5V未満
でOFFとなる。Therefore, any secondary power supply voltage + V
Also for 1 and + V2, if the voltage fluctuation width with respect to the set voltage is the same, the fluctuation widths of the drive voltages Vd1 and Vd2 are the same and the absolute values are the same. The shunt regulator (42) of this embodiment has a drive voltage Vd1 = Vd
2 turns on when the reference voltage is 2.5 V or more, and turns off when the reference voltage is less than 2.5 V.
【0030】かくして、電圧信号発生回路(41,4
2)は、各信号用抵抗分圧回路(R110,R100、
R120,R100)と各制御用抵抗分圧回路(R1
1,R12、R21,R22)を介して各2次電源系路
L1,L2に共通として接続されていると理解される。Thus, the voltage signal generating circuit (41, 4
2) is a voltage divider circuit for each signal (R110, R100,
R120, R100) and each control voltage divider circuit (R1
1, R12, R21, R22) are commonly connected to the respective secondary power supply system paths L1, L2.
【0031】なお、この実施例の電源装置は、プリンタ
に供されるものとされ、第1の2次電源電圧+V1はキ
ャリアや印字ヘッドの駆動用で設定電圧が+40V、第
2の2次電源電圧+V2はロジック用で設定電圧が+V
20Vとされている。The power supply device of this embodiment is used for a printer, and the first secondary power supply voltage + V1 is for driving the carrier and the print head, and the set voltage is +40 V, and the second secondary power supply. Voltage + V2 is for logic and the set voltage is + V
It is set to 20V.
【0032】次に、この実施例の作用を説明する。今、
第1の2次電源電圧+V1が、キャリア駆動により変動
して+40V以下に低下したとする。Next, the operation of this embodiment will be described. now,
It is assumed that the first secondary power supply voltage + V1 fluctuates due to carrier driving and drops to + 40V or less.
【0033】すると、第1の制御用抵抗分圧回路R1
1,R12で検出した駆動電圧Vd1が基準電圧たる
2.5V未満に低下する。したがって、シャントレギュ
レータ(42)は、OFFとなる。Then, the first control resistance voltage dividing circuit R1
1, the drive voltage Vd1 detected by R12 drops to less than 2.5V which is the reference voltage. Therefore, the shunt regulator (42) is turned off.
【0034】この際、トランスTrの2次巻線CLを共
通としているので、第2の2次電源電圧+V2も第1の
2次電源電圧+V1の電圧低下と同率だけ電圧低下する
から、第2の制御用抵抗分圧回路R21,R22で検出
する駆動電圧Vd2も先の駆動電圧Vd1と同じであ
る。すなわち、いずれの2次電源電圧+V1,+V2が
変動しても、それに応じて駆動電圧Vd1=Vd2が変
化する。つまり、ループは形成されず正確な検出ができ
る。At this time, since the secondary winding CL of the transformer Tr is shared, the second secondary power supply voltage + V2 also drops by the same rate as the voltage drop of the first secondary power supply voltage + V1. The drive voltage Vd2 detected by the control resistance voltage dividing circuits R21 and R22 is also the same as the previous drive voltage Vd1. That is, even if any of the secondary power supply voltages + V1 and + V2 changes, the drive voltage Vd1 = Vd2 changes accordingly. That is, no loop is formed and accurate detection is possible.
【0035】かくして、信号発生素子41からの電圧信
号(光量)が遮断されるので、電圧制御回路30は、第
1の2次電源電圧+V1を設定電圧(+40V)へ復帰
させるように1次電源電圧をコントロールする。第1の
2次電源電圧+V1が設定電圧(+40V)に復元され
ると、これにつれて第2の2次電源電圧+V2も設定電
圧(+20V)に戻る。トランスTrの2次巻線CLを
共通としているからである。Thus, since the voltage signal (light amount) from the signal generating element 41 is cut off, the voltage control circuit 30 causes the primary power supply to restore the first secondary power supply voltage + V1 to the set voltage (+ 40V). Control the voltage. When the first secondary power supply voltage + V1 is restored to the set voltage (+ 40V), the second secondary power supply voltage + V2 also returns to the set voltage (+ 20V) accordingly. This is because the secondary winding CL of the transformer Tr is shared.
【0036】一方、キャリアが停止され第1の2次電源
系路L1の負荷が減少して第1の2次電源電圧+V1が
+40Vを越えるようになると、第1の制御用抵抗分圧
回路R11,R12で検出した駆動電圧Vd1(=Vd
2)は、基準電圧2.5V以上となる。すると、シャン
トレギュレータ(42)がONとなる。On the other hand, when the carrier is stopped and the load on the first secondary power supply path L1 is reduced so that the first secondary power supply voltage + V1 exceeds + 40V, the first control resistance voltage dividing circuit R11 is generated. , R12 detected by the drive voltage Vd1 (= Vd
In 2), the reference voltage is 2.5 V or higher. Then, the shunt regulator (42) is turned on.
【0037】これと同時的に、第1の信号用抵抗分圧回
路R110,R100で生成する端子電圧Vs1も第1
の2次電源電圧+V1の変動幅に応じて高くなる。した
がって、ホトカプラ発光器(41)からの電圧信号(光
量)は増大するから、今度は電圧制御回路30が、第1
の2次電源電圧+V1を設定電圧(+40V)に戻すよ
うに1次電源をコントロールする。At the same time, the terminal voltage Vs1 generated by the first signal resistance voltage dividing circuits R110 and R100 is also the first.
It becomes higher according to the fluctuation range of the secondary power supply voltage + V1. Therefore, the voltage signal (light amount) from the photocoupler light emitter (41) increases, and this time the voltage control circuit 30 changes the first
The primary power supply is controlled so that the secondary power supply voltage + V1 of (1) is returned to the set voltage (+ 40V).
【0038】この際、第2の信号用抵抗分圧回路R12
0,R100で生成する端子電圧Vs2も、第2の2次
電源電圧+V2が第1の2次電源電圧+V1の変動に伴
って高くなっているので、端子電圧Vs1と同じ値に高
くなっている。換言すれば、信号用抵抗分圧回路R11
0,R100、R120,R100も、前述の如く、制
御用抵抗分圧回路R11,R12、R21,R22の場
合と同様に、いずれの2次電源電圧+V1,+V2が変
動しても、その変動分に応じた電圧信号(光量)を発生
するように端子電圧Vs1,Vs2を生成することがで
きる。At this time, the second resistance voltage dividing circuit for signal R12
The terminal voltage Vs2 generated by 0 and R100 is also the same as the terminal voltage Vs1 because the second secondary power supply voltage + V2 is increased with the variation of the first secondary power supply voltage + V1. .. In other words, the signal resistance voltage dividing circuit R11
As described above, 0, R100, R120, and R100, even if any of the secondary power supply voltages + V1 and + V2 fluctuate, as in the case of the control resistance voltage dividing circuits R11, R12, R21, and R22, the fluctuation components. The terminal voltages Vs1 and Vs2 can be generated so as to generate a voltage signal (light amount) according to
【0039】かくして、いずれかの2次電源系路L1,
L2に負荷変動があって当該2次電源電圧値+V1,+
V2が昇降変化しても、1つの電圧信号発生回路(4
1,42)と1つの電圧制御回路(33,34,35)
を用いて各2次電源電圧+V1,+V2を、それぞれの
設定電圧(+40V,+20V)に自動調整できる。し
たがって、各2次電源系路L1,L2の負荷電流(A)
と電圧(V)とは、図2に示す如くなり、いずれの2次
電源電圧(+V1,+V2)も非常に安定化できる。Thus, one of the secondary power supply paths L1,
There is a load change in L2, and the secondary power supply voltage value + V1, +
Even if V2 changes up and down, one voltage signal generation circuit (4
1, 42) and one voltage control circuit (33, 34, 35)
Can be used to automatically adjust the respective secondary power supply voltages + V1 and + V2 to the respective set voltages (+ 40V, + 20V). Therefore, the load current (A) of each of the secondary power supply paths L1 and L2
And the voltage (V) are as shown in FIG. 2, and any of the secondary power supply voltages (+ V1, + V2) can be extremely stabilized.
【0040】つまり、従来例(図3)の第2の2次電源
電圧(+V2)が図5に示すように非常に不安定なのに
対して、同じ構成の本実施例における第2の2次電源電
圧(+V2)は、図2に示すように、負荷変動に拘わら
ず電圧安定化を飛躍的に向上できる。That is, while the second secondary power supply voltage (+ V2) of the conventional example (FIG. 3) is extremely unstable as shown in FIG. 5, the second secondary power supply of this embodiment having the same configuration is used. As shown in FIG. 2, the voltage (+ V2) can dramatically improve voltage stabilization regardless of load fluctuation.
【0041】なお、図3に2点鎖線で示した第3の2次
電源系路(L3)を本実施例に設けても、当該信号用お
よび制御用抵抗分圧回路を設けさえすれば、第3の2次
電源電圧(+V3)を、図5に示す状態と異なり、他の
2次電源電圧+V1,+V2と同様に、図2に示すよう
に、安定化できること明白である。Even if the third secondary power supply path (L3) shown by the chain double-dashed line in FIG. 3 is provided in this embodiment, as long as the signal and control resistance voltage dividing circuit is provided, It is obvious that the third secondary power supply voltage (+ V3) can be stabilized as shown in FIG. 2, like the other secondary power supply voltages + V1 and + V2, unlike the state shown in FIG.
【0042】しかして、この実施例によれば、複数(2
つ)の2次電源系路L1,L2をトランスTrの共通2
次巻線CLからグランドGを共通として引出し形成し、
各2次電源系路L1,L2にそれぞれ信号用抵抗分圧回
路R110,R100、R120,R100と制御用抵
抗分圧回路R11,R12、R21,R22とを設け
る、とともに各2次電源電圧+V1,+V2が設定電圧
(+40V,+20V)にある場合に、信号発生素子4
1の端子電圧値Vs1,Vs2を同一(Vs1=Vs
2)かつ駆動電圧値Vd1,Vd2も同一(Vd1=V
d2)として、電圧信号発生回路(41,42)を各2
次電源系路L1,L2に共通として接続した構成である
から、2次電源側に設けた1つの電圧信号発生回路(4
1,42)と1次電源側に設けた1つの電圧制御回路3
0(33,34,35)で、いずれの2次電源装置+V
1,+V2が変動しても、いずれの2次電源電圧+V
1,+V2ともに同時的にそれぞれの設定電圧(+40
V,+20V)に迅速に復元させることができ、複数
(2つ)の2次電源電圧(+V1,+V2)を正確かつ
円滑に安定化できる。However, according to this embodiment, a plurality of (2
2) of the secondary power supply system L1 and L2
The ground G is commonly drawn out from the next winding CL,
Each of the secondary power supply paths L1 and L2 is provided with a signal resistance voltage dividing circuit R110, R100, R120, R100 and a control resistance voltage dividing circuit R11, R12, R21, R22, and each secondary power supply voltage + V1, When + V2 is at the set voltage (+ 40V, + 20V), the signal generating element 4
1 terminal voltage values Vs1 and Vs2 are the same (Vs1 = Vs
2) and the driving voltage values Vd1 and Vd2 are also the same (Vd1 = V
As the d2), the voltage signal generating circuits (41, 42) are each divided into two.
Since it is connected in common to the secondary power supply paths L1 and L2, one voltage signal generating circuit (4
1, 42) and one voltage control circuit 3 provided on the primary power supply side.
0 (33, 34, 35), any secondary power supply + V
Even if 1 and + V2 change, any secondary power supply voltage + V
1 and + V2 are both set voltage (+40
V, + 20V) can be quickly restored, and a plurality (two) of secondary power supply voltages (+ V1, + V2) can be accurately and smoothly stabilized.
【0043】また、複数(2つ)の2次電源系路L1,
L2は、トランスTrの1つの2次巻線CLを共通とし
て引出し形成される構成であるから、トランスTrを非
常に小型化でき、電源高周波数化に即応できる適応性の
広いものとなる。一方、トランスTrの大きさを一定と
すれば、2次電源系路の数を非常に増大できる。Further, a plurality (two) of secondary power supply system paths L1,
Since L2 has a configuration in which one secondary winding CL of the transformer Tr is commonly formed and drawn out, the transformer Tr can be extremely miniaturized and has a wide adaptability capable of quickly responding to an increase in power supply frequency. On the other hand, if the size of the transformer Tr is fixed, the number of secondary power supply system paths can be greatly increased.
【0044】また、各信号用抵抗分圧回路と各制御用抵
抗分圧回路とは、抵抗R110,R100,R120、
R11,R12,R21,R22を接続した簡単な構成
であるから、装置コストを大幅に引下げられ、かつ電圧
制御精度を大幅に向上できる。また、電圧制御用IC
(45)による電力損失もなくなる。In addition, the resistor voltage divider circuits for signals and the resistor voltage divider circuits for control include resistors R110, R100, R120,
Since the configuration is simple in which R11, R12, R21, and R22 are connected, the device cost can be significantly reduced, and the voltage control accuracy can be significantly improved. Also, a voltage control IC
The power loss due to (45) is also eliminated.
【0045】なお、以上の実施例では、2次電源系路が
2つ(L1,L2)とされていたが、その系路数は3以
上として実施することができ、この場合にも本発明はそ
のまま適用される。また、フライバック方式の電源装置
としたがフォワード方式の場合にも適用ある。In the above embodiment, the number of secondary power supply paths is two (L1, L2), but the number of paths can be three or more. Applies as is. Further, although the flyback type power supply device is used, it is also applicable to the case of the forward type.
【0046】[0046]
【発明の効果】以上の通り、本発明によれば、1次電源
からトランスを介して複数の2次電源を生成し、かつ直
列接続された信号発生素子と制御素子とを有する2次電
源側に設けられた電圧信号発生回路と1次電源側に設け
られた電圧制御回路との協働によって2次電源の電圧安
定化を図るように構成された複数の2次電源を生成する
電源装置において、複数の2次電源系路を前記トランス
の共通2次巻線から引出しかつグランドを共通として形
成し、各2次電源系路のそれぞれに当該2次電源電圧に
応じた前記信号発生素子の端子電圧を生成する信号用抵
抗分圧回路と前記制御用素子の駆動電圧を生成する制御
用抵抗分圧回路とを設ける、とともに各2次電源系路の
2次電源電圧が設定電圧にある場合において各信号用抵
抗分圧回路が生成する各端子電圧値が同一かつ各制御用
抵抗分圧回路が生成する各駆動電圧値が同一となるよう
に形成し、電圧信号発生回路を各2次電源系路に共通と
して接続した構成であるから、以下の効果を奏する。As described above, according to the present invention, a secondary power source side which generates a plurality of secondary power sources from a primary power source via a transformer and which has a signal generating element and a control element connected in series In a power supply device for generating a plurality of secondary power supplies configured to stabilize the voltage of the secondary power supply by cooperation of a voltage signal generation circuit provided in the power supply circuit and a voltage control circuit provided on the primary power supply side. , A plurality of secondary power supply system paths are formed from a common secondary winding of the transformer and have a common ground, and each of the secondary power supply system paths has terminals of the signal generating element corresponding to the secondary power supply voltage. In the case where a signal resistance voltage dividing circuit for generating a voltage and a control resistance voltage dividing circuit for generating a driving voltage for the control element are provided, and the secondary power supply voltage of each secondary power supply system path is at the set voltage. Generates a voltage divider circuit for each signal Are formed so that the respective terminal voltage values are the same and the respective driving voltage values generated by the respective control resistance voltage dividing circuits are the same, and the voltage signal generating circuit is commonly connected to the respective secondary power supply system paths. Therefore, the following effects are obtained.
【0047】 2次電源の数の大きさに拘わらず、1
つの電圧信号発生回路と1つの電圧制御回路で、いずれ
の2次電源電圧が変動した場合でも、全ての2次電源電
圧をそれぞれ設定電圧に同時に安定化できる。1 regardless of the number of secondary power sources
With one voltage signal generation circuit and one voltage control circuit, it is possible to simultaneously stabilize all the secondary power supply voltages to the set voltages, regardless of which secondary power supply voltage changes.
【0048】 各信号用抵抗分圧回路,各制御用抵抗
分圧回路は、ともに抵抗接続による簡単な構成であるか
ら、装置コストを大幅に引下げられ、かつ高精度制御が
できる。Each of the signal resistance voltage dividing circuit and each control resistance voltage dividing circuit has a simple configuration by resistance connection, so that the device cost can be significantly reduced and highly accurate control can be performed.
【0049】 2次巻線が1つでよいので、トランス
を非常に小型化できる。したがって、電源高周波化に好
適であり、またコスト低減も図れる。Since only one secondary winding is required, the transformer can be made extremely small. Therefore, it is suitable for increasing the frequency of the power supply, and the cost can be reduced.
【図1】本発明の一実施例を示す回路図である。FIG. 1 is a circuit diagram showing an embodiment of the present invention.
【図2】同じく、各2次電源電圧の安定度を説明するた
めの図である。FIG. 2 is a diagram for explaining the stability of each secondary power supply voltage.
【図3】従来例(フライバック方式)を示す回路図であ
る。FIG. 3 is a circuit diagram showing a conventional example (flyback method).
【図4】同じく、1次電源電流と2次電源電流との関係
を説明するための図である。FIG. 4 is a diagram for explaining the relationship between the primary power supply current and the secondary power supply current.
【図5】同じく、問題点を説明するための図である。FIG. 5 is also a diagram for explaining the problem.
【図6】他の従来例(フォワード方式)を示す回路図で
ある。FIG. 6 is a circuit diagram showing another conventional example (forward system).
【図7】同じく、1次電源電流と2次電源電流との関係
を説明するための図である。FIG. 7 is a diagram for explaining the relationship between the primary power supply current and the secondary power supply current.
10 フィルター回路(1次電源) 20 1次電源 21 整流器 22 平滑コンデンサ 30 電圧制御回路 31 制御巻線 32 ベース巻線 33 パワーMOS(電圧制御回路) 34 PWM制御IC(電圧制御回路) 35 ホトカプラ受光器(電圧制御回路) 40 2次電源 41 信号発生素子(電圧信号発生回路) 42 制御用素子(電圧信号発生回路) 45 電圧制御IC Tr トランス CL 共通2次巻線 CL1,CL2,CL3 2次巻線 L1 第1の2次電源系路 L2 第2の2次電源系路 +V1 第1の2次電源電圧 +V2 第2の2次電源電圧 Vd1,Vd2 駆動電圧 Vs1,Vs2 端子電圧 GND グランド R11,R12 抵抗(第1の制御用抵抗分圧回路) R21,R22 抵抗(第2の制御用抵抗分圧回路) R110,R100 抵抗(第1の信号用抵抗分圧回
路) R120,R100 抵抗(第2の信号用抵抗分圧回
路)10 Filter Circuit (Primary Power Supply) 20 Primary Power Supply 21 Rectifier 22 Smoothing Capacitor 30 Voltage Control Circuit 31 Control Winding 32 Base Winding 33 Power MOS (Voltage Control Circuit) 34 PWM Control IC (Voltage Control Circuit) 35 Photocoupler Receiver (Voltage control circuit) 40 Secondary power supply 41 Signal generating element (voltage signal generating circuit) 42 Control element (voltage signal generating circuit) 45 Voltage control IC Tr Transformer CL Common secondary winding CL1, CL2, CL3 Secondary winding L1 First secondary power supply system path L2 Second secondary power supply system path + V1 First secondary power supply voltage + V2 Second secondary power supply voltage Vd1, Vd2 Drive voltage Vs1, Vs2 Terminal voltage GND Ground R11, R12 Resistance (First control resistance voltage dividing circuit) R21, R22 Resistances (second control resistance voltage dividing circuit) R110, R100 Anti- (first signal resistor divider) R120, R100 resistance (resistance voltage dividing circuit for the second signal)
Claims (1)
次電源を生成し、かつ直列接続された信号発生素子と制
御用素子とを有する2次電源側に設けられた電圧信号発
生回路と1次電源側に設けられた電圧制御回路との協働
によって2次電源の電圧安定化を図るように構成された
複数の2次電源を生成する電源装置において、 複数の2次電源系路を前記トランスの共通2次巻線から
引出しかつグランドを共通として形成し、各2次電源系
路のそれぞれに当該2次電源電圧に応じた前記信号発生
素子の端子電圧を生成する信号用抵抗分圧回路と前記制
御用素子の駆動電圧を生成する制御用抵抗分圧回路とを
設ける、とともに各2次電源系路の2次電源電圧が設定
電圧にある場合において各信号用抵抗分圧回路が生成す
る各端子電圧値が同一かつ各制御用抵抗分圧回路が生成
する各駆動電圧値が同一となるように形成し、前記電圧
信号発生回路を各2次電源系路に共通として接続したこ
とを特徴とする複数の2次電源を生成する電源装置。1. A plurality of two power supplies are connected from a primary power source through a transformer.
By the cooperation of the voltage signal generation circuit provided on the secondary power supply side, which generates the secondary power supply and has the signal generation element and the control element connected in series, and the voltage control circuit provided on the primary power supply side. In a power supply device that generates a plurality of secondary power supplies configured to stabilize the voltage of the secondary power supply, a plurality of secondary power supply paths are drawn from a common secondary winding of the transformer and have a common ground. Then, in each of the secondary power supply paths, a signal resistance voltage dividing circuit that generates a terminal voltage of the signal generating element according to the secondary power supply voltage and a control resistance component that generates a drive voltage of the control element. And a voltage divider circuit is provided, and when the secondary power supply voltage of each secondary power supply path is at the set voltage, the terminal voltage values generated by the signal resistance voltage divider circuits are the same and the control resistance voltage divider circuits are The generated drive voltage values are the same A power supply device for generating a plurality of secondary power supplies, characterized in that the voltage signal generating circuit is commonly connected to each secondary power supply system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18470291A JPH0538141A (en) | 1991-07-24 | 1991-07-24 | Power supply device generating plural secondary power supplies |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18470291A JPH0538141A (en) | 1991-07-24 | 1991-07-24 | Power supply device generating plural secondary power supplies |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0538141A true JPH0538141A (en) | 1993-02-12 |
Family
ID=16157883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18470291A Pending JPH0538141A (en) | 1991-07-24 | 1991-07-24 | Power supply device generating plural secondary power supplies |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0538141A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1128537A2 (en) * | 2000-02-25 | 2001-08-29 | Murata Manufacturing Co., Ltd. | Switching power supply apparatus |
JP2013034365A (en) * | 2011-07-01 | 2013-02-14 | Canon Inc | Power unit and recording apparatus |
-
1991
- 1991-07-24 JP JP18470291A patent/JPH0538141A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1128537A2 (en) * | 2000-02-25 | 2001-08-29 | Murata Manufacturing Co., Ltd. | Switching power supply apparatus |
EP1128537A3 (en) * | 2000-02-25 | 2002-04-10 | Murata Manufacturing Co., Ltd. | Switching power supply apparatus |
US6631079B2 (en) | 2000-02-25 | 2003-10-07 | Murata Manufacturing Co., Ltd. | Switching power supply apparatus having plural outputs and plural output voltage detection |
JP2013034365A (en) * | 2011-07-01 | 2013-02-14 | Canon Inc | Power unit and recording apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI414142B (en) | Power supply control method and system therefor | |
US5254878A (en) | Voltage regulated power supply providing a constant output voltage | |
US5005112A (en) | Regulated D.C.-D.C. power converter having multiple D.C. outputs | |
US6961255B2 (en) | Switching power supply using controlled negative feedback in series with a switching device and responsive to the voltage and/or current to a load | |
US4131843A (en) | High tension voltage source | |
EP1058176B1 (en) | Power unit, and power supply system | |
US4456833A (en) | Regulated power supply | |
KR920008204B1 (en) | Smps | |
JPH11206126A (en) | Self-oscillation type switching power supply | |
JPH0538141A (en) | Power supply device generating plural secondary power supplies | |
JPH0919143A (en) | Multioutput switching regulator | |
US20020057583A1 (en) | Switching power supply unit and electronic apparatus using the same | |
US6104174A (en) | High voltage power supply circuit | |
US6262898B1 (en) | Circuit for driving a switching transistor | |
WO2006079978A2 (en) | Voltage integrator and transformer provided with such an integrator | |
US6157550A (en) | Switching power supply circuit | |
JP2001268903A (en) | Overcurrent protection circuit | |
JP3490321B2 (en) | Switching power supply | |
JP2986976B2 (en) | Multi-output type switching power supply | |
JPH04251563A (en) | Switching regulator | |
EP0972342B1 (en) | Circuit for driving a switching transistor | |
JP2870353B2 (en) | Switching power supply | |
JP3157625B2 (en) | Multi-output power supply | |
JPH0591742A (en) | Multioutput type switching power source | |
KR950003023Y1 (en) | Circuit for switching mode power supply |