JPH0538126A - Flux convergence-type strong magnetic field solenoid pump - Google Patents

Flux convergence-type strong magnetic field solenoid pump

Info

Publication number
JPH0538126A
JPH0538126A JP3300416A JP30041691A JPH0538126A JP H0538126 A JPH0538126 A JP H0538126A JP 3300416 A JP3300416 A JP 3300416A JP 30041691 A JP30041691 A JP 30041691A JP H0538126 A JPH0538126 A JP H0538126A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic flux
electromagnetic pump
hole
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3300416A
Other languages
Japanese (ja)
Other versions
JPH0681485B2 (en
Inventor
Kazuo Bessho
一夫 別所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa University NUC
Original Assignee
Kanazawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa University NUC filed Critical Kanazawa University NUC
Priority to US07/802,282 priority Critical patent/US5240382A/en
Priority to EP91311680A priority patent/EP0491546B1/en
Priority to DE69111584T priority patent/DE69111584T2/en
Publication of JPH0538126A publication Critical patent/JPH0538126A/en
Publication of JPH0681485B2 publication Critical patent/JPH0681485B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To obtain a powerful flux convergence-type solenoid pump with a simple structure, good efficiency and high delivery amount by constituting a conductor disc through increasing the thickness of the central part of the disc so that the radial section of the disc is approximately formed into a T-shape. CONSTITUTION:In a conductor disc 2, the thickness of the periphery 10 of a central hole is made greatly thicker than other parts so that the radial section of the disc is approximately formed into a T-shape, and a spiral exciting coil 1 is combined with the periphery into a unit element. Then, when the spiral exciting coil 1 is cascade-connected appropriately and three-phase AC voltage is applied to both sides of the coil, the travelling magnetic field of a uniformly distributed high flux density is generated in a gap 9 and a strong axial thrust is generated by the interaction with an eddy current generated in a molten metal in the gap 9 to act as a solenoid pump for rolling the molten metal. As a result, a leakage flux decreases while an effective flux in the gap of a double-structure pipe increases, and a thrust acting on the molten metal further increases so that rolling characteristics of the solenoid pump are improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、パイプの周囲から電磁
的に推力を加えてパイプ内の熔融金属を輸動する電磁ポ
ンプ、特に、多相交流励磁コイルにより、コイル層間の
金属板に発生した渦電流による誘起磁束およびコイル外
周の磁性枠体に誘起した磁束をともにパイプ内に収束し
て形成した進行磁界によって熔融金属を強力に輸動し得
る磁束収束型強磁場電磁ポンプに関し、特に金属板の中
心部に集中する渦電流を軸方向に分散させて局部的な過
熱を防ぎ、印加電圧、有効磁束および推進出力を増大さ
せ得るようにしたものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic pump for transferring a molten metal in a pipe by electromagnetically applying a thrust from the periphery of the pipe, and more particularly, to a metal plate between coil layers by a multi-phase AC exciting coil. A magnetic flux convergence type strong magnetic field electromagnetic pump capable of strongly transferring molten metal by a traveling magnetic field formed by converging in the pipe both the magnetic flux induced by the generated eddy currents and the magnetic flux induced in the magnetic frame around the coil, especially metal The eddy current concentrated in the central portion of the plate is dispersed in the axial direction to prevent local overheating, and the applied voltage, effective magnetic flux and propulsion output can be increased.

【0002】[0002]

【従来の技術】従来、高温熔融金属の輸動に関しては、
各国で非常に力を入れており、特に次世代のエネルギー
源として注目されている高速増殖炉の冷却材としての熔
融ナトリウム循環用ポンプとするに適した大容量の電磁
誘導型ポンプの開発は、高速増殖炉の実用化を目前にし
て緊急な研究課題とされており、各先進国においては、
国家的事業としてその研究が進められている。
2. Description of the Related Art Conventionally, regarding the transportation of high temperature molten metal,
The development of a large-capacity electromagnetic induction pump suitable for use as a pump for circulating molten sodium as a coolant for fast breeder reactors, which has been extremely focused in each country and is attracting attention as an energy source for the next generation, It is an urgent research subject for the practical application of fast breeder reactors.
The research is being promoted as a national enterprise.

【0003】しかしながら、従来方式によるリニア・イ
ンダクション型電磁ポンプは、輸動管内の進行磁界の磁
束密度が低く、吐出量が不十分であるために、大容量の
電磁ポンプとして使用することが困難であり、新たな方
式による電磁ポンプの開発が国際的に望まれていた。
However, the conventional linear induction type electromagnetic pump is difficult to use as a large capacity electromagnetic pump because the magnetic flux density of the traveling magnetic field in the transfer pipe is low and the discharge amount is insufficient. Therefore, the development of a new type of electromagnetic pump has been desired internationally.

【0004】すなわち、熔融炉から流れ出た高温熔融金
属の輸送や、特に、高速増殖炉冷却材としての高温熔融
ナトリウム循環に用いるポンプとして、通常の回転羽根
式の機械式ポンプは、長期の連続使用の場合に安全性に
関してやや問題があり、現状ではリニア・インダクショ
ン型電磁ポンプが最も適しているとされ、種々の方式に
よるリニア・インダクション型電磁ポンプが開発され
て、小容量の電磁ポンプはすでに実用されている。しか
しながら、従来方式によるリニア・インダクション型電
磁ポンプは、輸動管内における進行磁界の磁束密度がや
や低く、最高でも3000ガスス程度であり、したがって、
十分な推力が得られず、吐出量が不足して、大容量の電
磁ポンプの製作が困難であった。
That is, as a pump used for transporting high-temperature molten metal flowing out from a melting furnace, and particularly for circulating high-temperature molten sodium as a coolant for a fast breeder reactor, an ordinary rotary vane type mechanical pump is used for a long period of continuous use. In this case, there is a slight problem regarding safety, and at present, the linear induction type electromagnetic pump is said to be the most suitable, and the linear induction type electromagnetic pump by various methods was developed, and the small capacity electromagnetic pump has already been put into practical use. Has been done. However, in the conventional linear induction type electromagnetic pump, the magnetic flux density of the traveling magnetic field in the transfer pipe is slightly low, and it is about 3000 gas at the maximum.
It was difficult to manufacture a large-capacity electromagnetic pump because sufficient thrust could not be obtained and the discharge amount was insufficient.

【0005】[0005]

【発明が解決しようとする課題】そのため、本発明者
は、先に、特願平2−56331号明細書により「磁束
収束型電磁ポンプ」を提案し、従来方式の電磁ポンプに
比して熔融金属輸動の特性を飛躍的に向上させた電磁ポ
ンプを開発したが、この電磁ポンプも大容量用として使
用する場合に、特性上にやや問題があり、その問題を解
決して一層の特性改善をする必要があった。
Therefore, the present inventor previously proposed a "flux-converging type electromagnetic pump" according to Japanese Patent Application No. 2-56331, and melts it as compared with a conventional electromagnetic pump. We have developed an electromagnetic pump that dramatically improves the characteristics of metal transportation, but when this electromagnetic pump is also used for large capacity, there are some problems in the characteristics, and that problem can be solved to further improve the characteristics. Had to do.

【0006】[0006]

【課題を解決するための手段】本発明の目的は、上述し
た従来の課題を解決し、先に開発した磁束収束型電磁ポ
ンプの特性を一層改善して十分に大容量の電磁ポンプを
提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned conventional problems and to further improve the characteristics of the previously developed magnetic flux converging type electromagnetic pump to provide a sufficiently large capacity electromagnetic pump. Especially.

【0007】本発明の他の目的は、構造が簡単で効率が
よく、吐出量の大きい強力な高温熔融金属輸動用電磁ポ
ンプ、例えば、熔融炉から取出した熔融金属、特に、高
速増殖炉中の多量の熱交換用ナトリウムの輸動・循環用
とするに好適な大容量の誘導型電磁ポンプを提供するこ
とにある。
Another object of the present invention is to construct a powerful electromagnetic pump for transporting high temperature molten metal having a simple structure, high efficiency and large discharge amount, for example, molten metal taken out from a melting furnace, especially in a fast breeder furnace. An object is to provide a large-capacity induction type electromagnetic pump suitable for transporting and circulating a large amount of sodium for heat exchange.

【0008】本発明のさらに他の目的は、従来開発さ
れ、使用されている電磁ポンプは、誘起した進行磁界の
磁束密度が低く、したがって、十分な推力および十分な
吐出量か得られず、比較的小容量の電磁ポンプとしての
み使用されていたのを飛躍的に改善した磁束収束型電磁
ポンプをさらに改良してその特徴を活かした高効率・大
容量の新たな大型電磁ポンプを提供することにある。
Still another object of the present invention is that an electromagnetic pump conventionally developed and used has a low magnetic flux density of an induced traveling magnetic field, and therefore, a sufficient thrust and a sufficient discharge amount cannot be obtained. To improve the magnetic flux converging type electromagnetic pump that has been dramatically improved from being used only as an electromagnetic pump with a relatively small capacity, and to provide a new large-scale electromagnetic pump with high efficiency and large capacity that takes advantage of its features. is there.

【0009】本発明は、渦巻状励磁コイルと半径方向に
スリットを設けた導体円板とを交互に積層し、その周囲
を成層鉄心などの磁性枠体で囲み、導体円板の中心ホー
ル内を連通して非磁性材パイプを配設した構成の磁束収
束型電磁ポンプについて、導体円板の中心ホールの周辺
部を厚くし、その半径断面形状をT字形にするととも
に、中心ホールおよびこれを連通する非磁性材パイプの
直径を大きくしてその内部に別の直径の小さい非磁性材
パイプを配設して二重構造のパイプとし、その二重管構
造のギャップ内に輸動すべき熔融金属を導くとともに、
内側パイプの内部に誘起した進行磁界の磁束を高密度に
収束させるための部材、例えば棒状磁性材、あるいは、
外側パイプの周囲に位置した渦巻状コイル、中心部を厚
くして半径断面形状をT字形にした導体円板および磁性
体に対し、それぞれ対応させた渦巻状コイルおよび磁性
枠体などを配置したものであり、二重構造パイプのギャ
ップ内における磁束の局部集中を防いで磁束密度を均一
に増大させ得るようにしたものである。
According to the present invention, a spiral excitation coil and conductor discs having slits in the radial direction are alternately laminated, and the periphery thereof is surrounded by a magnetic frame such as a laminated core, and the inside of the center hole of the conductor disc is surrounded. Regarding a magnetic flux converging type electromagnetic pump with a non-magnetic material pipe arranged in communication with each other, the peripheral portion of the central hole of the conductor disk is made thicker and its radial cross section is T-shaped, and the central hole and this are communicated. The diameter of the non-magnetic material pipe is increased and another non-magnetic material pipe with a smaller diameter is placed inside the pipe to form a double structure pipe, and the molten metal to be transferred into the gap of the double pipe structure. While guiding
A member for converging the magnetic flux of the traveling magnetic field induced inside the inner pipe at a high density, for example, a rod-shaped magnetic material, or
A spiral coil located around the outer pipe, a conductor disk and a magnetic body having a T-shaped radial cross-section with a thickened central portion, and a spiral coil and a magnetic frame body, etc., which are respectively made to correspond to them. That is, it is possible to uniformly concentrate the magnetic flux density by preventing local concentration of the magnetic flux in the gap of the double structure pipe.

【0010】すなわち、本発明磁束収束型強磁場電磁ポ
ンプは、互いに同軸状に係合するとともに同一極性に巻
回した複数層の励磁コイルと、当該励磁コイルの各層間
に介在して外周縁に通ずる半径方向のスリットをそれぞ
れ具えるとともに中心部において前記スリットおよび相
互に同軸状に連通するホールを共有する複数層の導体円
板と、前記励磁コイルおよび前記導体円板の縦断面外周
を囲んで前記ホールを介し磁気閉回路をなすほぼU字形
の磁性枠体とを備えて単位の磁束発生素子を構成し、複
数単位の当該磁束発生素子を前記ホールの軸方向に密接
配置し、前記励磁コイルの多相交流通電に応じ、前記導
体円板に生ずる渦電流を前記スリットに沿い前記ホール
の周囲に集中させて順次に連通した当該ホール内に軸方
向に進行する進行磁束を発生させるとともに、前記磁性
枠体がなす磁気閉回路に発生した進行磁束を前記ホール
内の前記進行磁束に同相に重畳させ、順次に連通した前
記ホール内を貫通する非磁性材パイプ内に順次に前記磁
気閉回路の一部をなす磁束集中部材を同軸状に配設して
互いに同相に重畳した前記進行磁束を収束することによ
り、前記非磁性材パイプ内の熔融金属に軸方向の推力を
加える磁束収束形電磁ポンプにおいて、前記導体円板の
中心部の厚さを増大させて半径断面形状がほぼT字形を
なすようにしたことを特徴とするものである。
That is, the magnetic flux converging type strong magnetic field electromagnetic pump of the present invention has a plurality of layers of exciting coils which are coaxially engaged with each other and wound with the same polarity, and are interposed between the layers of the exciting coil so as to have an outer peripheral edge. A plurality of layers of conductor discs each having a communicating radial slit and sharing a slit and a hole communicating with each other coaxially at the center, and enclosing the excitation coil and the conductor disc in a vertical cross-section outer periphery. A substantially U-shaped magnetic frame forming a magnetic closed circuit through the hole constitutes a unit magnetic flux generating element, and a plurality of magnetic flux generating elements are closely arranged in the axial direction of the hole. The eddy current generated in the conductor disk is concentrated around the hole along the slit in accordance with the multi-phase AC energization, and progresses in the axial direction in the hole sequentially communicated. A magnetic flux is generated in the magnetic closed circuit formed by the magnetic frame, and the traveling magnetic flux in the hole is superposed in phase with the traveling magnetic flux, and the non-magnetic material pipe that penetrates the inside of the sequentially communicating holes is inserted. A magnetic flux concentrating member forming a part of the magnetic closed circuit is sequentially arranged coaxially and the traveling magnetic fluxes superposed in phase with each other are converged, thereby thrusting the molten metal in the non-magnetic material pipe in the axial direction. In the magnetic flux converging type electromagnetic pump, the thickness of the central portion of the conductor disk is increased so that the radial cross section has a substantially T-shape.

【0011】[0011]

【作用】したがって、本発明によれば、スリットを設け
た導体円板と渦巻状コイルとを多数交互に積層して磁性
枠体で囲み、多相交流通電による渦電流の集中によって
導体円板の中心ホール内に高磁束密度の進行磁界を発生
させるようにして、従来方式のアニュアル・インダクシ
ョン型電磁ポンプに比して特性を飛躍的に改善した本発
明者の先の提案に係る磁束収束型電磁ポンプにおける導
体円板の中心部を厚くすることによって、集中した渦電
流を軸方向に分散させるので、局部的な過熱を防ぎ、印
加電圧、有効磁束、推進出力を増大させて熔融金属輸動
の効率および特性を一層向上させることができる。
Therefore, according to the present invention, a large number of conductor discs provided with slits and spiral coils are alternately laminated and surrounded by a magnetic frame, and the conductor discs are concentrated by concentrating eddy currents due to polyphase alternating current. A magnetic flux converging electromagnetic system according to the present inventors' previous proposal, in which a traveling magnetic field with a high magnetic flux density is generated in the center hole, and the characteristics are dramatically improved as compared with the conventional annual induction type electromagnetic pump. By thickening the central part of the conductor disk in the pump, the concentrated eddy currents are dispersed in the axial direction, so local overheating is prevented and the applied voltage, effective magnetic flux, and propulsion output are increased to promote the molten metal transfer. Efficiency and characteristics can be further improved.

【0012】すなわち、本発明によれば、渦電流発生用
導体円板の高温熔融金属輸動用パイプに接する部分の半
径断面形状をT字形にすることにより、その部分に集中
して流れる渦電流による局部的な過熱を防ぎ、損失を軽
減し、印加電圧を高くして推進出力の増大を可能にする
ことができ、さらに、漏洩磁束を減少させて二重パイプ
のギャップ内における有効磁束、すなわち、半径方向の
磁束が増加して熔融金属に作用する軸方向の推力が増大
し、その結果、高温熔融金属輸動用、磁気鋳造用、高速
増殖炉冷却材ナトリウム循環用、磁気加速機用等とする
に好適な大型電磁ポンプを実現することができる。
That is, according to the present invention, by making the radial cross section of the portion of the conductor disk for generating eddy currents, which is in contact with the pipe for high temperature molten metal transportation, T-shaped, the eddy currents concentrated in that portion cause It can prevent local overheating, reduce losses, increase the applied voltage to allow an increase in propulsion power, and reduce the leakage flux to reduce the effective flux in the gap of the double pipe, i.e., The radial magnetic flux increases and the axial thrust acting on the molten metal increases. As a result, it is used for high temperature molten metal transfer, magnetic casting, fast breeder reactor coolant sodium circulation, magnetic accelerator etc. It is possible to realize a large-sized electromagnetic pump suitable for.

【0013】なお、かかる本発明の作用効果は、熔融金
属輸動パイプ内の磁束集中部材を棒状磁性体とした比較
的小容量のもののみならず、能動的に作用する磁束集中
部材を用いた大容量のものについても全く同様に得られ
る。
The effect of the present invention is not limited to the comparatively small capacity in which the magnetic flux concentration member in the molten metal transfer pipe is a rod-shaped magnetic body, but the magnetic flux concentration member which actively acts is used. The same thing can be obtained for a large capacity.

【0014】[0014]

【実施例】以下に図面を参照して実施例につき本発明を
詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the accompanying drawings.

【0015】まず、本発明者が先に提案した本発明によ
る改良の対象とする「磁束収束型電磁ポンプ」の側断面
図を図1に示し、縦断面図を図2に示してその概略構成
を説明する。
First, FIG. 1 shows a side sectional view of a "flux-converging electromagnetic pump" which has been proposed by the present inventor and which is an object of the improvement according to the present invention, and FIG. 2 shows a vertical sectional view thereof. Will be explained.

【0016】図1は、渦巻状励磁コイル1と導体円板2
との境界における軸に直角の側断面を示し、図2は軸を
含む縦断面を示すが、図示の構成においては、図3に示
すように渦巻状に巻回した励磁コイル1と、図4に示す
ように中心部のホール3から外周に達する半径方向のス
リット4を設けた渦電流発生用の導体円板2とを多数交
互に密着積層し、あるいは、図2に示すように導体円板
2を一対の励磁コイル1により挟んだ各組の単位素子を
離間配列し、その外周を成層鉄板などからなるU字形の
磁性枠体6により半径方向に軸対称に囲み、各導体円板
2の中心ホール3を連通して非磁性金属製のパイプ7を
配置し、そのパイプ7内に成層鉄心などからなる棒状磁
性体の磁心8を設け、パイプ7と棒状磁心8との間のギ
ャップ9に熔融金属を導くようにしてある。
FIG. 1 shows a spiral excitation coil 1 and a conductor disc 2.
2 shows a side cross section at a right angle to the axis at the boundary with, and FIG. 2 shows a vertical cross section including the axis. In the illustrated configuration, the exciting coil 1 spirally wound as shown in FIG. As shown in FIG. 2, a large number of eddy current generating conductor discs 2 provided with radial slits 4 extending from the central hole 3 to the outer periphery are alternately and closely laminated, or as shown in FIG. Unit elements of each group sandwiching 2 by a pair of exciting coils 1 are arranged in a spaced manner, and the outer periphery thereof is surrounded by a U-shaped magnetic frame 6 made of a laminated iron plate or the like in an axially symmetrical manner in the radial direction. A pipe 7 made of a non-magnetic metal is arranged so as to communicate with the central hole 3, and a magnetic core 8 of a rod-shaped magnetic body made of a laminated core or the like is provided in the pipe 7, and a gap 9 between the pipe 7 and the rod-shaped magnetic core 8 is provided. It is designed to guide molten metal.

【0017】上述の構成において各単位素子をなす渦巻
状励磁コイル1を適切に同一極性に順次に接続して例え
ば3相交流電圧を印加すると、導体円板2に発生して中
心部に集中する渦電流により誘起した軸方向の進行磁界
がギャップ9内に生じ、その結果、ギャップ9内の熔融
金属中に渦電流が流れて推力が生じ、熔融金属に作用し
て軸方向に輸動し、電磁ポンプとして作用する。かかる
構成による従来提案の磁束収束型電磁ポンプの外観を一
部破断して図5に示す。
In the above-mentioned structure, when the spiral excitation coils 1 forming each unit element are properly connected in sequence to the same polarity and a three-phase AC voltage is applied, for example, a three-phase AC voltage is generated and concentrated on the central portion of the conductor disk 2. An axial traveling magnetic field induced by the eddy current is generated in the gap 9, and as a result, an eddy current flows in the molten metal in the gap 9 to generate a thrust, which acts on the molten metal and is axially transferred. Acts as an electromagnetic pump. FIG. 5 is a partially cutaway external view of a magnetic flux convergence type electromagnetic pump of the related art having such a configuration.

【0018】本発明は、かかる構成の磁束収束型電磁ポ
ンプにおける導体円板の形状、特にその中心部の形状を
変えることによって特性を一層改善するとともに、熔融
金属輸動用非磁性材パイプを二重構造にし、内側パイプ
内に外側パイプの外周に沿って配置してある各単位素子
に対し、それぞれ対応させた同様の各単位素子を配置
し、内外両パイプ間のギャップ内に均一に分布した高磁
束密度の進行磁界が発生するようにしたものである。
The present invention further improves the characteristics by changing the shape of the conductor disc, particularly the shape of the center portion of the magnetic flux converging type electromagnetic pump having the above-mentioned structure, and the double pipe of the non-magnetic material pipe for molten metal transportation. With the structure, each of the unit elements arranged inside the inner pipe along the outer circumference of the outer pipe has the same corresponding unit element, and the heights evenly distributed in the gap between the inner and outer pipes. It is designed to generate a traveling magnetic field of magnetic flux density.

【0019】かかる本発明磁束収束型強磁場電磁ポンプ
の第1の構成例における導体円板2の正面図および断面
図を図6に示す。図示の導体円板2は、中心ホール3の
周辺部10の厚味を他の部分より格段に厚くし、半径断面
形状がほぼT字形をなすように構成したものてあり、か
かる形状の導体円板2の両側に図7に示すように中心部
の空所を上述の周辺部10よりやや大きくした渦巻状励磁
コイル1を、図8の縦断面図および図10の斜視外観図に
示すように組合わせて単位素子を構成する。
FIG. 6 shows a front view and a sectional view of the conductor disk 2 in the first configuration example of the magnetic flux convergence type strong magnetic field electromagnetic pump of the present invention. The conductor disc 2 shown in the figure is configured such that the thickness of the peripheral portion 10 of the center hole 3 is significantly thicker than the other portions, and the radial cross-sectional shape is substantially T-shaped. As shown in the longitudinal cross-sectional view of FIG. 8 and the perspective external view of FIG. 10, the spiral excitation coil 1 in which the central cavity is slightly larger than the peripheral portion 10 on both sides of the plate 2 as shown in FIG. Combined to form a unit element.

【0020】なお、図9には、かかる構成の図1と同様
の側断面を示すが、これら各図から判るように、本発明
強磁場電磁ポンプの第1の構成例においては、上述した
単位素子を多数軸方向に配置し、その外周を図8に示す
ように歯部11と凹所12とを各単位素子毎に備えた成層鉄
心などからなる磁性枠体6によりそれぞれ半径方向に囲
み、各導体円板2の中心ホール3を連通して配置した非
磁性金属パイプ7の内部に強磁性材よりなる棒状磁心8
を同軸に配設し、パイプ7と棒状磁心8との間のギャッ
プ9に熔融金属を導く。
Incidentally, FIG. 9 shows a side cross section similar to that of FIG. 1 in such a constitution. As can be seen from these respective drawings, in the first constitution example of the strong magnetic field electromagnetic pump of the present invention, the above-mentioned unit is used. A large number of elements are arranged in the axial direction, and the outer periphery thereof is surrounded in the radial direction by a magnetic frame 6 composed of a laminated core or the like having tooth portions 11 and recesses 12 for each unit element, as shown in FIG. A rod-shaped magnetic core 8 made of a ferromagnetic material is provided inside a non-magnetic metal pipe 7 arranged so as to communicate with the central holes 3 of the conductor discs 2.
Are arranged coaxially, and the molten metal is introduced into the gap 9 between the pipe 7 and the rod-shaped magnetic core 8.

【0021】かかる構成において、各単位素子をなす渦
巻状励磁コイル1を適切に縦続接続して両端に3相交流
電圧を印加すると、ギャップ9内に均一に分布した高磁
束密度の進行磁界が発生し、その結果、ギャップ9内の
熔融金属中に生じた渦電流と進行磁界との相互作用によ
り軸方向の強い推力が発生し、熔融金属を輸動する電磁
ポンプとして作用する。
In such a configuration, when the spiral excitation coils 1 forming each unit element are properly cascaded and a three-phase AC voltage is applied to both ends, a progressive magnetic field with a high magnetic flux density uniformly distributed in the gap 9 is generated. As a result, a strong thrust in the axial direction is generated by the interaction between the eddy current generated in the molten metal in the gap 9 and the traveling magnetic field, and acts as an electromagnetic pump for transferring the molten metal.

【0022】つぎに、本発明磁束収束型強磁場電磁ポン
プの第2の構成例について、図8と同様の縦断面図を図
11に示し、側面図および側断面図を組合わせて、単位素
子の断面図とともに図12に示す。図示の構成例は、本発
明強磁場電磁ポンプを大容量用に適用し得るようにした
ものであり、非磁性材パイプ7の直径を8図示の構成例
に比して格段に大きくするとともに、その中にパイプ7
より適切に小さくした直径の内側非磁性材パイプ13を同
軸に配設して二重管構造にし、両パイプ7,13間のギャ
ップ9に熔融金属を導くとともに、内側パイプ13の内側
に、外側パイプ7の外側に配設してある各単位素子にそ
れぞれ対応させて成層鉄心14によりそれぞれ半径方向に
囲んだ励磁コイル15を配置し、対応する外側励磁コイル
1とそれぞれ直列に接続し、双方の励磁コイル1,15に
より3相交流通電時に生ずる進行磁界がギャップ9内に
おいて同相に重畳し、均一な強い進行磁界が形成される
ようにしたものであり、前述した第1の構成例に比して
格段に大容量用とするに適した電磁ポンプを実現し得る
ようにしたものである。
Next, a second embodiment of the magnetic flux converging type strong magnetic field electromagnetic pump of the present invention is shown in a vertical sectional view similar to FIG.
11, which is a combination of the side view and the side sectional view, and is shown in FIG. 12 together with the sectional view of the unit element. The illustrated configuration example is one in which the strong magnetic field electromagnetic pump of the present invention can be applied to a large capacity, and the diameter of the non-magnetic material pipe 7 is significantly larger than that of the illustrated configuration example 8 and Pipe 7 in it
The inner non-magnetic material pipe 13 having a more appropriately reduced diameter is coaxially arranged to form a double pipe structure, and the molten metal is introduced into the gap 9 between the two pipes 7 and 13, and the inner pipe 13 and the outer pipe Exciting coils 15 respectively surrounded by a laminated core 14 in the radial direction are arranged corresponding to the respective unit elements arranged on the outside of the pipe 7, and connected to the corresponding outer exciting coils 1 in series. The exciting coils 1 and 15 are arranged so that the traveling magnetic fields generated during the three-phase AC energization are superposed in the same phase in the gap 9 to form a uniform and strong traveling magnetic field, as compared with the first configuration example described above. It is intended to realize an electromagnetic pump suitable for a large capacity.

【0023】ついで、本発明電磁ポンプをさらに大容量
用に適用するに好適な第3の構成例について、第2の構
成例を示した図11並びに図12と同様の縦断面図、並び
に、側面図および側断面図の組合わせを図13並びに図14
にそれぞれ示し、第1の構成例を示した図10と同様に一
部破断した外観の斜視図を図15に示す。図示の構成例
は、第2の構成例におけると全く同様に構成した二重構
造の熔融金属輸動用パイプにおける内側パイプ13の内側
に、第2の構成例におけると全く同様に設けた成層鉄心
14の各凹所12内に、外側パイプ7の外側に配置してある
各単位素子に対し、それぞれ対称に対応させて同様に構
成した各単位素子、すなわち、内側パイプ13に接する外
周部の厚味を厚くして半径断面形状がT字形になるよう
にした導体円板17を挟んでそれぞれ一対の渦巻状励磁コ
イル16をそれぞれ配設し、互いに対応する外側の励磁コ
イル1と内側の励磁コイル16とをそれぞれ直列に接続
し、双方の励磁コイル1,16により3相交流通電時に生
ずる進行磁界がギャップ9内において同相に重畳し、さ
らに強力な均一の進行磁界が形成されるようにしたもの
である。
Next, regarding a third structural example suitable for applying the electromagnetic pump of the present invention to a larger capacity, a longitudinal sectional view similar to FIGS. 11 and 12 showing a second structural example, and a side view. The combination of figure and side sectional view is shown in FIG. 13 and FIG.
FIG. 15 is a perspective view of the partially cut external view similar to FIG. 10 showing the first structural example. The illustrated structural example is a laminated core provided inside the inner pipe 13 in the double-structured molten metal transportation pipe having the same structure as in the second structural example, in exactly the same manner as in the second structural example.
In each recess 12 of 14, each unit element arranged outside the outer pipe 7 and symmetrically corresponding to each unit element, that is, the thickness of the outer peripheral portion in contact with the inner pipe 13 A pair of spiral-shaped exciting coils 16 are respectively arranged with a conductor disc 17 having a thicker taste and a T-shaped radial cross-section sandwiched therebetween, and the outer exciting coil 1 and the inner exciting coil 16 correspond to each other. 16 and each of which are connected in series so that the traveling magnetic fields generated when a three-phase AC current is applied are superposed in the same phase in the gap 9 by both exciting coils 1 and 16 to form a stronger and uniform traveling magnetic field. Is.

【0024】以上に詳述した構成の本発明磁束収束型強
磁場電磁ポンプ、例えば第1の構成例において、各単位
素子を構成する励磁コイルを適切に接続して3相交流通
電すると、それらの励磁コイルが囲繞する非磁性材パイ
プ内に進行磁界が発生し、その結果、パイプ内の熔融金
属中に誘起する渦電流と進行磁界との相互作用により推
力が生じて熔融金属に加わり、強力な電磁ポンプが構成
される。その場合に、励磁コイルの間に挿入してある導
体円板には改めて渦電流が流れ、その結果、漏洩磁束が
減少して二重構造パイプのギャップ内の有効磁束が増加
し、熔融金属に作用する推力がさらに増大して電磁ポン
プの輸動特性が飛躍的に改善されることになる。
In the magnetic flux converging type strong magnetic field electromagnetic pump of the present invention having the configuration described in detail above, for example, in the first configuration example, when the exciting coils constituting each unit element are appropriately connected and three-phase alternating current is applied, those A traveling magnetic field is generated in the non-magnetic material pipe surrounded by the exciting coil, and as a result, a thrust is generated by the interaction between the eddy current induced in the molten metal in the pipe and the traveling magnetic field to add to the molten metal and An electromagnetic pump is constructed. In that case, an eddy current again flows in the conductor disc inserted between the exciting coils, and as a result, the leakage magnetic flux decreases and the effective magnetic flux in the gap of the double structure pipe increases, which causes the molten metal to melt. The thrust that acts is further increased, and the transfer characteristics of the electromagnetic pump are dramatically improved.

【0025】その場合に導体円板2内には、図16に示す
ように分布した渦電流18が流れ、その渦電流18がスリッ
ト4の作用により中心ホール3の周辺部に集中するため
に漏洩磁束が遮断され、その結果、中心ホール3内に誘
起磁束が効率よく収束されることになる。
In that case, eddy currents 18 distributed as shown in FIG. 16 flow in the conductor disk 2, and the eddy currents 18 concentrate due to the action of the slits 4 in the peripheral portion of the central hole 3 and thus leak. The magnetic flux is blocked, and as a result, the induced magnetic flux is efficiently converged in the central hole 3.

【0026】かかる場合に、先に開発した磁束収束型電
磁ポンプにおけるように、導体円板の厚さが中心部まで
一定であると、中心ホール3の周辺部に集中して渦電流
が流れるために、局部的に過熱状態が生じて高温になる
欠点があった。かかる欠点を排除して軸方向に均一に分
布した高磁束密度の進行磁界が形成されるように、本発
明においては、図6、図8、図10あるいは図13に示した
ように、導体円板の中心ホール3の周辺部における厚味
を他の部分より格段に増大させて半径断面形状がT字形
をなすように改良し、その結果、二重構造パイプのギャ
ップ9内における半径方向の有効磁束が増加して電磁ポ
ンプの特性がよくなる特長がある。
In such a case, as in the previously developed magnetic flux converging type electromagnetic pump, if the thickness of the conductor disk is constant up to the central portion, the eddy current flows concentrated around the central hole 3. In addition, there is a drawback that a locally overheated state causes a high temperature. In order to eliminate such defects and form a traveling magnetic field of high magnetic flux density uniformly distributed in the axial direction, in the present invention, as shown in FIG. 6, FIG. 8, FIG. 10 or FIG. The thickness in the peripheral portion of the central hole 3 of the plate is remarkably increased as compared with other portions to improve the radial cross-sectional shape to be T-shaped, and as a result, the radial effective inside the gap 9 of the double structure pipe is improved. It has the feature that the magnetic flux increases and the characteristics of the electromagnetic pump improve.

【0027】先に提案した磁束収束型電磁ポンプにおけ
る厚味が均一な渦電流用導体円板を用いた場合の単位素
子について計算した磁束分布が図17に示すようになるの
に対し、上述したように本発明強磁場電磁ポンプにおけ
る半径断面形状をT字形にした導体円板を用いた場合の
単位素子について同様に計算した磁束分布は図18に示す
ようになり、本発明による導体円板中心部の厚味の増大
が極めて有効であることが判る。
The magnetic flux distribution calculated for the unit element in the case of using the eddy current conductor disk of uniform thickness in the previously proposed magnetic flux converging type electromagnetic pump is as shown in FIG. In the strong magnetic field electromagnetic pump of the present invention, the magnetic flux distribution similarly calculated for the unit element in the case of using the conductor disc having a T-shaped radial cross section is as shown in FIG. It can be seen that increasing the thickness of the part is extremely effective.

【0028】さらに、本発明電磁ポンプの二重構造にし
たパイプの内側にも外側の単位素子にそれぞれ対向して
単位素子を設けた場合における導体円板による磁束の遮
蔽効果について同様に計算した磁束分布は、導体円板が
ない場合の磁束分布を示す図19に比して、導体円板があ
る場合には、図20に示すようになり、図17と図18とに示
した外側の単位素子におけると同様の磁束の遮蔽効果が
認められる。なお、図19、図20には内側単位素子の導体
円板を厚さ一定とした場合について示したものである。
Further, the magnetic flux shielding effect by the conductor disc in the case where the unit elements are provided inside and outside the pipe having the double structure of the electromagnetic pump of the present invention so as to face the unit elements respectively, the magnetic flux calculated in the same manner. The distribution is as shown in FIG. 20 when there is a conductor disk, as compared to FIG. 19 which shows the magnetic flux distribution when there is no conductor disk, and the outer unit shown in FIG. 17 and FIG. The same magnetic flux shielding effect as in the device is observed. Note that FIGS. 19 and 20 show the case where the conductor disk of the inner unit element has a constant thickness.

【0029】[0029]

【発明の効果】以上の説明から明らかなように、本発明
の磁束収束型強磁場電磁ポンプにおいては、渦電流用導
体円板の半径断面形状を従来より格段に変更することの
みにより熔融金属輸動の効率および特性を著しく改善す
ることができ、その結果、吐出量の大きい大容量用の電
磁ポンプを実現することが容易となり、同様の原理を適
用した超大型電磁ポンプの実現も可能となる。
As is apparent from the above description, in the magnetic flux converging type strong magnetic field electromagnetic pump of the present invention, the molten metal transfer can be achieved only by significantly changing the radial cross-sectional shape of the eddy current conductor disk. The dynamic efficiency and characteristics can be remarkably improved, and as a result, it is easy to realize a large capacity electromagnetic pump with a large discharge amount, and it is also possible to realize a super large electromagnetic pump applying the same principle. .

【0030】すなわち、従来提案の磁束収束型電磁ポン
プの渦巻状励磁コイルと半径方向にスリットを設けた渦
電流用導体円板との交互反復積層における導体円板の中
心ホールの周辺部を厚くし、半径断面形状をT字形にし
た本発明の効果はつぎのとおりである。
That is, the peripheral portion of the central hole of the conductor disc is thickened in the alternate repeated lamination of the spiral excitation coil and the eddy current conductor disc having slits in the radial direction of the conventionally proposed magnetic flux converging type electromagnetic pump. The effects of the present invention in which the radial cross-sectional shape is T-shaped are as follows.

【0031】(1) 渦電流用導体円板において半径方向の
スリットの作用により中心ホール周辺部に集中的に流れ
る渦電流を軸方向に分散させて電流密度を減少させ、渦
電流の集中によって従来発生した局部的な過熱状態を排
除することができる。
(1) In the conductor disk for eddy currents, the action of the radial slits causes the eddy currents that intensively flow around the central hole to be dispersed in the axial direction to reduce the current density. It is possible to eliminate the local overheating state that has occurred.

【0032】(2) 上述のように導体円板の半径断面形状
をT字形にしたことにより中心ホール周辺部の電流密度
を減少させ、渦電流の集中により発生する中心ホール周
辺部の局部的な過熱状態の発生を防ぎ、その結果、同じ
規模の電磁ポンプであっても印加電圧を高くすることが
でき、推進出力を増大させることができる。
(2) As described above, the radial cross-sectional shape of the conductor disk is T-shaped to reduce the current density in the peripheral portion of the central hole, and to reduce the local density in the peripheral portion of the central hole caused by the concentration of eddy currents. The occurrence of an overheated state is prevented, and as a result, the applied voltage can be increased and the propulsion output can be increased even for electromagnetic pumps of the same scale.

【0033】(3) 導体円板の半径断面形状をT字形にす
ると、集中的に流れる渦電流が中心ホール内の非磁性金
属パイプに沿って軸方向に分散するので、励磁コイルと
導体円板との積層からなる単位素子の前後に位置する磁
性枠体の歯部から中心ホール周辺部の導体円板を通る漏
洩磁束が減少し、その減少分だけ二重構造パイプのギャ
ップ内を半径方向に通過する有効磁束が増加することに
なり、その結果、熔融金属に作用する推力が増大し、吐
出量が増大して輸動効率が上昇する。
(3) When the radial cross-sectional shape of the conductor disk is T-shaped, concentrated eddy currents are dispersed axially along the nonmagnetic metal pipe in the central hole, so that the exciting coil and the conductor disk are The magnetic flux leakage from the teeth of the magnetic frame located in the front and back of the unit element consisting of a stack of The effective magnetic flux passing therethrough increases, and as a result, the thrust acting on the molten metal increases, the discharge amount increases, and the transport efficiency increases.

【0034】(4) 本発明強磁場電磁ポンプにおいては導
体円板と交互に積層した渦巻状励磁コイルの内径が中心
ホールを連通する非磁性材パイプ内を流れる高温熔融金
属からの熱伝導を防ぐために導体円板中心ホールの内径
より大きくなり、したがって、導体円板中心ホール周辺
部を厚くし、半径断面形状をT字形にしても、寸法上他
に及ぼす影響は全く生じない。
(4) In the strong magnetic field electromagnetic pump of the present invention, the heat conduction from the high temperature molten metal flowing inside the non-magnetic material pipe in which the inner diameter of the spiral excitation coil alternately laminated with the conductor discs communicates with the central hole is prevented. Therefore, the inner diameter of the conductor disk center hole is larger than the inner diameter of the conductor disk. Therefore, even if the peripheral portion of the conductor disk center hole is thickened and the radial cross section is T-shaped, there is no influence on the size.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の磁束収束型電磁ポンプの側断面図であ
る。
FIG. 1 is a side sectional view of a conventional magnetic flux focusing electromagnetic pump.

【図2】同じくその電磁ポンプの縦断面図である。FIG. 2 is a vertical sectional view of the same electromagnetic pump.

【図3】同じくその電磁ポンプにおける励磁コイルの正
面図である。
FIG. 3 is a front view of an exciting coil of the electromagnetic pump.

【図4】同じくその電磁ポンプにおける導体円板の正面
図である。
FIG. 4 is a front view of a conductor disk in the electromagnetic pump.

【図5】同じくその電磁ポンプの外観を一部破断して示
す斜視図である。
FIG. 5 is a partially cutaway perspective view showing the external appearance of the electromagnetic pump.

【図6】本発明磁束収束型強磁場電磁ポンプにおける導
体円板の正面図、および側断面図である。
6A and 6B are a front view and a side sectional view of a conductor disk in the magnetic flux convergence type strong magnetic field electromagnetic pump of the present invention.

【図7】同じくその電磁ポンプにおける励磁コイルの表
面図および側断面図である。
FIG. 7 is a surface view and a side sectional view of an exciting coil of the electromagnetic pump.

【図8】同じくその電磁ポンプの第1構成例の縦断面図
である。
FIG. 8 is a longitudinal sectional view of a first configuration example of the electromagnetic pump of the same.

【図9】同じくその電磁ポンプの第1構成例の側断面図
である。
FIG. 9 is a side sectional view of a first configuration example of the same electromagnetic pump.

【図10】同じくその電磁ポンプの第1構成例の外観を
一部破断して示す斜視図である。
FIG. 10 is a perspective view showing a partially broken external view of a first configuration example of the electromagnetic pump.

【図11】同じくその電磁ポンプの第2構成例の縦断面
図である。
FIG. 11 is a vertical sectional view of a second configuration example of the same electromagnetic pump.

【図12】同じくその電磁ポンプの第2構成例の側面お
よび側断面を組合わせて単位素子の断面とともに示す線
図である。
FIG. 12 is a diagrammatic view showing a combination of a side surface and a side cross section of a second configuration example of the electromagnetic pump together with a cross section of a unit element.

【図13】同じくその電磁ポンプの第3構成例の縦断面
図である。
FIG. 13 is likewise a vertical cross-sectional view of a third configuration example of the electromagnetic pump.

【図14】同じくその電磁ポンプの第3構成例の側面お
よび側断面を組合わせて単位素子の断面とともに示す線
図である。
FIG. 14 is a diagrammatic view showing a combination of a side surface and a side cross section of a third configuration example of the electromagnetic pump together with a cross section of a unit element.

【図15】同じくその電磁ポンプの第3構成例の外観を
一部破断して示す斜視図である。
FIG. 15 is a partially cutaway perspective view showing the external appearance of a third configuration example of the same electromagnetic pump.

【図16】同じくその電磁ポンプにおける導体円板に流
れる渦電流の分布を示す線図である。
FIG. 16 is a diagram showing a distribution of eddy currents flowing in a conductor disk of the electromagnetic pump.

【図17】従来の磁束収束型電磁ポンプの単位素子にお
ける磁束分布の態様を示す線図である。
FIG. 17 is a diagram showing a mode of magnetic flux distribution in a unit element of a conventional magnetic flux convergence type electromagnetic pump.

【図18】本発明磁束収束型強磁場電磁ポンプの第1構
成例の単位素子における磁束分布の態様を示す線図であ
る。
FIG. 18 is a diagram showing a mode of magnetic flux distribution in the unit element of the first configuration example of the magnetic flux convergence type strong magnetic field electromagnetic pump of the present invention.

【図19】同じくその電磁ポンプの第3構成例の内側単
位素子における導体円板がない場合の磁束分布の態様を
示す線図である。
FIG. 19 is a diagrammatic view showing a mode of magnetic flux distribution when there is no conductor disk in the inner unit element of the third configuration example of the electromagnetic pump.

【図20】同じくその電磁ポンプの第3構成例の内側単
位素子における導体円板がある場合の磁束分布の態様を
示す線図である。
FIG. 20 is a diagrammatic view showing an aspect of magnetic flux distribution when there is a conductor disk in the inner unit element of the third configuration example of the electromagnetic pump.

【符号の説明】[Explanation of symbols]

1 励磁コイル 2 導体円板 3 中心ホール 4 スリット 5 空所 6 磁性枠体 7 (外側)非磁性材パイプ 8 棒状磁性体 9 ギャップ 10 中心ホール周辺部 11 歯部 12 凹所 13 内側非磁性体パイプ 14 内側磁性枠体 15, 16 内側励磁コイル 17 内側導体円板 18 渦電流 1 Excitation coil 2 conductor disk 3 central hall 4 slits 5 vacant places 6 Magnetic frame 7 (Outside) Non-magnetic material pipe 8 Rod-shaped magnetic body 9 gap 10 Central Hall Area 11 Tooth 12 recess 13 Inside non-magnetic pipe 14 Inner magnetic frame 15, 16 inner excitation coil 17 Inner conductor disk 18 Eddy current

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成3年12月3日[Submission date] December 3, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図19[Name of item to be corrected] Fig. 19

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図19】 FIG. 19

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図20[Name of item to be corrected] Fig. 20

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図20】 FIG. 20

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 互いに同軸状に係合するとともに同一極
性に巻回した複数層の励磁コイルと、当該励磁コイルの
各層間に介在して外周縁に通ずる半径方向のスリットを
それぞれ具えるとともに中心部において前記スリットお
よび相互に同軸状に連通するホールを共有する複数層の
導体円板と、前記励磁コイルおよび前記導体円板の縦断
面外周を囲んで前記ホールを介し磁気閉回路をなすほぼ
U字形の磁性枠体とを備えて単位の磁束発生素子を構成
し、複数単位の当該磁束発生素子を前記ホールの軸方向
に密接配置し、前記励磁コイルの多相交流通電に応じ、
前記導体円板に生ずる渦電流を前記スリットに沿い前記
ホールの周囲に集中させて順次に連通した当該ホール内
に軸方向に進行する進行磁束を発生させるとともに、前
記磁性枠体がなす磁気閉回路に発生した進行磁束を前記
ホール内の前記進行磁束に同相に重畳させ、順次に連通
した前記ホール内を貫通する非磁性材パイプ内に順次に
前記磁気閉回路の一部をなす磁束集中部材を同軸状に配
設して互いに同相に重畳した前記進行磁束を収束するこ
とにより、前記非磁性材パイプ内の熔融金属に軸方向の
推力を加える磁束収束形電磁ポンプにおいて、前記導体
円板の中心部の厚さを増大させて半径断面形状がほぼT
字形をなすようにしたことを特徴とする磁束収束型強磁
場電磁ポンプ。
1. An exciting coil having a plurality of layers which are coaxially engaged with each other and wound with the same polarity, and a radial slit which is interposed between each layer of the exciting coil and communicates with an outer peripheral edge of the exciting coil. A plurality of layers of conductor discs that share the slit and a hole that communicates with each other coaxially, and a magnetic closed circuit that surrounds the longitudinal cross-section outer periphery of the exciting coil and the conductor disc to form a magnetic closed circuit through the hole. A unit magnetic flux generating element is provided with a letter-shaped magnetic frame, a plurality of magnetic flux generating elements are closely arranged in the axial direction of the hole, according to the multi-phase AC energization of the exciting coil,
An eddy current generated in the conductor disk is concentrated around the hole along the slit to generate a progressive magnetic flux advancing in the axial direction in the hole sequentially communicated, and a magnetic closed circuit formed by the magnetic frame body. A magnetic flux concentration member that forms a part of the magnetic closed circuit sequentially in a non-magnetic material pipe penetrating the inside of the hole that sequentially communicates with the traveling magnetic flux generated in the hole in the same phase. In a magnetic flux converging electromagnetic pump that applies axial thrust to the molten metal in the non-magnetic material pipe by concentrating the traveling magnetic fluxes that are coaxially arranged and overlap each other in phase, the center of the conductor disk By increasing the thickness of the part, the radial cross-sectional shape is almost T
A magnetic flux converging type strong magnetic field electromagnetic pump characterized by being shaped like a letter.
【請求項2】 前記磁束集中部材を棒状磁性体としたこ
とを特徴とする請求項1記載の磁束収束型強磁場電磁ポ
ンプ。
2. The magnetic flux converging type strong magnetic field electromagnetic pump according to claim 1, wherein the magnetic flux concentrating member is a rod-shaped magnetic body.
【請求項3】 前記非磁性材パイプ内に他の非磁性材パ
イプを同軸状に配設し、当該他の非磁性材パイプ内に前
記単位の磁束発生素子にそれぞれ対応させて互いに同軸
状に係合するとともに同一極性に巻回した複数層の他の
励磁コイルを配置し、当該他の励磁コイルをそれぞれ囲
んで前記ホールを介し磁気閉回路をなすU字形の磁性枠
体をそれぞれ備え、前記複数層の他の励磁コイルの多相
交流通電により前記ホール内に発生させた軸方向の他の
進行磁束を前記進行磁束に同相に重畳させて前記磁束集
中部材としたことを特徴とする請求項1記載の磁束収束
型強磁場電磁ポンプ。
3. A non-magnetic material pipe is coaxially arranged in the non-magnetic material pipe, and the non-magnetic material pipes are coaxially arranged in the non-magnetic material pipe so as to correspond to the magnetic flux generating elements of the unit. A plurality of layers of other exciting coils that are engaged and wound with the same polarity are arranged, and each of the other exciting coils is provided with a U-shaped magnetic frame body that surrounds the other exciting coil and forms a magnetic closed circuit through the hole. The other magnetic flux concentrating member is formed by superimposing, in the same phase, another traveling magnetic flux in the axial direction generated in the hole by the multi-phase alternating current conduction of other excitation coils of a plurality of layers. 1. The magnetic flux convergence type strong magnetic field electromagnetic pump described in 1.
【請求項4】 前記複数層の他の励磁コイルの各層間に
外周部の厚さを増大させて半径断面形状がほぼT字形を
なすようにした他の導体円板をそれぞれ介在させたこと
を特徴とする請求項3記載の磁束収束型強磁場電磁ポン
プ。
4. Another conductor disk having an outer peripheral portion having an increased thickness and having a substantially T-shaped radial cross-section is interposed between the respective layers of the other exciting coils. The magnetic flux converging type strong magnetic field electromagnetic pump according to claim 3.
JP3300416A 1990-12-17 1991-11-15 Magnetic flux focusing type strong magnetic field electromagnetic pump Expired - Lifetime JPH0681485B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US07/802,282 US5240382A (en) 1990-12-17 1991-12-04 Converged magnetic flux type intense magnetic field electro-magnetic pump
EP91311680A EP0491546B1 (en) 1990-12-17 1991-12-17 A converged magnetic flux type intense magnetic field electro-magnetic pump
DE69111584T DE69111584T2 (en) 1990-12-17 1991-12-17 Electromagnetic pump with a strong magnetic field of the converging magnetic flux type.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2-411103 1990-12-17
JP41110390 1990-12-17

Publications (2)

Publication Number Publication Date
JPH0538126A true JPH0538126A (en) 1993-02-12
JPH0681485B2 JPH0681485B2 (en) 1994-10-12

Family

ID=18520155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3300416A Expired - Lifetime JPH0681485B2 (en) 1990-12-17 1991-11-15 Magnetic flux focusing type strong magnetic field electromagnetic pump

Country Status (1)

Country Link
JP (1) JPH0681485B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110994939A (en) * 2019-12-11 2020-04-10 江苏大学镇江流体工程装备技术研究院 Self-stabilized cylindrical linear induction electromagnetic pump
WO2021047854A1 (en) * 2019-09-12 2021-03-18 Commissariat A L'energie Atomique Et Aux Energies Alternatives Annular electromagnetic induction pump

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021047854A1 (en) * 2019-09-12 2021-03-18 Commissariat A L'energie Atomique Et Aux Energies Alternatives Annular electromagnetic induction pump
FR3100945A1 (en) * 2019-09-12 2021-03-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives Induction ring electromagnetic pump
US11962216B2 (en) 2019-09-12 2024-04-16 Commissariat A L'energie Atomique Et Aux Energies Alternatives Annular electromagnetic induction pump
CN110994939A (en) * 2019-12-11 2020-04-10 江苏大学镇江流体工程装备技术研究院 Self-stabilized cylindrical linear induction electromagnetic pump

Also Published As

Publication number Publication date
JPH0681485B2 (en) 1994-10-12

Similar Documents

Publication Publication Date Title
US4339874A (en) Method of making a wedge-shaped permanent magnet rotor assembly
US5717262A (en) Cooling apparatus for an AC generator
US4242610A (en) Wedge-shaped permanent magnet rotor assembly
JPH02201905A (en) Power-saving strong ac magnetic field generating device of multilayer eddy current type
US20020033746A1 (en) Composite magnet of electromagner and permanent magnet, and eddy current retarder
EP0063162A1 (en) Induction motor
JP3028039B2 (en) Hollow plate-shaped laminated conductor superconducting magnet
JPH0538126A (en) Flux convergence-type strong magnetic field solenoid pump
JP2010263122A (en) Superconducting coil, superconducting apparatus, rotor, and stator
EP0491546B1 (en) A converged magnetic flux type intense magnetic field electro-magnetic pump
US4749540A (en) Demountable tokamak fusion core
JPH04251553A (en) Ac generator
EP0446075B1 (en) A converged magnetic flux type electro-magnetic pump
US4472344A (en) Simplified segmented magnetic coil assembly for generating a toroidal magnetic field and the method of making same
EP0301673B1 (en) A multilayered-eddy-current-type strong magnetic field generator
US6573634B2 (en) Method and machine for high strength undiffused brushless operation
US4879539A (en) Laminated coil for an eddy-current type strong AC magnetic field generator
JPH01190250A (en) Cylindrical linear induction motor
Langley et al. Toroidally wound brushless dc motor
Blissenbach et al. Numerical calculation of 3D eddy current fields in transverse flux machines with time stepping procedures
JPH0789734B2 (en) Faraday type electromagnetic pump with annular passage
JPH04236162A (en) Induction type electromagnetic pump
JPS6182403A (en) Bobbin for superconductive magnet
Gaines et al. Superconducting magnet assembly
JPS6139716B2 (en)

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term