JPH0537036Y2 - - Google Patents

Info

Publication number
JPH0537036Y2
JPH0537036Y2 JP1986200464U JP20046486U JPH0537036Y2 JP H0537036 Y2 JPH0537036 Y2 JP H0537036Y2 JP 1986200464 U JP1986200464 U JP 1986200464U JP 20046486 U JP20046486 U JP 20046486U JP H0537036 Y2 JPH0537036 Y2 JP H0537036Y2
Authority
JP
Japan
Prior art keywords
chamber
water
impeller
pump
priming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1986200464U
Other languages
Japanese (ja)
Other versions
JPS63105794U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986200464U priority Critical patent/JPH0537036Y2/ja
Publication of JPS63105794U publication Critical patent/JPS63105794U/ja
Application granted granted Critical
Publication of JPH0537036Y2 publication Critical patent/JPH0537036Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

(イ) 産業上の利用分野 本考案は自吸式ポンプに係り従来一般の自吸式
ポンプの改良に関する。 (ロ) 従来の技術及びその問題点 本考案が改良しようとする従来の自吸式ポンプ
の一般例を第3,4,5図に示す。第3図はその
縦断面図で駆動室ケース1とインペラ・ケース2
とポンプカバー3とからなり、駆動室ケース1と
インペラ・ケース2とは隔板4を介して結合さ
れ、ポンプカバー3はインペラ・ケース2をカバ
ーして取付けられるが仕切り板5で仕切られる。
インペラ・ケース2内のインペラ室6には従動用
マグネツト7を備えるインペラ8が上記隔板4に
片持ちに回動自在に保持され、該インペラ室6の
上部は気水分離室9とされる。ポンプカバー3は
その上部が吸入室10とされ、該吸入室10の下
部で上記インペラ8の中央部該当個所の上記仕切
り板5に円孔11があけられ吸入室10のその部
分(吸入室10の下部でポンプカバー3の中央部
の稍下部)が隔壁12に囲まれインペラ8に吸水
される水の吸水室13とされる。そして上記吸入
室10の下部(ポンプカバー3の下部)はポンプ
の自吸作用用の水溜室14とされる。 上記第3図のA−A矢示図(インペラ・ケース
2の右側面図)を第4図に、B−B矢示図(ポン
プカバー3の左側面図)を第5図に示す。即ち上
記第3図は第4,5図のC−C断面図である。該
第5図に示すようにポンプカバー3は吸入室10
とその下部の水溜室14と右側の吐出室15とに
別けられ、吸入室10上部に吸水ジヨイント16
を吐出室15に吐出ジヨイント17を設ける。そ
して仕切り板5には右側上部に気水分離室9から
吐出室15上部(吐出ジヨイント17の直下)に
通ずる通口18とその下部にやはり気水分離室9
から吐出室15中間部に通ずる通口19と、左側
下部に水溜室14からインペラ室6に通ずる還流
孔20があけられている。 このように構成され、ポンプの始動時にはイン
ペラ室6・吸入室10及び吸入室10迄の配管内
には空気が残留しているので、先づこの空気を排
出しなければならない。そこで呼び水として水溜
室14・インペラ室6下部には水を常に残してお
いて、上記仕切り板に還流孔20をあけ水溜室1
4とインペラ室6とを連通させて、モータ(図示
しない)が駆動されインペラ8が回転(第4図の
W矢示方向)されると、水溜室14内の水は仕切
り板5の還流孔20からインペラ室6に吸入され
又同時に吸入室10内の空気は吸水室13から吸
入されてインペラ室6で水と空気が混合されて気
水分離室9に送られる。そして空気は仕切り板5
の上部通口18を経て吐出ジヨイント17から排
出され水は下部通口19から吐出室15下部に流
下する。そして吐出室15下部と上記水溜室14
はその下部で連通しているから、気水分離室9に
は連続して水と空気が送られ、上記の繰返しによ
り吸入室10内は満水にされ吸送水運転即ち揚水
作用が行われる。(図の矢示W1は水の流れ方向、
W2はポンプが定常運転に入る迄の空気の流れ方
向を示す)。 従来自吸式ポンプは上記のような構成・作用に
よつて、ポンプを駆動すれば自動的にポンプ内の
空気を排出して揚水作用が行われるようになるも
のであるが、インペラ室6においては空気混合水
は回転運動による遠心力のために、インペラ8の
外周部では密度が濃く中心部の吸水室13部では
密度が薄く、実際には殆んど空気だけになつてし
まう。即ち自吸状態において従来の方法では吸水
室13部では空気のみ又は空気の多い混合水が絶
えず滞留し均一な空気混合水とならずに自吸能力
を低下させている。又これを改善するためには通
常仕切り板5の水溜室14からインペラ室6への
還流孔20を拡げてインペラ8への還流水を増加
させる方法も取られているが、これでは還流水の
流れが増加してポンプ自体の吐出量が低下する不
利が伴う。 (ハ) 考案の目的 本考案はポンプを始動してからポンプ内の空気
を排出する時間を短縮し短時間でポンプの揚水運
転を行わせ得るようにし、併せてポンプ性能も向
上させるものである。 (ニ) 考案の構成 上記の如きインペラ8を片持型とする自吸式ポ
ンプにおいて、隔壁12内の中央にポンプカバー
3の側面壁3aからインペラ軸8aに向けて円筒
部材30を突設し、この円筒部材30の径をイン
ペラ軸8aの径よりも大きくしたものである。 (ホ) 実施例 本考案に係る自吸式ポンプの一実施例につい
て、上記第3図同様の縦断面図を第1図に、第3
図のB−B矢示図同様の第1図E−E矢示図を第
2図に示す。該第1,2図においてその部分符号
の第3,5図と同一符号は同一部分を示す。この
自吸式ポンプは駆動用マグネツト21等を収容す
る駆動室ケース1と、インペラ8を収容するイン
ペラーケース2と、ポンプカバー3との3体から
成つている。前記ポンプカバー3により、インペ
ラ8の前面で周囲を吸入室隔壁12にて環状に区
画された吸水室13と、この吸水室13と連絡す
る吸入室10と、呼び水を貯えておく水溜室14
と、外部へ水を吐き出す吐出室15が形成されて
いる。 ここで本考案では、前記隔壁12内の中央にポ
ンプカバー3の側面壁3aからインペラ軸8aに
向けて円筒部材30を突設し、この円筒部材30
の径をインペラ軸8aの径よりも大きくしてい
る。 すなわち、第1図および第2図に示すように、
前記隔壁12の内側中央にインペラ軸8aの径よ
りも大きく、実施例では軸受け8bの径と略同一
径の円筒部材30をポンプカバー3の側面壁3a
からインペラ軸8aに向けて突出させることで気
水混合液が吸水室13の中心部に入り込まないよ
うにし、これにより自吸時に吸水室13の空気と
水がインペラ8により吸引されるとき、インペラ
8の回転に伴う遠心力により空気が吸水室13の
中心部に滞留するのを防止している。 このため、インペラ室6と水溜室14を連通さ
せている還流孔20に小にして還流量を少なく
し、ポンプ性能を著しく高めることが可能とな
る。 即ち吸水室13を環状室としインペラ室6内に
吸入される気水混合液の混合度を均一なものとし
て吸水室13内に残留する空気を短時間に排出す
るものである。そして上記円筒部材30の径は大
きい方が自吸効率はよくなる訳であるが、該吸水
室13の径はインペラ8の吸入効率を下げない程
度で上記水溜室14をできるだけ大にする面から
インペラ8の大きさに従つて自ら決つて来るの
で、自吸性能を向上させ得るための最小の上記円
筒部材30の大きさを実験により求めた処、円筒
部材30の径をインペラ軸の軸径と同一寸度以下
にすると自吸性能を上げ得ない結果が得られた。
これを従来品と比較して下表に示す。下表におい
て考案品Aは上記突出円筒部材30の外径dがイ
ンペラ軸8aの径の4/5のもの、考案品Bはイン
ペラ軸径と同一のもの、考案品Cはインペラ軸受
8bの約2倍(第1図に示す程度)のものを示
す。
(a) Industrial application field The present invention relates to self-priming pumps, and relates to improvements to conventional self-priming pumps. (b) Prior art and its problems General examples of conventional self-priming pumps that the present invention seeks to improve are shown in Figures 3, 4, and 5. Figure 3 is a longitudinal sectional view of drive chamber case 1 and impeller case 2.
The drive chamber case 1 and the impeller case 2 are connected via a partition plate 4, and the pump cover 3 is attached to cover the impeller case 2, but is separated by a partition plate 5.
In an impeller chamber 6 in the impeller case 2, an impeller 8 equipped with a driven magnet 7 is rotatably held in a cantilever manner by the partition plate 4, and the upper part of the impeller chamber 6 is used as a steam/water separation chamber 9. . The upper part of the pump cover 3 is a suction chamber 10, and at the lower part of the suction chamber 10, a circular hole 11 is bored in the partition plate 5 at a location corresponding to the center of the impeller 8. The lower part of the pump cover 3 (a slightly lower part of the central part of the pump cover 3) is surrounded by a partition wall 12 and serves as a water absorption chamber 13 for water absorbed by the impeller 8. The lower part of the suction chamber 10 (lower part of the pump cover 3) is used as a water reservoir chamber 14 for self-priming of the pump. FIG. 4 shows the view taken along the line A-A in FIG. 3 (right side view of the impeller case 2), and FIG. 5 shows the view taken along the line B-B (left side view of the pump cover 3). That is, the above-mentioned FIG. 3 is a sectional view taken along the line CC in FIGS. 4 and 5. As shown in FIG. 5, the pump cover 3 is connected to the suction chamber 10.
It is divided into a water reservoir chamber 14 at the bottom and a discharge chamber 15 on the right side, and a water absorption joint 16 is installed at the upper part of the suction chamber 10.
A discharge joint 17 is provided in the discharge chamber 15. The partition plate 5 has a passage 18 at the upper right side leading from the steam/water separation chamber 9 to the upper part of the discharge chamber 15 (directly below the discharge joint 17), and a steam/water separation chamber 9 at the bottom thereof.
A passage 19 is provided which communicates with the intermediate portion of the discharge chamber 15, and a reflux hole 20 which communicates with the impeller chamber 6 from the water reservoir chamber 14 is provided at the lower left side. With this structure, when the pump is started, air remains in the impeller chamber 6, the suction chamber 10, and the piping leading to the suction chamber 10, so this air must be discharged first. Therefore, water is always left in the lower part of the water reservoir chamber 14 and the impeller chamber 6 as priming, and a return hole 20 is made in the partition plate and the water reservoir chamber 1
4 and the impeller chamber 6, and when a motor (not shown) is driven and the impeller 8 is rotated (in the direction of arrow W in FIG. 4), the water in the water reservoir chamber 14 flows through the return hole of the partition plate 5. 20 into the impeller chamber 6, and at the same time, air in the suction chamber 10 is sucked in from the water suction chamber 13, water and air are mixed in the impeller chamber 6, and sent to the steam/water separation chamber 9. And the air is partition plate 5
The water is discharged from the discharge joint 17 through the upper passage 18 of the discharge chamber 15 and flows down through the lower passage 19 to the lower part of the discharge chamber 15. The lower part of the discharge chamber 15 and the water reservoir chamber 14
Since they communicate at the lower part, water and air are continuously sent to the steam/water separation chamber 9, and by repeating the above steps, the suction chamber 10 is filled with water and a water suction operation, that is, a pumping action is performed. (Arrow W 1 in the figure is the direction of water flow,
W 2 indicates the direction of air flow until the pump enters steady operation). Conventional self-priming pumps have the above-mentioned configuration and function, and when the pump is driven, the air inside the pump is automatically discharged to perform the pumping action. Because of the centrifugal force caused by the rotational movement, the air-mixed water has a high density at the outer periphery of the impeller 8 and a low density at the water absorption chamber 13 in the center, so that it actually consists of almost only air. That is, in the self-priming state, in the conventional method, only air or mixed water containing a large amount of air constantly accumulates in the water suction chamber 13, which does not result in uniform air-mixed water and reduces the self-priming ability. In order to improve this problem, a method is usually adopted in which the return hole 20 from the water reservoir chamber 14 to the impeller chamber 6 of the partition plate 5 is enlarged to increase the return water to the impeller 8. The disadvantage is that the flow increases and the output of the pump itself decreases. (c) Purpose of the invention This invention shortens the time for discharging the air inside the pump after starting the pump, allowing the pump to perform water pumping operation in a short period of time, and at the same time improving pump performance. . (d) Structure of the invention In the above-described self-priming pump in which the impeller 8 is cantilevered, a cylindrical member 30 is provided in the center of the partition wall 12 protruding from the side wall 3a of the pump cover 3 toward the impeller shaft 8a. , the diameter of this cylindrical member 30 is made larger than the diameter of the impeller shaft 8a. (e) Example Regarding an example of the self-priming pump according to the present invention, a vertical cross-sectional view similar to the above-mentioned FIG. 3 is shown in FIG. 1, and FIG.
FIG. 2 shows an E-E arrow diagram in FIG. 1, which is similar to the B-B arrow diagram in the figure. In FIGS. 1 and 2, the same reference numerals as in FIGS. 3 and 5 indicate the same parts. This self-priming pump consists of three bodies: a drive chamber case 1 that houses a drive magnet 21, etc., an impeller case 2 that houses an impeller 8, and a pump cover 3. The pump cover 3 provides a water suction chamber 13 which is divided into an annular shape by a suction chamber partition wall 12 in front of the impeller 8, a suction chamber 10 communicating with the water suction chamber 13, and a water reservoir chamber 14 for storing priming water.
A discharge chamber 15 is formed to discharge water to the outside. Here, in the present invention, a cylindrical member 30 is provided in the center of the partition wall 12 so as to protrude from the side wall 3a of the pump cover 3 toward the impeller shaft 8a.
The diameter of the impeller shaft 8a is made larger than the diameter of the impeller shaft 8a. That is, as shown in FIGS. 1 and 2,
A cylindrical member 30 having a diameter larger than the diameter of the impeller shaft 8a and approximately the same diameter as the bearing 8b in the embodiment is installed at the center inside the partition wall 12 on the side wall 3a of the pump cover 3.
The air-water mixture is prevented from entering the center of the water suction chamber 13 by protruding from the impeller shaft 8a toward the impeller shaft 8a. The centrifugal force caused by the rotation of the water absorption chamber 13 prevents air from staying in the center of the water absorption chamber 13. Therefore, it is possible to make the reflux hole 20 that communicates the impeller chamber 6 and the water reservoir chamber 14 smaller to reduce the amount of reflux, thereby significantly improving pump performance. That is, the water suction chamber 13 is made into an annular chamber, the degree of mixing of the air-water mixture sucked into the impeller chamber 6 is made uniform, and the air remaining in the water suction chamber 13 is discharged in a short time. The larger the diameter of the cylindrical member 30 is, the better the self-priming efficiency will be. 8, the minimum size of the cylindrical member 30 to improve the self-priming performance was determined by experiment, and the diameter of the cylindrical member 30 was determined by the diameter of the impeller shaft. If the dimensions were less than the same, the self-priming performance could not be improved.
A comparison with conventional products is shown in the table below. In the table below, device A has the protruding cylindrical member 30 whose outer diameter d is 4/5 of the diameter of the impeller shaft 8a, device B has the same diameter as the impeller shaft, and device C has the outer diameter d of the impeller bearing 8b. The figure is twice as large (as shown in Fig. 1).

【表】 上表で考案品Cが自吸性能が大幅に向上したの
で、水溜室14からインペラ室6への仕切り板5
の還流孔20の個数を減らしたものでその結果ポ
ンプ性能も向上した。 (ヘ) 考案の効果 本考案に係る自吸式ポンプは上記のように、吸
入室10の吸水室13が環状形とされるので吸水
室13の中央部に空気の留りを生ずることがな
く、インペラ室6内に均一な気水混合水が吸入さ
れ自吸性能を大幅に向上すると共に還流孔20を
小にできポンプ性能も向上させ得るものである。 又本考案に係る自吸ポンプにおいては、第2図
に示すように環状吸水室13の流水方向端部を邪
魔板31で閉じるようにすれば、インペラには環
状吸水室13の吸水慣性圧もかかるようになりイ
ンペラの吸入効率がより増大し、自吸性能もポン
プ性能も更に向上するものである。
[Table] In the above table, since the self-priming performance of product C has been greatly improved, the partition plate 5 from the water reservoir chamber 14 to the impeller chamber 6 is
The number of reflux holes 20 is reduced, resulting in improved pump performance. (f) Effects of the invention As mentioned above, in the self-priming pump according to the invention, the water suction chamber 13 of the suction chamber 10 has an annular shape, so that air does not remain in the center of the water suction chamber 13. A uniform mixture of air and water is sucked into the impeller chamber 6, which greatly improves self-priming performance, and the size of the return hole 20 can be made smaller, thereby improving pump performance. Furthermore, in the self-priming pump according to the present invention, if the end of the annular water suction chamber 13 in the water flow direction is closed with the baffle plate 31 as shown in FIG. In this way, the suction efficiency of the impeller is further increased, and both self-priming performance and pump performance are further improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案に係る自吸式ポンプの実施例ポ
ンプの縦断面図で第2図はそのE−E方向(ポン
プカバー3に関する)側面図である。第3,4,
5図は従来型自吸式ポンプを示すもので、第3図
はその縦断面図(第4,5図のC−C断面図)、
第4図は第3図のA−A方向側面図(インペラ・
ケースの側面図)、第5図は第3図のB−B方向
側面図(ポンプカバー即ち吸入室10、水溜室1
4、吐出室15の側面図)である。 1……駆動室ケース、2……インペラ・ケー
ス、3……ポンプカバー、8……インペラ、8a
……インペラ軸、10……吸入室、12……吸水
室隔壁、13……吸水室、14……水溜室、15
……吐出室、30……円筒部材。
FIG. 1 is a longitudinal sectional view of an embodiment of the self-priming pump according to the present invention, and FIG. 2 is a side view thereof in the EE direction (with respect to the pump cover 3). 3rd, 4th,
Figure 5 shows a conventional self-priming pump, and Figure 3 is a longitudinal cross-sectional view (C-C cross-sectional view in Figures 4 and 5).
Figure 4 is a side view in the A-A direction of Figure 3 (impeller
Fig. 5 is a side view in the B-B direction of Fig. 3 (pump cover, i.e., suction chamber 10, water reservoir chamber 1).
4) is a side view of the discharge chamber 15). 1... Drive chamber case, 2... Impeller case, 3... Pump cover, 8... Impeller, 8a
... Impeller shaft, 10 ... Suction chamber, 12 ... Water absorption chamber partition, 13 ... Water absorption chamber, 14 ... Water reservoir chamber, 15
...Discharge chamber, 30...Cylindrical member.

Claims (1)

【実用新案登録請求の範囲】 駆動手段21を収容する駆動室ケース1と、イ
ンペラ8を収容するインペラケース2と、前記イ
ンペラ8の前面で周囲を隔壁12にて環状に区画
された吸水室13とこの吸水室13と連絡する吸
水室10と呼び水を貯えておく水溜室14と外部
へ水を吐き出す吐出室15とを形成するポンプカ
バー3と、の3体からなると共に前記インペラ8
を片持型とする自吸式ポンプにおいて、 前記隔壁12内の中央にポンプカバー3の側面
壁3aからインペラ軸8aに向けて円筒部材30
を突設し、この円筒部材30の径をインペラ軸8
aの径よりも大きくしたことを特徴とする自吸式
ポンプ。
[Claims for Utility Model Registration] A drive chamber case 1 that accommodates a drive means 21, an impeller case 2 that accommodates an impeller 8, and a water absorption chamber 13 that is annularly divided in front of the impeller 8 by a partition wall 12. It consists of three bodies: a water suction chamber 10 communicating with this water suction chamber 13, a water reservoir chamber 14 for storing priming water, and a pump cover 3 forming a discharge chamber 15 for discharging water to the outside.
In a self-priming pump having a cantilever type, a cylindrical member 30 is disposed at the center of the partition wall 12 from the side wall 3a of the pump cover 3 toward the impeller shaft 8a.
is provided protrudingly, and the diameter of this cylindrical member 30 is set to the impeller shaft 8.
A self-priming pump characterized by having a diameter larger than that of a.
JP1986200464U 1986-12-27 1986-12-27 Expired - Lifetime JPH0537036Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986200464U JPH0537036Y2 (en) 1986-12-27 1986-12-27

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986200464U JPH0537036Y2 (en) 1986-12-27 1986-12-27

Publications (2)

Publication Number Publication Date
JPS63105794U JPS63105794U (en) 1988-07-08
JPH0537036Y2 true JPH0537036Y2 (en) 1993-09-20

Family

ID=31162995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986200464U Expired - Lifetime JPH0537036Y2 (en) 1986-12-27 1986-12-27

Country Status (1)

Country Link
JP (1) JPH0537036Y2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61162594U (en) * 1985-03-29 1986-10-08
JPS61162593U (en) * 1985-03-29 1986-10-08

Also Published As

Publication number Publication date
JPS63105794U (en) 1988-07-08

Similar Documents

Publication Publication Date Title
JPH0537036Y2 (en)
CN111594451A (en) Horizontal self-priming pump
CN212867951U (en) Vertical guide vane type self-priming centrifugal pump
JPH0533748Y2 (en)
JPS5842632Y2 (en) Self-priming axial pump
JPS588954Y2 (en) self-priming pump
JPS5842633Y2 (en) Self-priming axial pump
JP2522347Y2 (en) Self-priming pump
JPS62188589U (en)
JP2583221Y2 (en) Self-priming pump
JP3079271B2 (en) Vertical pull-out type self-priming pump
JPS5842634Y2 (en) Self-priming axial flow pump
JPH0115912Y2 (en)
JPH0321334U (en)
JPS62128188U (en)
JPS6411398U (en)
JP3177750B2 (en) Impeller pump
JPH0717834Y2 (en) Centrifugal pump with jet pump
JPH0435638B2 (en)
KR800001092Y1 (en) Self-priming pump
JPS6317890U (en)
JPS5833399B2 (en) self-priming pump
JPS62190888U (en)
JP2001355589A (en) Self-primping pump
JPH11107971A (en) Self-priming pump