JPH053701B2 - - Google Patents

Info

Publication number
JPH053701B2
JPH053701B2 JP10985285A JP10985285A JPH053701B2 JP H053701 B2 JPH053701 B2 JP H053701B2 JP 10985285 A JP10985285 A JP 10985285A JP 10985285 A JP10985285 A JP 10985285A JP H053701 B2 JPH053701 B2 JP H053701B2
Authority
JP
Japan
Prior art keywords
vapor pressure
mercury vapor
tube
lamp
mmhg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10985285A
Other languages
Japanese (ja)
Other versions
JPS61269847A (en
Inventor
Hiroshi Furumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPO DENKI KK
Original Assignee
NIPPO DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPO DENKI KK filed Critical NIPPO DENKI KK
Priority to JP10985285A priority Critical patent/JPS61269847A/en
Publication of JPS61269847A publication Critical patent/JPS61269847A/en
Publication of JPH053701B2 publication Critical patent/JPH053701B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/70Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr
    • H01J61/72Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr having a main light-emitting filling of easily vaporisable metal vapour, e.g. mercury

Landscapes

  • Discharge Lamps And Accessories Thereof (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、水銀蒸気圧放電ランプ、特に高輝度
で短波長紫外線を放射する高輝度短波長紫外線ラ
ンプに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a mercury vapor pressure discharge lamp, particularly a high-intensity short-wavelength ultraviolet lamp that emits short-wavelength ultraviolet rays at high intensity.

(従来の技術) 一般に、短波長紫外線を放射する水銀蒸気圧ラ
ンプとして、水銀共鳴線253.7nmを放射する低圧
水銀ランプが良く知られている。この種のランプ
は、殺菌用などの用途に使用され、その放射効率
が最高となる約40℃の最冷点温度になるように設
計されている。また、最近、光化学反応や高速殺
菌処理等の分野で、より高出力・高照度の短波長
紫外線ランプが要望されるようになつてきてお
り、高負荷の低圧水銀ランプが提案されている。
(Prior Art) Generally, a low-pressure mercury lamp that emits a mercury resonance line of 253.7 nm is well known as a mercury vapor pressure lamp that emits short wavelength ultraviolet rays. This type of lamp is used for purposes such as sterilization, and is designed to have a cold spot temperature of approximately 40°C, which is where its radiation efficiency is highest. Furthermore, recently, there has been a demand for short-wavelength ultraviolet lamps with higher output and brightness in fields such as photochemical reactions and high-speed sterilization, and high-load, low-pressure mercury lamps have been proposed.

ところで、衆知のとおり、低圧水銀ランプから
放射される波長253.7nmの紫外線の放射効率は、
管内の水銀蒸気圧に大きく左右され、この水銀蒸
気圧は、高負荷時には管壁温度の上昇に伴つて上
昇する。水銀蒸気圧がある程度以上に上昇する
と、自己吸収のため管外へ放出される水銀共鳴線
は減少してしまう。
By the way, as is well known, the radiation efficiency of ultraviolet light with a wavelength of 253.7 nm emitted from a low-pressure mercury lamp is
It is greatly affected by the mercury vapor pressure inside the tube, and this mercury vapor pressure increases as the tube wall temperature rises under high loads. When the mercury vapor pressure rises above a certain level, the number of mercury resonance lines emitted outside the tube decreases due to self-absorption.

この点について更に詳述すれば、J.Opt.Soc.
Am.Vol.6No.11等の文献に記載された内容によれ
ば、波長253.7nmの紫外線の放射効率は水銀蒸気
圧が6×10-3mmHg付近が最大となり、また、波
長184.9nmの場合は2.5×10-2mmHg付近が最大と
なることが明らかにされ、更に、その時の温度が
約40℃および約60℃であることが明らかにされて
いる。このようなことから、従来、短波長紫外線
を放射するランプの開発においては、最大放射効
率が得られる上記水銀蒸気圧付近のランプを開発
することに主眼が置かれており、上記水銀蒸気圧
から低圧側或いは高圧側に偏位した水銀蒸気圧を
有する短波長紫外線ランプは開発されていないの
が実情である。
To elaborate further on this point, J.Opt.Soc.
According to the contents described in literature such as Am.Vol.6 No.11, the radiation efficiency of ultraviolet rays with a wavelength of 253.7 nm reaches its maximum when the mercury vapor pressure is around 6 × 10 -3 mmHg, and when the wavelength is 184.9 nm, It has been revealed that the maximum temperature is around 2.5×10 -2 mmHg, and it has also been revealed that the temperature at that time is about 40°C and about 60°C. For this reason, conventionally, in the development of lamps that emit short-wavelength ultraviolet rays, the main focus has been on developing lamps with a mercury vapor pressure near the above-mentioned mercury vapor pressure where maximum radiation efficiency can be obtained. The reality is that a short wavelength ultraviolet lamp having a mercury vapor pressure that deviates to the low-pressure side or the high-pressure side has not been developed.

具体的には、従来の短波長紫外線ランプにおい
ては、水銀蒸気圧を制御してランプの最大放射効
率を得るための方法として、アマルガム物質によ
る水銀蒸気圧の制御方法、或いは特殊構造による
水銀蒸気圧の制御方法等がとられている。例え
ば、錫および鉛のうちの一方或いは双方とビスマ
スおよびインジウムとからなる合金を水銀と共に
封入してなるアマルガム物質により、管壁温度約
120℃で水銀蒸気圧を6×10-3〜7×10-3mmHgに
抑制する方法(特開昭59−132555号)、水銀蒸気
圧が1×10-4〜5×10-2mmHgに保持された低圧
水銀灯により殺菌する方法(特開昭56−161055
号)、点灯中の水銀蒸気圧が1mmHg以下で放電が
持続する低圧水銀灯(特開昭56−60958号)、水銀
蒸気圧を5×10-3〜5×10-1mmHgに制御可能な
構造からなる直流放電の紫外線発生器(特公昭57
−54908号)等が提案されている。
Specifically, in conventional short-wavelength ultraviolet lamps, methods to control mercury vapor pressure and obtain maximum radiation efficiency of the lamp include methods for controlling mercury vapor pressure using amalgam materials, or methods for controlling mercury vapor pressure using special structures. Control methods, etc. have been adopted. For example, an amalgam material made of an alloy consisting of one or both of tin and lead and bismuth and indium sealed with mercury can be used to reduce the tube wall temperature to about
A method for suppressing mercury vapor pressure to 6×10 -3 to 7×10 -3 mmHg at 120°C (Japanese Patent Application Laid-Open No. 132555/1983), which reduces mercury vapor pressure to 1×10 -4 to 5×10 -2 mmHg. Sterilization method using a maintained low-pressure mercury lamp (Japanese Patent Application Laid-Open No. 161055
No.), a low-pressure mercury lamp that maintains discharge when the mercury vapor pressure is 1 mmHg or less during lighting (JP-A-56-60958), a structure that can control the mercury vapor pressure between 5 x 10 -3 and 5 x 10 -1 mmHg. A direct current discharge ultraviolet generator consisting of
-54908) etc. have been proposed.

このように、従来の短波長紫外線ランプにおい
ては、その最大放射効率を得るために水銀蒸気圧
を制御しているのであるが、しかし、この最大放
射効率の値そのものに限界があるため、現今のラ
ンプの高出力・高照度化のニーズに対応すること
が難しくなつてきている。
In this way, in conventional short-wavelength ultraviolet lamps, the mercury vapor pressure is controlled in order to obtain the maximum radiation efficiency.However, there is a limit to the value of this maximum radiation efficiency, so the current It is becoming difficult to meet the needs for higher output and higher illuminance lamps.

(発明の目的) 本発明は、このような事情に鑑みてなされたも
のであつて、従来の短波長紫外線ランプの常識で
は考え及ばなかつた高圧域に水銀蒸気圧を設定す
ることによりランプの高輝度化を図つた短波長紫
外線ランプを提供するものである。
(Purpose of the Invention) The present invention has been made in view of the above circumstances, and it is possible to increase the lamp's temperature by setting the mercury vapor pressure in a high pressure range that was unthinkable in conventional short wavelength ultraviolet lamps. The present invention provides a short wavelength ultraviolet lamp with increased brightness.

(発明の構成) 本発明による高輝度短波長紫外線ランプは、1
対の電極と、短波長紫外線を透過する石英ガラス
管(例えば人口石英、天然熔融石英)からなる発
光管とから構成される発光管内に所定量の水銀お
よび希ガスを封入してなる水銀蒸気圧放電ランプ
であつて、上記発光管内の水銀蒸気圧を2.5乃至
100mmHgとし、かつ、管負荷を3W/cm以上とす
ることにより、高輝度で短波長紫外線を放射する
ことができるようにしたことを特徴としている。
(Structure of the Invention) The high-intensity short wavelength ultraviolet lamp according to the present invention comprises:
The mercury vapor pressure is obtained by sealing a predetermined amount of mercury and rare gas in an arc tube consisting of a counter electrode and an arc tube made of a quartz glass tube (for example, artificial quartz, natural fused silica) that transmits short wavelength ultraviolet rays. It is a discharge lamp, and the mercury vapor pressure inside the arc tube is 2.5 to 2.5.
It is characterized by being able to emit short wavelength ultraviolet rays with high brightness by setting the pressure to 100 mmHg and the tube load to 3 W/cm or more.

したがつて、水銀蒸気圧および管負荷が上記範
囲内にある水銀蒸気圧放電ランプであれば、ラン
プの形状・構造等は特定のものに限定されない。
例えば、管形状については直管とすることもでき
るし、或いはU字管とすることもでき、またフイ
ラメントについても棒状にすることもできるし、
コイル状にすることもできる。
Therefore, as long as the mercury vapor pressure discharge lamp has a mercury vapor pressure and a tube load within the above ranges, the shape, structure, etc. of the lamp are not limited to any particular one.
For example, the tube shape can be a straight tube or a U-shaped tube, and the filament can also be rod-shaped.
It can also be made into a coil.

(実施例) 以下、添付図面を参照して本発明の完成に至つ
た経過を実験解析データを基に詳述する。
(Example) Hereinafter, the process leading to the completion of the present invention will be described in detail based on experimental analysis data with reference to the accompanying drawings.

第1図は、水銀蒸気圧放電ランプの水銀蒸気圧
が通常の低圧水銀ランプにおける水銀蒸気圧より
も高目のときに、水銀共鳴線である253.7nm波長
紫外線の該ランプからの放射効率がいかなる特性
を示すのかを調べるための実験に用いた装置の概
要を示すものである。
Figure 1 shows that when the mercury vapor pressure of a mercury vapor pressure discharge lamp is higher than that of an ordinary low-pressure mercury lamp, what is the radiation efficiency of the 253.7 nm wavelength ultraviolet rays from the lamp, which is the mercury resonance line? This is an outline of the equipment used in the experiment to investigate whether the characteristics of

図中、参照符号1は水銀蒸気圧放電ランプであ
つて、恒温槽2内にセツトされ、その両極1aお
よび1bが点灯装置3の端子3aおよび3bに
夫々接続され、更にAC電源4に接続されている。
また、ランプ1に最冷点部(管端部)5の温度を
計測するための温度センサ6が、恒温槽2内に設
けられている。更に、ランプ1の長手方向のちよ
うど中央に位置する恒温槽2の側壁には、透明の
石英ガラス板7が取り付けられていて、この石英
ガラス板7の外側には、ランプ1の中心軸から所
定の距離を置いてUVメータ8が配置されてい
る。
In the figure, reference numeral 1 denotes a mercury vapor pressure discharge lamp, which is set in a constant temperature bath 2, with both poles 1a and 1b connected to terminals 3a and 3b of a lighting device 3, respectively, and further connected to an AC power source 4. ing.
Further, a temperature sensor 6 for measuring the temperature of the coldest point part (tube end part) 5 of the lamp 1 is provided in the constant temperature bath 2. Further, a transparent quartz glass plate 7 is attached to the side wall of the thermostatic chamber 2 located at the center in the longitudinal direction of the lamp 1, and a transparent quartz glass plate 7 is attached to the outside of the quartz glass plate 7 from the central axis of the lamp 1. UV meters 8 are placed at a predetermined distance.

上記装置により、恒温槽2の温度を上下させる
とともにランプ1の消費電力を変化させ、このと
きのランプ1の最冷点部5の温度Tを温度センサ
6によつて計測するとともにランプ1からの殺菌
線照度(主波長253.7nmの紫外線照度)をUVメ
ータ8によつて計測する。これにより、管電流密
度Iρ(A/cm2)、管負荷(W/cm)及び、温度Tの
関数として求められる水銀蒸気圧PHg(mmHg)
が得られる。
The above device raises and lowers the temperature of the constant temperature oven 2 and changes the power consumption of the lamp 1. At this time, the temperature T of the coldest point part 5 of the lamp 1 is measured by the temperature sensor 6, and the temperature T of the lamp 1 is measured by the temperature sensor 6. The germicidal radiation illuminance (ultraviolet illuminance with a dominant wavelength of 253.7 nm) is measured by the UV meter 8. As a result, the mercury vapor pressure PHg (mmHg) is determined as a function of the tube current density Iρ (A/cm 2 ), the tube load (W/cm), and the temperature T.
is obtained.

第2乃至4図は、このようにして得られたデー
タをグラフ化したものである。
Figures 2 to 4 are graphs of the data obtained in this way.

第2図は、管電流密度(Iρ)をパラメータとし
て水銀蒸気圧と管負荷との関係を示すグラフであ
つて、水銀蒸気圧が10-2mmHgより高くなると、
従来から良く知られているように、管負荷は減少
する。しかしながら、今回の実験において、水銀
蒸気圧を更に高くしていくと、水銀蒸気圧3×
10-1mmHgのときに管負荷が最小値となり、その
後は水銀蒸気圧の上昇に伴い管負荷が急上昇する
ことを発見した。更に、この管負荷の上昇率は、
管電流密度が高くなると著しく高くなることも発
見した。
Figure 2 is a graph showing the relationship between mercury vapor pressure and tube load using tube current density (Iρ) as a parameter.
As is well known in the art, the tube load is reduced. However, in this experiment, when the mercury vapor pressure was further increased, the mercury vapor pressure 3×
It was discovered that the tube load reached its minimum value at 10 -1 mmHg, and after that, the tube load rapidly increased as the mercury vapor pressure increased. Furthermore, the rate of increase in this pipe load is
We also found that the current density increases significantly as the tube current density increases.

従来、このような事実が知られていなかつたた
め、管負荷が一旦下がる10-1mmHg程度までしか
測定が行われておらず、それ以上の水銀蒸気圧に
おける管負荷のデータはなかつたが、今回の実験
により、水銀蒸気圧が図中ポイントA(すなわち
2.5mmHg)以上になると、通常の低圧水銀ランプ
の管負荷の最大値を越えて、その管負荷が上昇す
ることを見い出すことができた。
Since this fact was not known in the past, measurements were only made up to a point where the tube load once dropped to about 10 -1 mmHg, and there was no data on tube loads at higher mercury vapor pressures. As a result of the experiment, the mercury vapor pressure was found to be at point A in the figure (i.e.
2.5 mmHg) or higher, the tube load exceeds the maximum tube load of a normal low-pressure mercury lamp and was found to increase.

第3図は、2.5mmHg(上記ポイントA)以上の
水銀蒸気圧の領域における管電流密度と管負荷と
の関係を水銀蒸気圧(PHg)をパラメータとし
てグラフ化したものである。この領域において
は、管電流密度と管負荷とが正比例の関係を示す
とともに、同じ管電流密度であつても水銀蒸気圧
の変化によつて管負荷が大きく変化することを示
している。
FIG. 3 is a graph showing the relationship between tube current density and tube load in the region of mercury vapor pressure of 2.5 mmHg (point A above) or higher, using mercury vapor pressure (PHg) as a parameter. In this region, the tube current density and the tube load show a directly proportional relationship, and even if the tube current density is the same, the tube load changes greatly due to changes in mercury vapor pressure.

第4図は、管電流密度(Iρ)をパラメータとし
て水銀蒸気圧と殺菌線照度との関係を示すグラフ
(すなわち第2図における縦軸の管負荷が殺菌線
照度に入れ替つたグラフ)である。このグラフに
示されるように、水銀蒸気圧を上昇させてポイン
トA(2.5mmHg)を越す値にすると殺菌線照度が
上昇し始め、更に水銀蒸気圧を上昇させると殺菌
線照度が急上昇することを発見した。
FIG. 4 is a graph showing the relationship between mercury vapor pressure and sterilizing radiation irradiance using tube current density (Iρ) as a parameter (ie, a graph in which the vertical axis of tube load in FIG. 2 is replaced with sterilizing radiation irradiance). As shown in this graph, when the mercury vapor pressure is increased to a value exceeding point A (2.5 mmHg), the germicidal radiation intensity begins to rise, and as the mercury vapor pressure is further increased, the germicidal radiation intensity increases rapidly. discovered.

以上、第2乃至4図のグラフに示した解析結果
より、水銀蒸気圧が2.5mmHg以上の領域におい
ては、管負荷も殺菌線照度も水銀蒸気圧に大きく
依存していることがわかつた。
As described above, from the analysis results shown in the graphs of Figures 2 to 4, it was found that in the region where the mercury vapor pressure is 2.5 mmHg or more, both the pipe load and the sterilizing radiation intensity are largely dependent on the mercury vapor pressure.

そこで、水銀蒸気圧が2.5mmHg以上の領域にお
ける管負荷と殺菌線照度との関係を調べるため
に、管負荷を種々変化させ、そのときの殺菌線照
度を測定し解析を行つた。その結果、第5図に示
す特性曲線が得られた。この特性曲線より、殺菌
線照度は管負荷が上昇するのに伴つて指数関数的
に上昇すること、および、水銀蒸気圧10-1mmHg
以下の領域における最高照度を示すポイントBの
値0.42(第4図参照)は、管負荷が3.3W/cmとな
るポイントCにおいて得られることがわかつた。
すなわち、水銀蒸気圧が2.5mmHg以上の領域にあ
るランプにおいては、管負荷を3.3W/cm以上に
設定すれば、水銀蒸気圧が10-1mmHg以下の領域
にある従来の低圧水銀ランプで得られる最高照度
より高い殺菌線照度を得ることができることがわ
かつた。
Therefore, in order to investigate the relationship between the tube load and the germicidal radiation irradiance in the region where the mercury vapor pressure is 2.5 mmHg or more, we varied the tube load variously, measured and analyzed the germicidal radiation irradiance at that time. As a result, a characteristic curve shown in FIG. 5 was obtained. This characteristic curve shows that the sterilizing radiation intensity increases exponentially as the pipe load increases, and that the mercury vapor pressure is 10 -1 mmHg.
It was found that the value of 0.42 at point B (see FIG. 4), which indicates the highest illuminance in the following region, is obtained at point C, where the tube load is 3.3 W/cm.
In other words, for a lamp with a mercury vapor pressure of 2.5 mmHg or more, if the tube load is set to 3.3 W/cm or more, the same effect can be achieved with a conventional low-pressure mercury lamp whose mercury vapor pressure is 10 -1 mmHg or less. It has been found that it is possible to obtain a germicidal radiation intensity higher than the maximum illumination intensity that can be achieved.

一方、水銀蒸気圧が上昇すると、殺菌線照度の
みならず近紫外線(300〜400nm)および可視光
線(400〜700nm)の放射エネルギも上昇する。
On the other hand, when the mercury vapor pressure increases, not only the irradiance of germicidal radiation but also the radiant energy of near ultraviolet rays (300 to 400 nm) and visible light (400 to 700 nm) increase.

第6図は、近紫外線のうちで最高強度を示す水
銀共鳴線365nmを分光側光して得られた、水銀
蒸気圧に対する変化特性を示すグラフであり、第
7図は、可視光線のうちで最高強度を示す水銀共
鳴線436nmを分光測光して得られた、水銀蒸気
圧に対する変化特性を示すグラフであつて、共に
管電流密度を5.3A/cm2一定としたときのグラフ
である。これらの図から明らかなように、近紫外
線および可視光線の放射エネルギは、水銀蒸気圧
が10〜102mmHgの間で急上昇する。
Figure 6 is a graph showing the change characteristics with respect to mercury vapor pressure, obtained by spectroscopy of the mercury resonance line 365 nm, which shows the highest intensity among the near ultraviolet rays, and Figure 7 is a graph showing the change characteristics with respect to mercury vapor pressure among the visible rays. This is a graph showing the change characteristics with respect to mercury vapor pressure obtained by spectrophotometry of the 436 nm mercury resonance line showing the highest intensity, and both graphs are graphs when the tube current density is constant at 5.3 A/cm 2 . As is clear from these figures, the radiant energy of near-ultraviolet and visible light increases rapidly when the mercury vapor pressure is between 10 and 10 2 mmHg.

そこで、殺菌線、近紫外線および可視光線の各
放射エネルギの配分率を調べるために、管電流密
度を5.3A/cm2一定として水銀蒸気圧を変化させ、
このときの各放射エネルギを殺菌線照度計(感度
200〜300nm)、近紫外線照度計(感度300〜400n
m)および照度計(感度400〜700nm)によつて
夫々計測し、これをグラフ化したのが第8図であ
る。この図より、殺菌線(主波長253.7nm)の放
射エネルギの配分率が50%になるのは水銀蒸気圧
が約20mmHg(ポイントD)のときであり、また、
その配分率が近紫外線(主波長365nm)の放射
エネルギの配分率と等しくなるのは水銀蒸気圧が
約70mmHg(ポイントE)のときであることがわか
る。そして、水銀蒸気圧が更に高くなり102mmHg
を超す領域になると、殺菌線に比して近紫外線の
発光量が多くなつてくるので、殺菌線を放射する
ための短波長紫外線ランプとしては、あまり好ま
しくない状態となつてくる。
Therefore, in order to investigate the distribution ratio of each radiant energy of germicidal radiation, near ultraviolet rays, and visible light, we changed the mercury vapor pressure while keeping the tube current density constant at 5.3A/ cm2 .
Each radiant energy at this time is measured using a germicidal radiation meter (sensitivity).
200-300nm), near-UV illuminance meter (sensitivity 300-400n)
Fig. 8 is a graph of the measurements taken using a luminometer (sensitivity: 400 to 700 nm) and a luminometer (sensitivity: 400 to 700 nm). From this figure, the distribution rate of radiant energy of germicidal radiation (main wavelength 253.7 nm) becomes 50% when the mercury vapor pressure is approximately 20 mmHg (point D), and
It can be seen that the distribution ratio becomes equal to the distribution ratio of near ultraviolet rays (main wavelength 365 nm) radiant energy when the mercury vapor pressure is about 70 mmHg (point E). Then, the mercury vapor pressure increases further to 10 2 mmHg.
In the region exceeding , the amount of near-ultraviolet light emitted becomes greater than that of germicidal radiation, which makes it less desirable as a short-wavelength ultraviolet lamp for emitting germicidal radiation.

以上のことから、水銀蒸気圧を2.5mmHg以上と
し、かつ管負荷を3.3W/cm以上とすれば、高い
殺菌線照度から得られる短波長紫外線ランプとす
ることができるが、一方、あまり水銀蒸気圧を上
げ過ぎるとランプから放射される全放射エネルギ
に占める殺菌線の放射エネルギの配分率が低くな
るので100mmHg以下の水銀蒸気圧とするのが良い
ことがわかる。ただ、管負荷については、今回の
実験結果に対する実際の製品におけるバラツキを
考慮すれば3W/cm以上に設定するのが妥当であ
る。
From the above, if the mercury vapor pressure is set to 2.5 mmHg or higher and the tube load is set to 3.3 W/cm or higher, it is possible to obtain a short wavelength ultraviolet lamp with high germicidal irradiance. If the pressure is increased too much, the distribution ratio of the radiant energy of the germicidal radiation to the total radiant energy emitted from the lamp will decrease, so it is understood that it is best to keep the mercury vapor pressure below 100 mmHg. However, regarding the pipe load, it is appropriate to set it to 3 W/cm or more, considering the variation in actual products with respect to the results of this experiment.

(発明の効果) 以上詳述したように、本発明によれば、水銀蒸
気圧を2.5〜100mmHgとし、かつ管負荷を3W/cm
以上とすることにより、従来の低圧水銀ランプで
は得られなかつた高輝度で短波長紫外線を放射す
る高輝度短波長紫外線ランプを得ることができ
る。
(Effects of the Invention) As detailed above, according to the present invention, the mercury vapor pressure is set to 2.5 to 100 mmHg, and the pipe load is set to 3 W/cm.
By doing the above, it is possible to obtain a high-intensity short-wavelength ultraviolet lamp that emits short-wavelength ultraviolet rays with high brightness that could not be obtained with conventional low-pressure mercury lamps.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は水銀蒸気圧、管負荷及び殺菌線照度の
関係を調べるための実験の供試装置の概要図、第
2乃至8図は実験データの解析結果を示すグラフ
である。 1……水銀蒸気圧放電ランプ、2……恒温槽、
3……点灯装置、4……AC電源、5……最冷点
部、6……温度センサ、7……石英ガラス板、8
……UVメータ。
FIG. 1 is a schematic diagram of a test device for an experiment to investigate the relationship between mercury vapor pressure, tube load, and sterilizing radiation irradiance, and FIGS. 2 to 8 are graphs showing analysis results of experimental data. 1... Mercury vapor pressure discharge lamp, 2... Constant temperature bath,
3...Lighting device, 4...AC power source, 5...Coldest spot, 6...Temperature sensor, 7...Quartz glass plate, 8
...UV meter.

Claims (1)

【特許請求の範囲】 1 水銀蒸気圧放電ランプにおいて、 水銀蒸気圧が2.5乃至100mmHgであり、かつ、
管負荷が3W/cm以上であることを特徴とする高
輝度短波長紫外線ランプ。
[Claims] 1. A mercury vapor pressure discharge lamp having a mercury vapor pressure of 2.5 to 100 mmHg, and
A high-intensity short-wavelength ultraviolet lamp characterized by a tube load of 3W/cm or more.
JP10985285A 1985-05-22 1985-05-22 High luminance short wave length ultraviolet lamp Granted JPS61269847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10985285A JPS61269847A (en) 1985-05-22 1985-05-22 High luminance short wave length ultraviolet lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10985285A JPS61269847A (en) 1985-05-22 1985-05-22 High luminance short wave length ultraviolet lamp

Publications (2)

Publication Number Publication Date
JPS61269847A JPS61269847A (en) 1986-11-29
JPH053701B2 true JPH053701B2 (en) 1993-01-18

Family

ID=14520821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10985285A Granted JPS61269847A (en) 1985-05-22 1985-05-22 High luminance short wave length ultraviolet lamp

Country Status (1)

Country Link
JP (1) JPS61269847A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995011432A1 (en) * 1993-10-22 1995-04-27 Komatsu Ltd. Detector for wavelength of excimer laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995011432A1 (en) * 1993-10-22 1995-04-27 Komatsu Ltd. Detector for wavelength of excimer laser

Also Published As

Publication number Publication date
JPS61269847A (en) 1986-11-29

Similar Documents

Publication Publication Date Title
GB2203283A (en) Lamp for generating ultraviolet radiation
US4678960A (en) Metallic halide electric discharge lamps
US4074164A (en) Sun lamp
US6683411B2 (en) Discharge lamp, ultraviolet ray irradiation apparatus and method of using the apparatus
KR100456297B1 (en) Short arc type lamp
US5489819A (en) Method of operating a metallic vapor discharge lamp
CN101603642B (en) Light irradiation device
TW444229B (en) Short arc type mercury lamp
JPH053701B2 (en)
JPS62160653A (en) Mercury arc light of long life
JPH0137741Y2 (en)
US4745335A (en) Magnesium vapor discharge lamp
JPH01122558A (en) Bactericidal lamp device
US9392752B2 (en) Plasma growth lamp for horticulture
JPH0231458B2 (en)
JPH09171799A (en) Discharge lamp and device of vacuum ultraviolet ray source
US5589735A (en) Emission device with a cadmium lamp
JPH0750153A (en) Metallic vapor discharge lamp device
JPH05190152A (en) Fluorescent lamp for display
JPH11265687A (en) Multiple tube type discharge lamp and photochemical reacting device
JP2915385B1 (en) Short arc mercury lamp
JP2880582B2 (en) Short arc type high pressure mercury lamp
US6538384B2 (en) Discharge lamp having discharge space with specific fill concentration
de Groot et al. General Considerations Concerning Power Balance and Spectrum
JP2915256B2 (en) Cadmium metal vapor discharge lamp

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term