JPH0536707B2 - - Google Patents

Info

Publication number
JPH0536707B2
JPH0536707B2 JP31014987A JP31014987A JPH0536707B2 JP H0536707 B2 JPH0536707 B2 JP H0536707B2 JP 31014987 A JP31014987 A JP 31014987A JP 31014987 A JP31014987 A JP 31014987A JP H0536707 B2 JPH0536707 B2 JP H0536707B2
Authority
JP
Japan
Prior art keywords
defrosting
evaporator
low
temperature
evaporators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31014987A
Other languages
Japanese (ja)
Other versions
JPH01150781A (en
Inventor
Hiroshi Taniguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP31014987A priority Critical patent/JPH01150781A/en
Publication of JPH01150781A publication Critical patent/JPH01150781A/en
Publication of JPH0536707B2 publication Critical patent/JPH0536707B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets

Landscapes

  • Defrosting Systems (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は蒸発器及び送風フアンを夫々備えた冷
気強制循環式の複数台の低温シヨーケースの霜取
り運転方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for defrosting a plurality of low-temperature show cases of forced circulation type cold air each equipped with an evaporator and a blower fan.

(ロ) 従来の技術 特公昭53−17781号公報(JPC68A421)には、
複数個の蒸発器と、前記蒸発器の各々に関連した
霜取り装置と、前記蒸発器の各々に関連して当該
蒸発器が霜取りを必要とするとき当該蒸発器と関
連する霜取り装置を作動可能な状態とする感知装
置と、前記各蒸発器に対する各霜取り装置が作動
可能な状態とされているか否かを予め定められた
順序に従つて順次走査し、該走査の順番に従つて
前記感知装置により作動可能な状態とされている
霜取り装置のみを順次作動させる制御装置と、前
記制御装置が前記感知装置によつて作動可能な状
態とされている一つの霜取り装置を走査したとき
前記制御装置の走査操作を前記一つの霜取り装置
が霜取り操作を完了するまで中断させる走査中断
装置と、前記一つの霜取り装置が霜取りを完了し
たとき前記一つの霜取り装置を霜取り操作を停止
させ前記制御装置の走査操作を再開させると共に
前記一つの霜取り装置に関連する蒸発器の再始動
を遅らせる時間遅れ制御装置とを有することを特
徴とする冷凍システムが示されている。
(b) Conventional technology Japanese Patent Publication No. 53-17781 (JPC68A421) states,
a plurality of evaporators, a defrost device associated with each of the evaporators, and associated with each of the evaporators, the defrost device associated with the evaporator is operable when the evaporator requires defrosting; a sensing device for determining the status of the defroster, and a sensing device for sequentially scanning in a predetermined order whether or not each defrosting device for each of the evaporators is in an operable state; a control device that sequentially activates only the defrost devices that are enabled, and a scanning of the control device when the control device scans one defrost device that is enabled by the sensing device; a scanning interruption device that suspends operation until said one defrost device completes a defrosting operation; and a scanning interruption device that causes said one defrost device to stop its defrosting operation when said one defrost device completes defrosting; and a time delay controller for restarting and delaying restart of an evaporator associated with the one defrost device.

(ハ) 発明が解決しようとする問題点 上記冷凍システムの複数個の蒸発器はスーパー
マーケツト等の店舗に設置された複数台の低温シ
ヨーケースの冷気循環路に対応して1個ずつ配置
されている訳であるが、貯蔵室が同じ温度に冷却
される複数台の低温シヨーケースは店舗のレイア
ウトの関係上、隣接する貯蔵室が相互に連通する
よう直線状に並設されている。
(c) Problems to be solved by the invention The plurality of evaporators of the above-mentioned refrigeration system are arranged one by one corresponding to the cold air circulation path of a plurality of low-temperature show cases installed in stores such as supermarkets. However, due to the layout of the store, multiple low-temperature show cases whose storage chambers are cooled to the same temperature are arranged in a straight line so that adjacent storage chambers communicate with each other.

従つて、相隣接する低温シヨーケースの貯蔵室
の間には仕切りが存在しないために、1台の低温
シヨーケースが冷却中、隣りの低温シヨーケース
が霜取りを開始したときには、一方の低温シヨー
ケースの貯蔵室から他方の低温シヨーケースの貯
蔵室への冷気の往来が発生し、霜取り中の低温シ
ヨーケースの貯蔵室の温度が低下して蒸発器の霜
取りが遅くなり、霜取り時間中に蒸発器の霜を取
れないという問題点が生じた。
Therefore, since there is no partition between the storage chambers of adjacent low-temperature show cases, when one low-temperature show case is cooling and the adjacent low-temperature show case starts defrosting, the storage room of one low-temperature show case will be removed. Cold air flows into the storage chamber of the other low-temperature case, and the temperature in the storage chamber of the low-temperature case during defrosting drops, slowing down the defrosting of the evaporator and making it impossible to defrost the evaporator during the defrosting time. A problem arose.

(ニ) 問題点を解決するための手段 本発明は上記問題点を解決することを目的とす
るもので、その手段として夫々の貯蔵室が横方向
に連通するよう直線状に並設された各低温シヨー
ケースの冷気循環路に、冷媒入口側に電磁弁が接
続された蒸発器と、この蒸発器に付着した霜を霜
取り時に解かす霜取り装置と、常時運転される送
風フアンとを夫々備え、霜取り開始時には総ての
霜取り装置への通電と総ての電磁弁の閉鎖とを同
時に行ない、霜取り終了時には各蒸発器の霜取り
装置への通電遮断を蒸発器毎に個別に行なうと共
に、通電遮断された霜取り装置に対応する電磁弁
から順次開放するようにした低温シヨーケースの
霜取り運転方法を提供する。
(d) Means for solving the problem The present invention aims to solve the above-mentioned problem, and as a means for solving the problem, storage chambers are arranged in a straight line so that the respective storage chambers communicate with each other in the horizontal direction. The cold air circulation path of the low-temperature show case is equipped with an evaporator with a solenoid valve connected to the refrigerant inlet side, a defrost device that thaws the frost adhering to the evaporator during defrosting, and a blower fan that operates constantly. At the start, all defrosting devices are energized and all solenoid valves are closed at the same time, and at the end of defrosting, power is cut off to the defrosting device of each evaporator individually, and the power is cut off. To provide a defrosting operation method for a low-temperature show case in which a solenoid valve corresponding to a defrosting device is sequentially opened.

(ホ) 作用 各低温シヨーケースの各蒸発器総てが同時に霜
取り開始となるために、相隣接する各低温シヨー
ケースの各貯蔵室の冷気の往来があつても各貯蔵
室の温度は略同じ状態となり、各蒸発器の着霜量
が若干異なつていても殆ど同じ時間で霜取りを終
了させることができる。
(E) Effect Since all the evaporators of each low-temperature show case start defrosting at the same time, even if cold air flows back and forth between the storage rooms of adjacent low-temperature show cases, the temperature of each storage room remains approximately the same. Even if the amount of frost formed on each evaporator is slightly different, defrosting can be completed in almost the same amount of time.

又、各蒸発器の霜取り装置への通電遮断を蒸発
器毎に個別に行なうと共に、通電遮断された霜取
り装置に対応する電磁弁から順次開放するため
に、霜取りの終了を着霜量の多い蒸発器に合わせ
る必要がなく、先に霜取りを終了した蒸発器から
順に冷却運転に復帰させることができる。
In addition, in order to cut off the power to the defrost device of each evaporator individually for each evaporator, and to sequentially open the solenoid valves corresponding to the defrost devices whose power was cut off, the end of defrosting is determined by the evaporator with a large amount of frost. There is no need to match the evaporator to the evaporator, and the evaporator that has finished defrosting first can be returned to cooling operation in order.

(ヘ) 実施例 以下図面に基づいて本発明の実施例を説明する
と、1A〜1Eはスーパーマーケツト等の店舗に
設置される前面開放型の低温シヨーケースで、各
低温シヨーケース1A〜1Eは直線状をなすよう
横方向に並んで設置されている。前記各低温シヨ
ーケース1A〜1Eは何れも第2図に示す如く前
面に商品収納及び取出用の開口2を形成した断熱
壁3にて本体を構成され、前記断熱壁3の内面よ
り適当間隔を存して区画板4を配設することによ
り複数枚の棚5を備えた貯蔵室6A〜6Eと、前
記開口2の上下両縁に沿つて相対向する吹出、吸
込両口7,8を備え、左右両側面が閉塞板9にて
覆われる冷気循環路10とが形成される。前記各
低温シヨーケース1A〜1Eは各貯蔵室6A〜6
Eが連通するよう適宜な連結装置でもつて第1図
に示す如く連結接続され、最外側となる左右両側
面には左右一対の側板11が取付けられる構成と
なつている。
(F) Embodiments Below, embodiments of the present invention will be described based on the drawings. 1A to 1E are front-open type low-temperature show cases installed in stores such as supermarkets, and each low-temperature show case 1A to 1E has a linear shape. They are installed horizontally in a row. As shown in FIG. 2, the main body of each of the low-temperature show cases 1A to 1E is composed of a heat insulating wall 3 having an opening 2 for storing and taking out products at the front, and an appropriate distance is left from the inner surface of the heat insulating wall 3. By arranging partition plates 4, storage chambers 6A to 6E are provided with a plurality of shelves 5, and both outlet and suction ports 7 and 8 are provided facing each other along both upper and lower edges of the opening 2, A cold air circulation path 10 whose left and right sides are covered with blocking plates 9 is formed. Each of the low-temperature storage cases 1A to 1E has storage chambers 6A to 6.
They are connected as shown in FIG. 1 using an appropriate connecting device so that E can communicate with each other, and a pair of left and right side plates 11 are attached to the outermost left and right sides.

前記各低温シヨーケース1A〜1Eの各冷気循
環路10には、第3図に示す蒸発器12A〜12
Eと、この各蒸発器の空気入口側に位置する霜取
り装置としての電気ヒータ13A〜13Eと、常
時運転される送風フアン14とが第2図に示す如
く配置されている。前記送風フアン14は常時運
転されている関係上、冷気循環路10内の空気は
矢印の如く循環され、前記開口2にはエアーカー
テンCAが形成される。このエアーカーテンCAは
蒸発器12A〜12Eに減圧液冷媒が供給されて
いる冷却時には、前記各蒸発器12A〜12Eに
よつて熱交換された冷気でもつて形成されるため
に冷たくなり、各貯蔵室6A〜6Eが冷却される
ことになり、又各蒸発器12A〜12Eに対する
減圧液冷媒の供給が中断され、各電気ヒータ13
A〜13Eが通電される霜取り時には徐々に温度
が上がることになる。
Each of the cold air circulation paths 10 of each of the low-temperature cases 1A to 1E includes evaporators 12A to 12 shown in FIG.
2, electric heaters 13A to 13E serving as defroster devices located on the air inlet side of each evaporator, and a blower fan 14 that is constantly operated are arranged as shown in FIG. Since the blower fan 14 is constantly operated, the air in the cold air circulation path 10 is circulated as shown by the arrow, and an air curtain CA is formed in the opening 2. During cooling when the reduced pressure liquid refrigerant is supplied to the evaporators 12A to 12E, the air curtain CA becomes cold because it is formed by the cold air heat exchanged by the evaporators 12A to 12E, and becomes cold in each storage room. 6A to 6E are cooled, and the supply of reduced pressure liquid refrigerant to each evaporator 12A to 12E is interrupted, and each electric heater 13
During defrosting when electricity is applied to A to 13E, the temperature will gradually rise.

第3図は冷凍装置の冷媒回路を示し、前記各蒸
発器12A〜12Eは電磁弁15A〜15Eと減
圧装置としての膨張弁16A〜16Eと1対1で
夫々対応して系統A〜Eとなるように直列接続さ
れている。前記各系統A〜Eは低温シヨーケース
1A〜1Eに夫々対応するもので、夫々相互に並
列をなすように接続されている。前記冷媒回路は
冷媒圧縮機17、水冷式又は空冷式の凝縮器1
8、各系統A〜E、気液分離器19を高圧ガス管
20、高圧液管21、高圧液枝管22A〜22
E、低圧液管23A〜23E、低圧ガス枝管24
A〜24E、低圧ガス管25でもつて環状に接続
することにより閉回路として構成されており、冷
却時には冷媒は矢印に示す如く循環される。26
A〜26Eは各系統A〜Eに夫々対応する制御器
で、この制御器には前記各電気ヒータ13A〜1
3Eと、前記各電磁弁15A〜15Eと、前記各
蒸発器12A〜12Eの空気出口側に配置された
各温度センサー27A〜27Eとが電気的に接続
されている。
FIG. 3 shows a refrigerant circuit of a refrigeration system, and each of the evaporators 12A to 12E corresponds one-to-one with the electromagnetic valves 15A to 15E and the expansion valves 16A to 16E as pressure reducing devices, respectively, forming systems A to E. are connected in series. The systems A to E correspond to the low-temperature show cases 1A to 1E, respectively, and are connected in parallel with each other. The refrigerant circuit includes a refrigerant compressor 17 and a water-cooled or air-cooled condenser 1.
8. Each system A to E, the gas-liquid separator 19 is connected to a high pressure gas pipe 20, a high pressure liquid pipe 21, and a high pressure liquid branch pipe 22A to 22.
E, low pressure liquid pipes 23A to 23E, low pressure gas branch pipe 24
A to 24E and low pressure gas pipes 25 are also connected in an annular manner to form a closed circuit, and during cooling, the refrigerant is circulated as shown by the arrows. 26
A to 26E are controllers corresponding to the respective systems A to E, and these controllers include the respective electric heaters 13A to 1.
3E, each of the electromagnetic valves 15A to 15E, and each temperature sensor 27A to 27E disposed on the air outlet side of each of the evaporators 12A to 12E are electrically connected.

第4図は電気回路を示し、前記制御器26A〜
26Eはタイマー、A−D変換器、比較器等を備
えた制御部28A〜28Eと、この制御部に低電
圧を付与する電源部29A〜29Eと、前記各電
気ヒータ13A〜13E制御用の第1リレー30
A〜30Eと、前記各電磁弁15A〜15E制御
用の第2リレー31A〜31Eとからなるもので
ある。前記第1リレー及び第2リレー30A〜3
0E,31A〜31Eは電磁コイル32A〜32
E,33A〜33E及びこの電磁コイルによつて
開閉される接片34A〜34E,35A〜35E
を備えている。
FIG. 4 shows an electric circuit, and the controllers 26A to
26E is a control section 28A to 28E equipped with a timer, an A-D converter, a comparator, etc., a power supply section 29A to 29E that applies a low voltage to the control section, and a controller for controlling each of the electric heaters 13A to 13E. 1 relay 30
A to 30E, and second relays 31A to 31E for controlling the respective electromagnetic valves 15A to 15E. Said first relay and second relay 30A-3
0E, 31A to 31E are electromagnetic coils 32A to 32
E, 33A to 33E and contact pieces 34A to 34E, 35A to 35E that are opened and closed by this electromagnetic coil.
It is equipped with

前記各低温シヨーケース1A〜1Eは各制御器
26A〜26Eのタイマー信号によつて冷却運
転、霜取り運転を交互に繰り返えされる。冷却運
転及び霜取り運転の時間割合は任意にその設定を
変更でき、例えば3時間冷却運転した後に最長20
分間霜取り運転を行なう様に設定されており、冷
却運転中、温度センサー27A〜27Eで検出さ
れた値が予め設定された下限値例えば−5℃であ
れば、各制御部28A〜28Eからの信号に基づ
いて第2リレー31A〜31Eの対応する電磁コ
イル33A〜33Eが非励磁となつて各接片34
A〜34Eが開き、各電磁弁15A〜15Eが閉
じられて各蒸発器12A〜12Eへの減圧液冷媒
の供給が中断される所謂サーモオフとなり、又温
度センサー27A〜27Eで検出された値が予め
設定された上限値例えば−1℃であれば、各制御
部28A〜28Eからの信号に基づいて第2リレ
ー31A〜31Eの対応する電磁コイル33A〜
33Eが励磁されて各接片34A〜34Eが閉
じ、各電磁弁15A〜15Eが開いて各蒸発器1
2A〜12Eへの減圧冷媒の供給が再開される所
謂サーモオフとなり、冷却運転中このサーモオ
ン、サーモオフからなるサーモサイクルが繰り返
されることになる。尚、各低温シヨーケース1A
〜1Eは貯蔵室6A〜6Eに収納される負荷即ち
商品の数量が一定でなく、又商品取出回数に伴な
うエアーカーテンCAの乱れる回数も異なるため
に、サーモサイクルの周期が夫々異なつてくる。
第4図によれば、系統A,Dがサーモオン、系統
B,C,Eがサーモオフとなつている。
Each of the low-temperature shower cases 1A to 1E alternately repeats a cooling operation and a defrosting operation according to a timer signal from each controller 26A to 26E. The time ratio of cooling operation and defrosting operation can be changed arbitrarily, for example, after 3 hours of cooling operation, the time ratio of
It is set to perform a defrosting operation for a minute, and if the value detected by the temperature sensors 27A to 27E during the cooling operation is a preset lower limit value, for example -5°C, a signal from each control unit 28A to 28E is sent. Based on this, the corresponding electromagnetic coils 33A to 33E of the second relays 31A to 31E are de-energized, and each contact piece 34
A to 34E open, each solenoid valve 15A to 15E is closed, and the supply of reduced pressure liquid refrigerant to each evaporator 12A to 12E is interrupted, which is the so-called thermo-off, and the value detected by the temperature sensor 27A to 27E is If the set upper limit value is, for example, -1°C, the corresponding electromagnetic coils 33A to 33A of the second relays 31A to 31E are activated based on signals from each control unit 28A to 28E.
33E is energized to close each contact piece 34A to 34E, and each solenoid valve 15A to 15E opens to open each evaporator 1.
The supply of reduced pressure refrigerant to 2A to 12E is restarted, resulting in a so-called thermo-off, and a thermocycle consisting of thermo-on and thermo-off is repeated during the cooling operation. In addition, each low temperature case 1A
~1E, the load, that is, the quantity of products stored in the storage rooms 6A to 6E, is not constant, and the number of times the air curtain CA is disturbed depending on the number of times the product is taken out is also different, so the cycles of the thermocycles are different. .
According to FIG. 4, systems A and D are thermo-on, and systems B, C, and E are thermo-off.

各低温シヨーケース1A〜1Eの冷却運転が進
行して3時間経過すると、各制御部28A〜28
Eから同時に霜取り信号が出され、第1リレー3
0A〜30Eの電磁コイル32A〜32Eが総て
励磁されて各接片34A〜34Eが閉じ、各電気
ヒータ13A〜13Eが通電されると共に、第2
リレー31A〜31Eの電磁コイル33A〜33
Eが総て非励磁となつて各接片35A〜35Eが
開となり、各電磁弁15A〜15Eが閉まつて各
蒸発器12A〜12Eへの減圧液冷媒の供給が中
断され、総ての蒸発器12A〜12Eの霜取りが
同時に開始される。また、霜取りが開始された後
も常時運転される送風フアン10が運転を継続
し、各電気ヒータ13A〜13Eで温度上昇した
空気が各蒸発器12A〜12Eに流れる。霜取り
運転により従来と同様に各貯蔵室6A〜6Eに温
度は僅かづつ上昇する。さらに、前記各電磁弁1
5A〜15Eの閉鎖に伴ない各蒸発器12A〜1
2E内の冷媒は徐々にポンプダウンされ、低圧々
力が所定値以下になると図示しない低圧スイツチ
が動作して圧縮機17が停止する。
When the cooling operation of each low-temperature case 1A to 1E has progressed for 3 hours, each control unit 28A to 28
A defrost signal is issued from E at the same time, and the first relay 3
All the electromagnetic coils 32A to 32E of 0A to 30E are excited, each contact piece 34A to 34E is closed, each electric heater 13A to 13E is energized, and the second
Electromagnetic coils 33A to 33 of relays 31A to 31E
E is de-energized, each contact piece 35A to 35E is opened, each electromagnetic valve 15A to 15E is closed, the supply of reduced pressure liquid refrigerant to each evaporator 12A to 12E is interrupted, and all evaporators are Defrosting of the containers 12A to 12E is started at the same time. Further, even after defrosting is started, the blower fan 10 that is constantly operated continues to operate, and the air whose temperature has been increased by each of the electric heaters 13A to 13E flows to each of the evaporators 12A to 12E. Due to the defrosting operation, the temperature in each of the storage compartments 6A to 6E rises little by little as in the conventional case. Furthermore, each of the solenoid valves 1
Each evaporator 12A-1 due to the closure of 5A-15E
The refrigerant in 2E is gradually pumped down, and when the low pressure becomes less than a predetermined value, a low pressure switch (not shown) is activated and the compressor 17 is stopped.

各電気ヒータ13A〜13Eによる各蒸発器1
2A〜12Eの加熱に伴ない霜が徐々に取られ、
各蒸発器12A〜12Eを通過した空気の温度が
例えば5℃に達したことを温度センサー27A〜
27Eが検出すると、第1リレー30A〜30E
の電磁コイル32A〜32Eが非励磁となつて接
片34A〜34Eが開き、電気ヒータ13A〜1
3Eが非通電となるが、各系統A〜Eにおける蒸
発器12A〜12Eの着霜量が異なるために、電
気ヒータ13A〜13Eは同時に非通電とならず
に個別に非通電となり、最初に非通電となる電気
ヒータと最後に非通電となる電気ヒータとは数分
間の時間遅れが発生する。
Each evaporator 1 by each electric heater 13A to 13E
The frost is gradually removed with heating from 2A to 12E,
Temperature sensors 27A to 27A indicate that the temperature of the air that has passed through each evaporator 12A to 12E has reached, for example, 5°C.
27E detects, the first relays 30A to 30E
The electromagnetic coils 32A to 32E are de-energized, the contact pieces 34A to 34E are opened, and the electric heaters 13A to 1
3E is de-energized, but since the amount of frost on the evaporators 12A-12E in each system A-E is different, the electric heaters 13A-13E are not de-energized at the same time but are de-energized individually, and are de-energized first. There is a time delay of several minutes between the electric heater that is energized and the last electric heater that is de-energized.

各電気ヒータ13A〜13Eが夫々非通電にな
ると、制御部28A〜28Eのタイマーによつて
1〜2分程度の水切り時間をカウントした後、第
2リレー31A〜31Eを各電気ヒータ13A〜
13Eの非通電となつた順に動作させて電磁弁1
5A〜15Eを順次開放する。この電磁弁15A
〜15Eの開放に伴ない低圧々力が所定値に達す
ると低圧スイツチが動作して圧縮機17が運転さ
れ、冷媒循環が再開されることになつて冷却運
転、所謂サーモサイクル運転に復帰する。尚、霜
取り時間が20分に設定されていても電気ヒータ1
3A〜13Eへの通電時間が15分、水切り時間が
2分で計17分となり残り3分は解除されることに
なる。
When each of the electric heaters 13A to 13E is de-energized, the timer of the control unit 28A to 28E counts the draining time of about 1 to 2 minutes, and then the second relay 31A to 31E is connected to each electric heater 13A to
Operate solenoid valve 1 in the order in which 13E becomes de-energized.
5A to 15E are opened sequentially. This solenoid valve 15A
When the low pressure force reaches a predetermined value with the opening of ~15E, the low pressure switch is activated, the compressor 17 is operated, and the refrigerant circulation is restarted, returning to the cooling operation, so-called thermocycle operation. In addition, even if the defrosting time is set to 20 minutes, the electric heater 1
The energization time to 3A to 13E is 15 minutes, and the water draining time is 2 minutes, making a total of 17 minutes, and the remaining 3 minutes are turned off.

上述した各低温シヨーケース1A〜1Eの霜取
り運転方法によれば、各低温シヨーケース1A〜
1Eの各蒸発器12A〜12E総てが同時に霜取
り開始となるために、相隣接する各低温シヨーケ
ース1A〜1Eの各貯蔵室6A〜6Eの冷気の往
来があつても各貯蔵室6A〜6Eの温度は略同じ
状態となり、従つて各蒸発器12A〜12Eの着
霜量が若干異なつていても殆ど同じ時間で霜取り
を終了させることができる。
According to the defrosting operation method for each of the low-temperature cases 1A to 1E described above, each of the low-temperature cases 1A to 1E
Since all of the evaporators 12A to 12E of the evaporator 1E start defrosting at the same time, even if cold air flows between the storage compartments 6A to 6E of the adjacent low-temperature case 1A to 1E, the The temperatures are approximately the same, so even if the amount of frost formed on each evaporator 12A to 12E is slightly different, defrosting can be completed in almost the same amount of time.

又、各蒸発器の12A〜12Eの霜取り装置へ
の通電遮断を蒸発器毎に個別に行なうと共に、通
電遮断された霜取り装置に対応する電磁弁15A
〜15Eから順次開放するために、霜取りの終了
を着霜量の多い蒸発器に合わせる必要がなく、先
に霜取りを終了した蒸発器から順に冷却運転に復
帰させることができる。
In addition, power is cut off to the defrost devices 12A to 12E of each evaporator individually for each evaporator, and the solenoid valve 15A corresponding to the defrost device whose power is cut off is cut off.
Since the evaporators are opened sequentially from 15E to 15E, it is not necessary to match the end of defrosting to the evaporator with the largest amount of frosting, and the evaporators that have completed defrosting first can be returned to cooling operation in order.

(ト) 発明の効果 本発明によれば、次に列挙する効果が生じる。(g) Effects of the invention According to the present invention, the following effects are produced.

各低温シヨーケースの各蒸発器総てが同時に
霜取り開始となるために、相隣接する各低温シ
ヨーケースの各貯蔵室の冷気の往来があつても
各貯蔵室の温度は略同じ状態となり、従つて各
蒸発器の着霜量が若干異なつていても殆ど同じ
時間で霜取りを終了させることができ、この結
果、各低温シヨーケースの霜取り時間が短くな
る。
Because all of the evaporators in each low-temperature case start defrosting at the same time, even if cold air flows between the storage rooms in adjacent low-temperature cases, the temperature in each storage room remains approximately the same, and therefore each Even if the amount of frost on the evaporator is slightly different, defrosting can be completed in almost the same time, and as a result, the time required to defrost each low-temperature show case is shortened.

各蒸発器の霜取り装置への通電遮断を蒸発器
毎に個別に行なうと共に、通電遮断された霜取
り装置に対応する電磁弁から順次開放するため
に、霜取りの終了を着霜量の多い蒸発器に合わ
せる必要なく、先に霜取りを終了した蒸発器か
ら順に冷却運転に復帰させることができ、この
結果、霜取り終了から冷却開始迄の時間が短か
くなり、この短かくなつた時間丈商品を早く冷
却して商品の品質管理を良くすることができ
る。
In order to cut off the power to the defrost device of each evaporator individually, and to sequentially open the solenoid valves corresponding to the defrost devices whose power was cut off, the end of defrosting is determined on the evaporator with a large amount of frost. The evaporator that finished defrosting first can be returned to cooling operation without the need to adjust the time, and as a result, the time from the end of defrosting to the start of cooling is shortened, allowing products with shortened time periods to be cooled quickly. This allows for better quality control of products.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は何れも本発明低温シヨーケースの霜取り
運転方法にかゝるもので、第1図は複数台の低温
シヨーケースの連結を示す斜視図、第2図は第1
図X−X断面図、第3図は冷凍装置の冷媒回路
図、第4図は電気回路図である。 1A〜1E……低温シヨーケース、6A〜6E
……貯蔵室、10……冷気循環路、12A〜12
E……蒸発器、13A〜13E……電気ヒータ
(霜取り装置)、14……送風フアン、15A〜1
5E……電磁弁。
The drawings are all related to the defrosting operation method for low-temperature show cases of the present invention, and FIG. 1 is a perspective view showing the connection of a plurality of low-temperature show cases, and FIG.
FIG. 3 is a refrigerant circuit diagram of the refrigeration system, and FIG. 4 is an electric circuit diagram. 1A~1E...Low temperature case, 6A~6E
...Storage room, 10...Cold air circulation path, 12A~12
E...Evaporator, 13A-13E...Electric heater (defrost device), 14...Blower fan, 15A-1
5E...Solenoid valve.

Claims (1)

【特許請求の範囲】[Claims] 1 夫々の貯蔵室が横方向に連通するように直線
状に並設された各低温シヨーケースの冷気循環路
に、冷煤入口側に電磁弁が接続された蒸発器と、
この蒸発器に付着した霜を霜取り時に解かす霜取
り装置と、常時運転される送風フアンとを夫々備
え、霜取り開始時には総ての霜取り装置への通電
と総ての電磁弁の閉鎖とを同時に行ない、霜取り
終了時には各蒸発器の霜取り装置への通電遮断を
蒸発器毎に個別に行なうと共に、通電遮断された
霜取り装置に対応する電磁弁から順次開放するよ
うにした低温シヨーケースの霜取り運転方法。
1. An evaporator in which a solenoid valve is connected to the cold soot inlet side of the cold air circulation path of each low-temperature show case arranged in a straight line so that the storage chambers communicate with each other in the horizontal direction;
The evaporator is equipped with a defrosting device that melts the frost adhering to the evaporator during defrosting, and a blower fan that operates constantly.When defrosting starts, all the defrosting devices are energized and all solenoid valves are closed at the same time. A defrosting operation method for a low-temperature show case, in which, when defrosting is finished, power is cut off to the defrosting device of each evaporator individually for each evaporator, and solenoid valves corresponding to the defrosting devices whose power is cut off are sequentially opened.
JP31014987A 1987-12-07 1987-12-07 Defrosting operating method of low temperature showcase Granted JPH01150781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31014987A JPH01150781A (en) 1987-12-07 1987-12-07 Defrosting operating method of low temperature showcase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31014987A JPH01150781A (en) 1987-12-07 1987-12-07 Defrosting operating method of low temperature showcase

Publications (2)

Publication Number Publication Date
JPH01150781A JPH01150781A (en) 1989-06-13
JPH0536707B2 true JPH0536707B2 (en) 1993-05-31

Family

ID=18001755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31014987A Granted JPH01150781A (en) 1987-12-07 1987-12-07 Defrosting operating method of low temperature showcase

Country Status (1)

Country Link
JP (1) JPH01150781A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102561405A (en) * 2010-12-09 2012-07-11 上海市基础工程有限公司 Opening treatment method for pipe-roofing continuous perforation
JP5833346B2 (en) * 2011-06-07 2015-12-16 シャープ株式会社 refrigerator
JP2014070872A (en) * 2012-10-02 2014-04-21 Nakano Refrigerators Co Ltd Defrosting control device and defrosting control method

Also Published As

Publication number Publication date
JPH01150781A (en) 1989-06-13

Similar Documents

Publication Publication Date Title
US5375428A (en) Control algorithm for dual temperature evaporator system
US3135316A (en) Convertible heating and cooling food storage cabinet
US5806321A (en) Method for defrosting a refrigeration system and control apparatus for implementing that method
JPH0536707B2 (en)
JP6279932B2 (en) Refrigeration equipment
JP2641480B2 (en) Defrosting control method for frozen and refrigerated showcases
JPH01131880A (en) Method of operating low-temperature showcase
JP3026165B2 (en) Commercial refrigeration showcase and power supply control method for commercial refrigeration showcase
JPS6314295Y2 (en)
JPH02130381A (en) Control device for refrigerator
JPH07280409A (en) Controller of cold storage showcase
JPS6051335B2 (en) Power supply control device
JP2573005B2 (en) How to operate a low-temperature showcase
JP2565270B2 (en) Defrost control device for open showcase
CA1290580C (en) Low-temperature showcase
JPH0240469Y2 (en)
JPH0519739Y2 (en)
JPS6328387Y2 (en)
JPH07180946A (en) Defreosting controller for open showcase
JPH01131881A (en) Method of operating low-temperature showcase
JPH0232554B2 (en) REIZOKO
JPS6259359B2 (en)
JPH0493579A (en) Defrosting control device for open show case
JPH0534046A (en) Around type refrigeration open show case
JPH07180947A (en) Defrosting controller for open showcase