JPH053632A - Parallel operation system for generator - Google Patents
Parallel operation system for generatorInfo
- Publication number
- JPH053632A JPH053632A JP3180468A JP18046891A JPH053632A JP H053632 A JPH053632 A JP H053632A JP 3180468 A JP3180468 A JP 3180468A JP 18046891 A JP18046891 A JP 18046891A JP H053632 A JPH053632 A JP H053632A
- Authority
- JP
- Japan
- Prior art keywords
- generator
- voltage
- frequency
- reactive power
- generators
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、並行運転時の発電機
相互間に流れる循環電流(横流)を抑制し、各発電機を
安定的に並行運転させるように制御する発電機の並行運
転システムに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention suppresses a circulating current (cross current) flowing between generators during parallel operation and controls each generator to operate stably in parallel. It is about.
【0002】[0002]
【従来の技術】図4は例えば日本舶用機関学会誌,第1
0巻,第6号,「差動横流補償装置による多機並列運転
系の実機試験」坂本,根岸,武田共著に示された従来の
横流補償回路を示し、図において、1は発電機、1eは
発電機1の励磁巻線、3は自動電圧調整器、(以下、A
VRという)、4はAVR3の電圧検出変圧器、5は横
流補償用の抵抗器、6は負荷電流検出用の変流器、7は
給電用遮断器(以下、ACBという)、7gはACB7
の補助接点で、ACB7の閉で開となる。16は他の発
電機(図示しない)と並行運転する場合に、両発電機の
位相合致点で、ACB7を閉とする同期投入装置であ
る。また、図5は図4に示す横流補償回路各部の電圧,
電流のベクトル図である。2. Description of the Related Art FIG. 4 shows, for example, No. 1 of the Japan Society for Marine Engine Science.
Volume 0, No. 6, "Actual machine test of multi-machine parallel operation system by differential cross current compensator" Sakamoto, Negishi, Takeda shown conventional conventional cross current compensation circuit, in the figure, 1 is a generator, 1e Is an excitation winding of the generator 1, 3 is an automatic voltage regulator, (hereinafter, A
4) AVR3 voltage detection transformer, 5 cross current compensation resistor, 6 load current detection current transformer, 7 power supply breaker (hereinafter referred to as ACB), 7g ACB7
It is an auxiliary contact of and opens when ACB7 is closed. Reference numeral 16 is a synchronous closing device that closes the ACB 7 at a phase matching point of both generators when operating in parallel with another generator (not shown). In addition, FIG. 5 shows the voltage of each part of the cross current compensation circuit shown in FIG.
It is a vector diagram of an electric current.
【0003】次に動作について説明する。発電機1と他
の発電機の安定な並行運転を行うには、並行運転中の各
発電機相互間に流れる無効横流の抑制が必要となる。従
って、同期投入装置16によりACB7を同期投入する
場合、ACB7の投入前は補助接点7aが閉であり、従
って、抵抗器5は短絡され、発電機1の電圧は負荷電流
に左右されずAVR3の設定電圧(一定電圧)に保持さ
れる。次に、ACB7が同期投入を完了すると、発電機
1側および母線側共にAVR3の入力回路に抵抗器5が
直列に接続され、抵抗器5に発電機1の負荷電流に比例
した電流が流れる。Next, the operation will be described. In order to perform stable parallel operation of the generator 1 and other generators, it is necessary to suppress the invalid cross current that flows between the generators that are in parallel operation. Therefore, when the ACB7 is synchronously closed by the synchronous closing device 16, the auxiliary contact 7a is closed before the ACB7 is closed, so that the resistor 5 is short-circuited and the voltage of the generator 1 does not depend on the load current and is equal to that of the AVR3. It is maintained at the set voltage (constant voltage). Next, when the ACB 7 completes the synchronous closing, the resistor 5 is connected in series to the input circuit of the AVR 3 on both the generator 1 side and the bus bar side, and a current proportional to the load current of the generator 1 flows through the resistor 5.
【0004】そして、この発電機電流が遅れのときに
は、抵抗器5の両端にはベクトル電圧降下Vrが発生
し、AVR3のベクトル入力電圧Vcは図5に示すベク
トル図より、ベクトル入力電圧Vc=ベクトル電圧Ve
+ベクトル電圧降下Vrとなる。すなわち、電圧が高く
無効遅れ電流が流れた発電機1では、AVR3の入力電
圧が高いという信号をAVR3に与えて、界磁巻線1e
の電流を減少させるように働き、一方、電圧が低い場合
には逆の動作が行われ、無効横流は消滅する。負荷平衡
時には、抵抗器5のベクトル電圧降下Vrも等しく、A
VR3の入力電圧も等しくなり、両発電機の電圧も一致
して、横流は流れない。When the generator current is delayed, a vector voltage drop Vr is generated across the resistor 5, and the vector input voltage Vc of the AVR 3 is the vector input voltage Vc = vector according to the vector diagram shown in FIG. Voltage Ve
+ Vector voltage drop Vr. That is, in the generator 1 in which the voltage is high and the reactive delay current has flowed, a signal that the input voltage of AVR3 is high is given to the AVR3, and the field winding 1e is supplied.
On the other hand, when the voltage is low, the opposite action takes place and the reactive cross current disappears. At the time of load balancing, the vector voltage drop Vr of the resistor 5 is also equal,
The input voltage of VR3 also becomes equal, the voltages of both generators also match, and no cross current flows.
【0005】なお、上記文献の方式である差動変流器を
接続した横流補償装置では、負荷平衡時、負荷電流に比
例した電流がこれらの差動変流器および横流補償装置の
リング回路のみに流れ、抵抗器5の両端のベクトル電圧
降下Vrは零となる。従って、ACR3の入力電圧は母
線電圧の検出電圧のみとなり、電圧変動率は単独運転時
と同じく小さな値となる。In the lateral current compensator connected to the differential current transformer, which is the method of the above-mentioned document, at the time of load balancing, the current proportional to the load current is generated only in the ring circuit of the differential current transformer and the lateral current compensator. And the vector voltage drop Vr across the resistor 5 becomes zero. Therefore, the input voltage of the ACR 3 is only the detection voltage of the bus voltage, and the voltage fluctuation rate has a small value as in the single operation.
【0006】[0006]
【発明が解決しようとする課題】従来の横流補償回路は
以上のように構成されているので、発電機1の並行運転
時において負荷が平衡中でも、負荷の無効電流に比例し
て、電圧が垂下するほか、差動変流器を接続した横流補
償装置では負荷並行時は電圧変動が小さいが、発電機ご
とに制御装置を分割配置すると、差動変流器を経由した
りリング回路の断線または短絡時等には、並行運転中の
発電機1の垂下特性の相違により、発電機1の損傷およ
び系統の動揺等を招くなどの課題があった。Since the conventional cross current compensation circuit is constructed as described above, even if the load is balanced during parallel operation of the generator 1, the voltage droops in proportion to the reactive current of the load. In addition, in a cross current compensator with a differential current transformer connected, the voltage fluctuation is small when the load is in parallel, but if the control device is divided and arranged for each generator, it may go through the differential current transformer or the ring circuit may be disconnected or At the time of a short circuit or the like, there were problems such as damage to the generator 1 and system sway due to the difference in drooping characteristics of the generator 1 during parallel operation.
【0007】この発明は上記のような課題を解消するた
めになされたもので、両発電機間の信号の縮減および断
線,短絡検出のため、シリアル伝送装置を用いて信号を
授受し、このシリアル伝送装置による信号遅れでも、安
定な同期投入を可能にし、すなわち、投入直後の横流を
抑制し、かつ系統の電圧,周波数の変動を少なくするこ
とができるとともに、並行運転時の安定な有効・無効電
力分担を可能にする発電機の並行運転システムを得るこ
とを目的とする。The present invention has been made in order to solve the above problems, and in order to reduce the signal between both generators and to detect disconnection and short circuit, a signal is transmitted and received using a serial transmission device, and this serial signal is transmitted and received. Even if the signal is delayed due to the transmission device, it is possible to perform stable synchronous closing, that is, to suppress the cross current immediately after the closing and reduce the fluctuations of the voltage and frequency of the system, and to enable and disable the stable operation during parallel operation. The purpose is to obtain a parallel operation system of generators that enables sharing of electric power.
【0008】[0008]
【課題を解決するための手段】この発明に係る発電機の
並行運転システムは、同期投入開始と同時に横流補償回
路の動作セットにより、各発電機の電圧,周波数を基準
値に調整した後、各発電機の位相合致点で、同期投入用
の遮断器を投入し、同期投入後は並行運転中の発電機の
有効・無効電力を分担させる端末制御装置を設け、該端
末制御装置により同期投入後の母線の電圧,周波数を一
定に制御するため、シリアル伝送装置に、各端末制御装
置間で相手側発電機の電圧,周波数および有効・無効電
力を授受させるようにしたものである。A parallel operation system for a generator according to the present invention is arranged such that the voltage and frequency of each generator are adjusted to a reference value by an operation set of a cross current compensating circuit at the same time as the start of synchronous operation. At the phase matching point of the generator, the circuit breaker for synchronous closing is turned on, and after the synchronous turning on, the terminal control device that shares the active / reactive power of the generator in parallel operation is provided, and after the terminal control device turns on the synchronous In order to constantly control the voltage and frequency of the busbar, the serial transmission device transmits and receives the voltage, frequency and active / reactive power of the counterpart generator between the terminal control devices.
【0009】[0009]
【作用】この発明における端末制御装置は、同期投入開
始と同時に、横流補償回路に発電機の無効電力増幅で電
圧が垂下する特性にセットさせ、また、同期投入時の電
圧,周波数の動揺防止のため、投入前に両発電機の電
圧,周波数を基準値に調整した後、これらの両発電機の
位相合致点で遮断器を投入させ、また、投入後は、有効
・無効電力の分担を行わせる。In the terminal control device according to the present invention, at the same time when the synchronization is started, the cross current compensation circuit is set to the characteristic that the voltage droops due to the reactive power amplification of the generator, and the fluctuation of the voltage and frequency at the time of the synchronization is prevented. Therefore, after adjusting the voltage and frequency of both generators to the reference value before turning on, the circuit breaker is turned on at the phase matching point of these two generators, and after the turning on, sharing of active / reactive power is performed. Let
【0010】[0010]
【実施例】以下、この発明の一実施例を図について説明
する。図1において、1a,1bは発電機、2a,2b
は発電機1a,1bを駆動する原動機、2c,2dは周
波数制御用のガバナモータ、3a,3bは励磁巻線1
c,1dに電圧制御された励磁電流を供給するAVR、
4a,4bは電圧検出変圧器、5a,5bは横流補償用
の抵抗器、6a,6bは負荷電流検出用の変流器、7
a,7bはACB、7c,7dはACB7a,7bの補
助接点、8a,8bは各発電機1a,1bの出力系統電
圧を検出する電圧検出回路、9a,9bは同じく出力系
統周波数を検出する周波数検出回路、10a,10bは
同じく各出力系統周波数の有効電力および無効電力を検
出する有効・無効電力回路である。DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, 1a and 1b are generators, 2a and 2b
Is a prime mover driving the generators 1a and 1b, 2c and 2d are governor motors for frequency control, and 3a and 3b are excitation windings 1.
AVR that supplies a voltage-controlled excitation current to c and 1d,
4a and 4b are voltage detection transformers, 5a and 5b are resistors for cross current compensation, 6a and 6b are current transformers for load current detection, and 7a.
a and 7b are ACBs, 7c and 7d are auxiliary contacts of ACBs 7a and 7b, 8a and 8b are voltage detection circuits that detect the output system voltage of the generators 1a and 1b, and 9a and 9b are frequencies that also detect the output system frequency. Similarly, the detection circuits 10a and 10b are active / reactive power circuits that detect active power and reactive power of each output system frequency.
【0011】また、11a,11bは各検出回路8a,
8b,9a,9b,10a,10bで検出されたアナロ
グデータをデジタル変換するアナログ入力回路、12
a,12bは各種演算を行う演算回路、13a,13b
は演算回路12a,12bの結果を受けて、ACB7
a,7b,AVR3a,3b,ガバナモータ2a,2b
の各制御用信号を出力するデジタル出力回路、14a,
14bは相手の演算回路12a,12b間で信号を授受
するシリアル伝送装置、15a,15bは電圧検出回路
8a,8b,周波数検出回路9a,9b,有効・無効電
力検出回路10a,10b,アナログ入力回路11a,
1b,演算回路12a,12b,デジタル出力回路13
a,13bを含む端末制御装置である。ここで、20
a,20bは界磁巻線1c,1d,AVR3a,3b,
抵抗器5a,5b,電圧検出用変圧器4a,4b,変流
器6a,6bからなる横流補償回路である。また、図2
は図1の構成のもとでの各系統における無効電力対電圧
の特性図であり、図3はこの発明の一実施例による制御
動作のフローチャートである。Further, 11a and 11b are detection circuits 8a and
An analog input circuit for converting the analog data detected by 8b, 9a, 9b, 10a and 10b into a digital signal, 12
a and 12b are arithmetic circuits for performing various arithmetic operations, and 13a and 13b.
Receives the results of the arithmetic circuits 12a and 12b, and outputs ACB7
a, 7b, AVR 3a, 3b, governor motor 2a, 2b
A digital output circuit for outputting each control signal of
14b is a serial transmission device for exchanging signals between the other arithmetic circuits 12a and 12b, and 15a and 15b are voltage detection circuits 8a and 8b, frequency detection circuits 9a and 9b, active / reactive power detection circuits 10a and 10b, and analog input circuit. 11a,
1b, arithmetic circuits 12a and 12b, digital output circuit 13
It is a terminal control device including a and 13b. Where 20
a and 20b are field windings 1c and 1d, AVRs 3a and 3b,
It is a cross current compensation circuit including resistors 5a and 5b, voltage detection transformers 4a and 4b, and current transformers 6a and 6b. In addition, FIG.
3 is a characteristic diagram of reactive power vs. voltage in each system under the configuration of FIG. 1, and FIG. 3 is a flowchart of control operation according to one embodiment of the present invention.
【0012】次に動作について説明する。まず、各発電
機1a,1bの出力系統の電圧,周波数,有効・無効電
力は各検出回路8a,8b,9a,9b,10a,10
bで検出され、アナログ入力回路11a,11bを経由
し、演算回路12a,12bに入力される。また、互い
に他の発電機1a,1bの上記データはシリアル伝送装
置14a,14bを介して演算回路12a,12bにそ
れぞれ入力される(ステップST1)。また、各発電機
1a,1bが単独か並行かを、ACB7a,7bの補助
接点7c,7dの状態に応じた信号にもとづいて、演算
回路12a,12bで判断する(ステップST2)。演
算回路12a,12bで単独と判断した場合には、デジ
タル出力回路13a,13bのリレー13c,13d
で、抵抗器5a,5bを短絡し、電圧垂下をほぼ零とす
る(ステップST3)。Next, the operation will be described. First, the voltage, frequency, active / reactive power of the output system of each generator 1a, 1b is detected by each detection circuit 8a, 8b, 9a, 9b, 10a, 10
It is detected by b and is input to the arithmetic circuits 12a and 12b via the analog input circuits 11a and 11b. The data of the other generators 1a and 1b are input to the arithmetic circuits 12a and 12b via the serial transmission devices 14a and 14b, respectively (step ST1). Further, the arithmetic circuits 12a and 12b determine whether each of the generators 1a and 1b is independent or parallel, based on the signals corresponding to the states of the auxiliary contacts 7c and 7d of the ACBs 7a and 7b (step ST2). When the arithmetic circuits 12a and 12b determine that they are independent, the relays 13c and 13d of the digital output circuits 13a and 13b are used.
Then, the resistors 5a and 5b are short-circuited so that the voltage droop becomes almost zero (step ST3).
【0013】さらに、この状態で、演算回路12a,1
2bは各検出回路8a,8b,9a,9bにより検出さ
れた電圧,周波数を内部基準値と比較し、この比較結果
をその内部基準値とするようデジタル出力回路13a,
13bを経由し、AVR3a,3bおよびガバナモータ
2c,2dを制御する(ステップST4)。このため、
電圧特性は図2のV1 のようにほぼ一定となる。Further, in this state, the arithmetic circuits 12a, 1
2b compares the voltage and frequency detected by each detection circuit 8a, 8b, 9a, 9b with an internal reference value, and the digital output circuit 13a, so that the comparison result is the internal reference value.
AVRs 3a, 3b and governor motors 2c, 2d are controlled via 13b (step ST4). For this reason,
The voltage characteristic is almost constant like V 1 in FIG.
【0014】次に、並行運転動作について、ACB7a
を同期投入する場合について説明する。まず、並行運転
開始信号(図示せず)を出力し、並行運転開始と判定さ
れると(ステップST5)、各横流補償回路をセットす
る。すなわち、補助接点7c,7dを開にし、AVR3
a,3bの入力回路に抵抗器5a,5bを直列に接続
し、図2のV2 に示すように、発電機1a,1bに電圧
垂下特性をつける(ステップST6)。このとき、発電
機1a,1bに無効電力負荷があれば、電圧が垂下す
る。そこで、並行運転(同期投入)後に系統の電圧,周
波数に変動が生じないよう、同期投入前に各々独立に発
電機1a,1bの電圧および周波数を、図2のV3 に示
すように基準値に制御する(ステップST7,ST
8)。この場合、周波数については、ABC投入側の
(低負荷側)の発電機1aでは基準値より若干高めと
し、両機の位相合わせおよび投入後の逆電力発生防止を
容易とする。Next, regarding the parallel operation, the ACB 7a
The case of synchronizing input will be described. First, a parallel operation start signal (not shown) is output, and when it is determined that parallel operation has started (step ST5), each cross current compensation circuit is set. That is, the auxiliary contacts 7c and 7d are opened and the AVR3
Resistors 5a and 5b are connected in series to the input circuits of a and 3b, and voltage drooping characteristics are given to the generators 1a and 1b as shown by V 2 in FIG. 2 (step ST6). At this time, if the generators 1a and 1b have a reactive power load, the voltage droops. Therefore, the voltages and frequencies of the generators 1a and 1b are independently set to the reference values as shown by V 3 in FIG. 2 before the synchronization is input so that the system voltage and the frequency do not change after the parallel operation (synchronization). Control (step ST7, ST
8). In this case, the frequency of the generator 1a on the ABC input side (low load side) is set slightly higher than the reference value to facilitate phase matching of both units and prevention of reverse power generation after input.
【0015】次に、この状態で両発電機1a,1bの位
相が合致するか否かを判定して(ステップST9)、合
致するとACB7aの投入信号を出力し(ステップST
10)、並行運転を開始する(ステップST11)。A
CB7aの閉後の瞬間は両機の電圧,周波数はほぼ一致
し、また、横流補償回路もセットされているため、従来
技術に示す原理により、同時に横流補償が開始され、安
定な無効電力分担が行われる。Next, in this state, it is judged whether or not the phases of the two generators 1a and 1b match (step ST9), and if they match, the ACB 7a closing signal is output (step ST9).
10) The parallel operation is started (step ST11). A
At the moment after CB7a is closed, the voltage and frequency of both units are almost the same, and the cross current compensation circuit is also set. Therefore, according to the principle shown in the prior art, cross current compensation is started at the same time, and stable reactive power sharing is performed. Be seen.
【0016】この場合、従来技術で示されるACB7a
の閉後の横流補償回路セットでは、両発電機1a,1b
間のシリアル伝送の遅れにより、両発電機1a,1b間
の横流補償回路セットに差が生じ、例えば図2におい
て、発電機1aはACB7aの閉で即セットされるた
め、V2 の特性となるが、発電機1bはシリアル伝送で
遅れ、V1 の特性のまま、ACB7aが閉となるケース
もあり、発電機1bに過大な無効電力が流れることとな
る。本発明はこれらを防止できる。In this case, the ACB 7a shown in the prior art is used.
In the cross current compensation circuit set after closing, the two generators 1a, 1b
Due to a delay in serial transmission between the two generators 1a and 1b, a difference occurs in the cross current compensation circuit set. For example, in FIG. 2, the generator 1a is immediately set when the ACB 7a is closed, so that the characteristic becomes V 2. However, there is a case where the generator 1b is delayed by serial transmission and the ACB 7a is closed while keeping the characteristic of V 1 , and excessive reactive power flows to the generator 1b. The present invention can prevent these.
【0017】また、ACB7aが閉じ、シリアル伝送に
よる安定した制御が可能な時間後は、並行運転中の他の
発電機1bの電圧,周波数,有効・無効電力をシリアル
伝送装置14a,14bで入力し、電圧,周波数につい
ては、演算回路12a,12bで両発電機1a,1bの
電圧,周波数の平均値が内部設定値(基準値)と等しく
なるように制御する。また、有効・無効電力について
は、演算回路12a,12bで、発電機1a,1bの有
効・無効電力は演算により設定値(基準値)、すなわ
ち、当該発電機1a,1bの有効電力は、設定有効電力
=全有効電力負荷×(当該機定格有効電力/並行運転中
の発電機の定格有効電力の総和)となるようにガバナモ
ータ2c,2dを、一方、発電機1a,1bの無効電力
は、設定無効電力=全無効電力負荷×(当該機の定格無
効電力/並行運転中の発電機の定格無効電力の総和)と
なるようにAVR3aを、それぞれデジタル出力回路1
3aを経由して制御する(ステップST12)。なお、
上記実施例では両発電機1a,1bの情報交換を行うの
にシリアル伝送装置14a,14bを用いる場合を示し
たが、情報交換ができれば他の装置を使用してもよい。After the ACB 7a is closed and a time period during which stable control by serial transmission is possible, the voltage, frequency, and active / reactive power of another generator 1b in parallel operation are input by the serial transmission devices 14a and 14b. The voltage and frequency are controlled by the arithmetic circuits 12a and 12b so that the average value of the voltage and frequency of both generators 1a and 1b becomes equal to the internal set value (reference value). In addition, regarding the active / reactive power, in the arithmetic circuits 12a and 12b, the active / reactive power of the generators 1a and 1b is set by calculation (reference value), that is, the active power of the generators 1a and 1b is set. Active power = total active power load x (total rated active power of the machine / sum of rated active power of generators operating in parallel), while the reactive power of the generators 1a, 1b is Each of the AVR 3a is set to the digital output circuit 1 so that the set reactive power = total reactive power load × (total rated reactive power of the machine / total rated reactive power of the generators in parallel operation).
Control is performed via 3a (step ST12). In addition,
Although the serial transmission devices 14a and 14b are used for exchanging information between the two generators 1a and 1b in the above embodiment, other devices may be used as long as the information can be exchanged.
【0018】[0018]
【発明の効果】以上のように、この発明によれば同期投
入開始と同時に横流補償回路の動作セットにより、各発
電機の電圧,周波数を基準値に調整した後、各発電機の
位相合致点で、同期投入用の遮断器を投入し、同期投入
後は並行運転中の発電機の有効・無効電力を分担させる
端末制御装置とを設け、該端末制御装置により同期投入
後の母線の電圧,周波数を一定に制御するため、シリア
ル伝送装置に、各端末制御装置間で相手側発電機の電
圧,周波数および有効・無効電力を授受させるように構
成したので、遮断器の同期投入時のシリアル伝送等の遅
れによる横流の増大、また系統の電圧,周波数の動揺を
防止でき、両発電機間の完全な同期が必要でない運転装
置どうしで、分散制御による安定な並行運転を実現でき
るものが得られる効果がある。As described above, according to the present invention, the voltage and frequency of each generator are adjusted to the reference values by the operation set of the cross current compensation circuit at the same time when the synchronous closing is started, and then the phase matching point of each generator is adjusted. Then, a circuit breaker for synchronous closing is turned on, and after the synchronous turning on, a terminal control device for sharing the active / reactive power of the generator in parallel operation is provided, and the terminal control device causes the voltage of the bus bar after the synchronous turning on, In order to control the frequency at a constant level, the serial transmission device is configured to send and receive the voltage, frequency, and active / reactive power of the other generator between each terminal control device. It is possible to obtain a stable parallel operation by decentralized control between operating devices that can prevent cross current increase due to delays such as delays, fluctuations in the system voltage and frequency, and do not require complete synchronization between both generators. Effect There is.
【図1】この発明の一実施例による発電機の並行運転シ
ステムを示す回路図である。FIG. 1 is a circuit diagram showing a parallel operation system of a generator according to an embodiment of the present invention.
【図2】図1の構成のもとでの各発電機の無効電力対出
力電圧の関係を示す特性図である。FIG. 2 is a characteristic diagram showing a relationship between reactive power and output voltage of each generator under the configuration of FIG.
【図3】この発明の一実施例による発電機の並行運転制
御の動作手順を示すフローチャートである。FIG. 3 is a flowchart showing an operation procedure of parallel operation control of the generator according to the embodiment of the present invention.
【図4】従来の横流補償回路を示す回路図である。FIG. 4 is a circuit diagram showing a conventional cross current compensation circuit.
【図5】従来の横流補償回路各部の電圧,電流を示すベ
クトル図である。FIG. 5 is a vector diagram showing voltages and currents in respective parts of a conventional cross current compensation circuit.
1a 発電機 1b 発電機 7a 遮断器 7b 遮断器 14a シリアル伝送装置 14b シリアル伝送装置 15a 端末制御装置 15b 端末制御装置 20a 横流補償回路 20b 横流補償回路 1a Generator 1b Generator 7a Circuit breaker 7b Circuit breaker 14a Serial transmission device 14b Serial transmission device 15a Terminal control device 15b Terminal control device 20a Cross current compensation circuit 20b Cross current compensation circuit
Claims (1)
電機の負荷電流に比例した横流補償用の電圧を、上記発
電機の界磁巻線に供給する横流補償回路と、同期投入開
始と同時に上記横流補償回路の動作セットにより、各発
電機の電圧,周波数を基準値に調整した後、各発電機の
位相合致点で、同期投入用の遮断器を投入し、同期投入
後は並行運転中の発電機の有効・無効電力を分担させる
端末制御装置と、該端末制御装置により同期投入後の母
線の電圧,周波数を一定に制御するため、各端末制御装
置間で相手側発電機の電圧,周波数および有効・無効電
力を授受するシリアル伝送装置とを備えた発電機の並行
運転システム。Claim: What is claimed is: 1. A cross-current compensating circuit for supplying a cross-current compensation voltage proportional to load currents of two generators that are operated in parallel by synchronous closing, to a field winding of the generator. Simultaneously with the start of synchronous closing, after adjusting the voltage and frequency of each generator to the reference value by the operation set of the cross current compensation circuit, at the phase matching point of each generator, close the circuit breaker for synchronous closing and synchronize. After the power is turned on, the terminal control device that shares the active / reactive power of the generators that are operating in parallel with each other and the voltage and frequency of the busbar after the synchronous power is turned on are controlled to be constant by the terminal control device. A parallel generator system with a serial generator that transmits and receives the voltage, frequency and active / reactive power of the side generator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3180468A JP2716602B2 (en) | 1991-06-26 | 1991-06-26 | Generator parallel operation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3180468A JP2716602B2 (en) | 1991-06-26 | 1991-06-26 | Generator parallel operation system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH053632A true JPH053632A (en) | 1993-01-08 |
JP2716602B2 JP2716602B2 (en) | 1998-02-18 |
Family
ID=16083752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3180468A Expired - Fee Related JP2716602B2 (en) | 1991-06-26 | 1991-06-26 | Generator parallel operation system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2716602B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007166897A (en) * | 2005-12-16 | 2007-06-28 | General Electric Co <Ge> | Power balancing of multiple synchronized generator |
EP2128973A1 (en) * | 2008-05-27 | 2009-12-02 | ABB Schweiz AG | Starting device for at least two synchronous machines |
KR101339107B1 (en) * | 2012-06-19 | 2014-01-02 | 국방과학연구소 | Parallel operative generator and parallel operative generating system having the same and a method of parallel operating generator |
JP2018500870A (en) * | 2014-12-19 | 2018-01-11 | マシイネンフアブリーク・ラインハウゼン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング | Selective parallel operation method for measuring / controlling devices |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57208829A (en) * | 1981-06-16 | 1982-12-22 | Mitsubishi Electric Corp | Cross current compensating device |
JPH01283024A (en) * | 1988-05-02 | 1989-11-14 | Mitsubishi Electric Corp | Parallel operation device |
-
1991
- 1991-06-26 JP JP3180468A patent/JP2716602B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57208829A (en) * | 1981-06-16 | 1982-12-22 | Mitsubishi Electric Corp | Cross current compensating device |
JPH01283024A (en) * | 1988-05-02 | 1989-11-14 | Mitsubishi Electric Corp | Parallel operation device |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007166897A (en) * | 2005-12-16 | 2007-06-28 | General Electric Co <Ge> | Power balancing of multiple synchronized generator |
EP2128973A1 (en) * | 2008-05-27 | 2009-12-02 | ABB Schweiz AG | Starting device for at least two synchronous machines |
CN101594102A (en) * | 2008-05-27 | 2009-12-02 | Abb瑞士有限公司 | The starting device that is used at least two synchronous machines |
JP2009291063A (en) * | 2008-05-27 | 2009-12-10 | Abb Schweiz Ag | Starter for at least two synchronous machines |
US8102132B2 (en) | 2008-05-27 | 2012-01-24 | Abb Schweiz Ag | Starting apparatus for at least two synchronous machines |
KR101339107B1 (en) * | 2012-06-19 | 2014-01-02 | 국방과학연구소 | Parallel operative generator and parallel operative generating system having the same and a method of parallel operating generator |
JP2018500870A (en) * | 2014-12-19 | 2018-01-11 | マシイネンフアブリーク・ラインハウゼン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング | Selective parallel operation method for measuring / controlling devices |
Also Published As
Publication number | Publication date |
---|---|
JP2716602B2 (en) | 1998-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5729059A (en) | Digital no-break power transfer system | |
US6239511B1 (en) | Power station having a generator which is driven by a turbine, as well as a method for operating such a power station | |
JPS6071000A (en) | Voltage regulator | |
JPS5918933B2 (en) | Rotating electric machine system for asynchronous linkage | |
JPH037094A (en) | Variable speed driver | |
JPH053632A (en) | Parallel operation system for generator | |
JPH02197216A (en) | Method and circuit for relectively cutting off faulty channel of power system | |
JPH10313595A (en) | Pumped storage power generation facility | |
EP2472346B1 (en) | Engine system | |
US6919712B1 (en) | Excitation control device and excitation control method | |
US10199828B2 (en) | Phase compensation system | |
WO2009139078A1 (en) | Power generator voltage stabilizing system | |
US4127805A (en) | Device for connecting tuned power transmission line to a.c. network | |
JPH0746763A (en) | Reactive power regulator | |
JPH05146075A (en) | Power flow controller | |
JPS6035895B2 (en) | Parallel operation device for alternator | |
JP2000014197A (en) | Synchronizing apparatus for synchronous motor and its synchronization method | |
Dormán | Automatic Control Techniques Used on 64-Meter-Diameter Antenna Power Systems | |
SU1327229A1 (en) | Method of automatic starting and self=starting of electric motors in emergency conditions | |
JP3107594B2 (en) | Control device for winding induction machine | |
RU1831747C (en) | Generator source of ac | |
US1296287A (en) | Phase-converting system. | |
SU1092691A1 (en) | Method of controlling synchronous generator when energizing and device for effecting same | |
JP2763170B2 (en) | Control device for winding induction machine | |
SU782062A1 (en) | Synchronized induction electric motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071107 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081107 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081107 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091107 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091107 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101107 Year of fee payment: 13 |
|
LAPS | Cancellation because of no payment of annual fees |