JPH053544B2 - - Google Patents

Info

Publication number
JPH053544B2
JPH053544B2 JP59120213A JP12021384A JPH053544B2 JP H053544 B2 JPH053544 B2 JP H053544B2 JP 59120213 A JP59120213 A JP 59120213A JP 12021384 A JP12021384 A JP 12021384A JP H053544 B2 JPH053544 B2 JP H053544B2
Authority
JP
Japan
Prior art keywords
voltage
resistor
gas
fuel ratio
detection element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59120213A
Other languages
Japanese (ja)
Other versions
JPS60263846A (en
Inventor
Akio Takami
Toshitaka Matsura
Toshuki Ishihara
Tetsupei Ookawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP12021384A priority Critical patent/JPS60263846A/en
Publication of JPS60263846A publication Critical patent/JPS60263846A/en
Publication of JPH053544B2 publication Critical patent/JPH053544B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/122Circuits particularly adapted therefor, e.g. linearising circuits

Description

【発明の詳細な説明】 (技術分野) 本発明は、金属酸化物半導体ガス検出素子を用
いた車載型内燃機関の空燃比検知装置、より詳し
くは同一基板にガス検出検出素子と、これを加熱
するための正の抵抗温度係数を有する金属質発熱
抵抗体とを備えたセンサプローブを用い、且つ上
記発熱抵抗体用の電源とする、発電機レギユレー
タの出力電圧によつて充電される車載バツテリー
の電圧を、上記発熱抵抗体に直列接続する抵抗に
よつて分割し該分割電圧を上記ガス検出素子に印
加するようにした車載型内燃機関の空燃比検知装
置に関する。
Detailed Description of the Invention (Technical Field) The present invention relates to an air-fuel ratio detection device for an on-vehicle internal combustion engine using a metal oxide semiconductor gas detection element, and more specifically, to an air-fuel ratio detection device for a vehicle-mounted internal combustion engine using a metal oxide semiconductor gas detection element, and more specifically, a gas detection detection element on the same substrate and A sensor probe equipped with a metallic heating resistor having a positive temperature coefficient of resistance is used, and an on-vehicle battery charged by the output voltage of a generator regulator is used as a power source for the heating resistor. The present invention relates to an air-fuel ratio detection device for a vehicle-mounted internal combustion engine, in which a voltage is divided by a resistor connected in series with the heating resistor and the divided voltage is applied to the gas detection element.

(従来技術) 従来より被測定ガス中の特定ガスの存在、ある
いは、その濃度を検出するためのガス検出素子に
SnO2、ZnO、TiO2、CoO等の金属酸化物半導体
を用い、ガスが接触した場合にその電気抵抗が変
化するといつた特性性を利用してガスを検出する
ものであり、この種のガスセンサにおいては、上
記ガス検出素子の活性を高めるため、あるいは汚
れを取り除くためにガス検出素子加熱用のヒータ
が備えられることが多い。しかし一方では上記ガ
ス検出素子に所定の定電圧を印加し、その抵抗変
化を比較用直列抵抗の両端に生じる電圧変化によ
つて検出することが行われているが、それにはヒ
ータ用電源回路とは別の電源回路を必要とした。
(Prior art) Conventionally, gas detection elements have been used to detect the presence or concentration of a specific gas in a gas to be measured.
This type of gas sensor detects gas by using metal oxide semiconductors such as SnO 2 , ZnO, TiO 2 , CoO, etc., and utilizes the characteristic that the electrical resistance changes when gas comes into contact with it. In many cases, a heater for heating the gas detection element is provided in order to increase the activity of the gas detection element or to remove dirt. However, on the other hand, a predetermined constant voltage is applied to the gas detection element, and the change in resistance is detected by the voltage change occurring across a series resistor for comparison. required a separate power supply circuit.

更に、以上のような抵抗変化を検出するガス検
出素子を使う場合のもう一つの問題として、ガス
検出素子自身の抵抗値に温度依存性を有する点が
挙げられる。即ち測定された抵抗値にはガス濃度
によるものと、温度によるものとが混在してお
り、広い温度範囲で使用する場合、検出精度を悪
くする。このため、ガス検出素子に加えて抵抗値
の温度依存性が類似する温度補償用抵抗素子を使
用し、温度依存性を小さくすることがなされてい
るが、おのずとコストは高くなる。そこで近年、
電源回路を少なくすると共に更には上記温度依存
性の補償に有利となるように、分圧抵抗を用いて
ヒータに印加される電源電圧を分圧し、ガス検出
素子用の電源とすることが考えられている。第9
図は車載内燃機関の空燃比検知装置の従来の回路
の例であるが、この場合には、バツテリ電圧がレ
ギユレータ出力の変動により変化することにより
センサの出力Voも変化するのに対し、コンパレ
ータCの基準電圧Vsは一定のため、コンパレー
タCの出力をフイードバツク回路に入れエンジン
排ガスを制御すると、第7図のdのようにバツテ
リBATの電圧変動に応じて制御空燃比は大巾に
シフトしてしまうという問題があることが判つ
た。即ち3元触媒を効率よく作動させるためには
λを1±0.005におさめることが望ましいのに対
し、この場合には1±0.008の範囲でシフトして
しまい問題があることが判つた。
Furthermore, another problem when using a gas detection element that detects a change in resistance as described above is that the resistance value of the gas detection element itself is temperature dependent. That is, the measured resistance value includes both gas concentration and temperature factors, which deteriorates detection accuracy when used in a wide temperature range. Therefore, in addition to the gas detection element, a temperature compensating resistance element whose resistance value is similar in temperature dependence has been used to reduce the temperature dependence, but this naturally increases the cost. Therefore, in recent years,
In order to reduce the number of power supply circuits and also to be advantageous in compensating for the above-mentioned temperature dependence, it is conceivable to divide the power supply voltage applied to the heater using a voltage dividing resistor and use it as a power supply for the gas detection element. ing. 9th
The figure shows an example of a conventional circuit for an air-fuel ratio detection device for an in-vehicle internal combustion engine. Since the reference voltage Vs is constant, when the output of the comparator C is input into the feedback circuit to control the engine exhaust gas, the controlled air-fuel ratio shifts widely in response to the voltage fluctuation of the battery BAT, as shown in d in Figure 7. It turned out that there was a problem with it. That is, in order to operate the three-way catalyst efficiently, it is desirable to keep λ within 1±0.005, but in this case, it has been found that there is a problem as it shifts within the range of 1±0.008.

なお、上記第9図において、SPはセンサープ
ローブを示し、RTは一つの基板に設けた例えば
チタニアのガス検出素子、RHは同一基板もしく
は担体中に上記ガス検出素子に接近して設けたヒ
ータ用の正の抵抗温度係数をもつ金属質発熱抵抗
体(例えば白金やタングステン等の高融点金属が
これに該当する)、R1は上記発熱抵抗体と直列の
電圧分割用抵抗を示し、ここでは上記基板中の比
較的温度変化の少ない部分に設けられたものを示
す。Sはスイツチングトランジスタである。
In Fig. 9 above, SP indicates a sensor probe, R T indicates a gas detection element made of titania, for example, provided on one substrate, and R H indicates a gas detection element provided close to the above gas detection element on the same substrate or carrier. A metallic heating resistor with a positive temperature coefficient of resistance for heaters (for example, high melting point metals such as platinum and tungsten), R 1 is a voltage dividing resistor in series with the heating resistor, and here In the following, a device provided in a portion of the substrate where the temperature changes relatively little is shown. S is a switching transistor.

(発明の目的) 本発明の目的は、簡単な回路構成によつて、且
つ特別に温度補償用素子を設けることなく全運転
範囲で精度のよい空燃比の検出ができるヒータ付
センサプローブを用いた車載内燃機関の空燃比検
知装置の提供にある。
(Objective of the Invention) The object of the present invention is to use a sensor probe with a heater that can accurately detect the air-fuel ratio over the entire operating range with a simple circuit configuration and without the need for a special temperature compensation element. The present invention provides an air-fuel ratio detection device for a vehicle-mounted internal combustion engine.

(発明の構成) かかる目的を達するための本発明は、セラミツ
ク材からなる基板もしくは担体に、ガス成分によ
つて抵抗値が変化する金属酸化物半導体ガス検出
素子と、該ガス検出素子を加熱するための金属質
発熱抵抗体とを少なくとも設けてなるガスセンサ
プローブを用いると共に、上記発熱抵抗体と直列
に抵抗を接続して該発熱抵抗体に印加される電源
電圧を分割し、該分割した電圧を上記ガス検出素
子と抵抗との直列回路に印加し、該直列回路の接
続点電圧を出力電圧として、コンパレータの一方
の入力端子に入力するようにした車載内燃機関の
空燃比検知装置において、上記コンパレーターの
他方の入力端子に入力する基準電圧を、発電機レ
ギユレータの出力によつて充電されかつ上記発熱
抵抗体用電源とされるバツテリーに対してツエナ
ーダイオードを介して接続される抵抗回路の分割
電圧によつて与えることを特徴とする車載内燃機
関の空燃比検知装置である。
(Structure of the Invention) To achieve the above object, the present invention includes a metal oxide semiconductor gas detection element whose resistance value changes depending on gas components, and a metal oxide semiconductor gas detection element whose resistance value changes depending on the gas component, on a substrate or carrier made of a ceramic material, and which heats the gas detection element. A gas sensor probe is used, which is provided with at least a metallic heat generating resistor, and a resistor is connected in series with the heat generating resistor to divide the power supply voltage applied to the heat generating resistor, and the divided voltage is In the air-fuel ratio detection device for an on-vehicle internal combustion engine, the voltage is applied to a series circuit of the gas detection element and the resistor, and the connection point voltage of the series circuit is input as an output voltage to one input terminal of the comparator. The reference voltage input to the other input terminal of the generator is divided into voltages of a resistor circuit connected via a Zener diode to a battery charged by the output of the generator regulator and used as a power source for the heating resistor. This is an air-fuel ratio detection device for an on-vehicle internal combustion engine, characterized in that the air-fuel ratio is detected by:

〔実施例〕〔Example〕

以下に本発明を実施例を挙げて図面と共に説明
する。
The present invention will be described below with reference to examples and drawings.

第5図は本実施例のヒータ付きガスセンサープ
ローブの破断面図を示す。同図において、1は後
により詳細に説明するようにガス検出素子および
ヒータ等を担持したセラミツク板状担体、、3は
セラミツク担体を把持すると共に、本センサープ
ローブを内燃機関排ガス管に取り付けるための筒
状に形成された主体金具、5は主体金具3の排ガ
スに触れる側の先端部3aに取り付けられ、セラ
ミツク担体1のガス検出部を保護するためのプロ
テクタを示し、プロテクタにはガスの通り孔5a
…が設けられている。主体金具3の周囲には排ガ
ス管取り付け用の雄ねじ部3bが刻設されてお
り、中空部にはスペーサ7、充填粉末9およびガ
ラスシール11を介してセラミツク担体1が把持
されている。ここでガラスシール11はセラミツ
ク担体1の各端子1aないし1cもあわせ固定す
るためのものである。そして各端子1aないし1
cは出力取り出し用リード線13aないし13c
に夫々ろう付けによつて接続され、検出信号およ
び電源電圧を出力又は入力するようされている。
15は主体金具3にろう付けによつて固定された
外筒17内に嵌入され、加締17aにより固定さ
れたシリコンゴム栓であつて、上記端子1aない
し1cと出力取り出し用リード線13aないし1
3cとの接続部を絶縁保護すると共にセンサー内
への水や油の侵入を防止するためのものである。
FIG. 5 shows a broken cross-sectional view of the heater-equipped gas sensor probe of this embodiment. In the figure, 1 is a ceramic plate-shaped carrier carrying a gas detection element, a heater, etc., as will be explained in more detail later, and 3 is a ceramic plate-like carrier for holding the ceramic carrier and for attaching this sensor probe to an internal combustion engine exhaust gas pipe. A cylindrical metal shell 5 indicates a protector attached to the tip 3a of the metal shell 3 on the side that comes into contact with exhaust gas to protect the gas detection part of the ceramic carrier 1, and the protector has gas passage holes. 5a
...is provided. A male threaded portion 3b for attaching an exhaust gas pipe is cut around the metal shell 3, and the ceramic carrier 1 is held in the hollow portion via a spacer 7, a filler powder 9, and a glass seal 11. Here, the glass seal 11 is for also fixing each terminal 1a to 1c of the ceramic carrier 1 together. and each terminal 1a to 1
c is the output lead wire 13a to 13c
The detection signal and the power supply voltage are output or inputted to each other by brazing.
Reference numeral 15 denotes a silicone rubber plug that is fitted into an outer cylinder 17 fixed to the main metal fitting 3 by brazing and fixed by crimping 17a, and is connected to the terminals 1a to 1c and the output lead wires 13a to 1.
This is to insulate and protect the connection part with 3c and to prevent water and oil from entering the sensor.

次にセラミツク担体1を、第6図に示す。例え
ばアルミナのグリーンシート21上にはヒータと
なる、例えば白金のヒータパターン25(RH
と電圧分割用抵抗の白金パターン31(R1)で
形成され、上記ヒータパターン25(RH)とこ
れに続く電圧分割用抵抗パターン31(R1)と
の直列回路の両端は接続用パターン35aと接続
用パターン35bに至つており、またヒータパタ
ーン25と電圧分割抵抗パターン31との間から
分岐して他端が後述する感ガス体の一方の電極と
される分割電圧取出し回路パターン29、および
一端が感ガス体の他方の電極とされ他端は第3の
接続端部を形成するパターン35cに至る出力取
り出し回路パターン27とが形成され、上記接続
端部35aないし35c上に、例えば短い白金線
からなる各端子1aないし1cが配設され、つい
で開口37が打抜きによつて設けられているグリ
ーンシート23が上から被せられ、熱圧着された
のち焼結一体化されてある。次いでチタニアの感
ガス41(RT)をペースト塗布後焼き付けする
方法で形成して、セラミツク担体が完成され、主
体金具3の中空部にスペーサー7にて第6図Aの
ローロの部分が把持される如くして固定される。
Next, the ceramic carrier 1 is shown in FIG. For example, on the green sheet 21 of alumina, there is a heater pattern 25 (R H ) made of platinum, which becomes a heater.
and a platinum pattern 31 (R 1 ) of a voltage dividing resistor, and both ends of the series circuit of the heater pattern 25 (R H ) and the following voltage dividing resistor pattern 31 (R 1 ) are connected to a connecting pattern 35a. and a connection pattern 35b, and a divided voltage extraction circuit pattern 29 which branches from between the heater pattern 25 and the voltage dividing resistor pattern 31 and whose other end serves as one electrode of a gas-sensitive body to be described later. An output take-out circuit pattern 27 is formed, one end of which is the other electrode of the gas-sensitive body, and the other end of which is connected to a pattern 35c forming a third connection end. Terminals 1a to 1c made of wires are arranged, and then a green sheet 23 having an opening 37 formed therein by punching is placed over it, thermocompression bonded, and then sintered and integrated. Next, a titania gas-sensitive gas 41 (R T ) is formed by applying a paste and then baking to complete the ceramic carrier, and the roller portion shown in FIG. 6A is held in the hollow part of the metal shell 3 with a spacer 7. It is fixed like this.

第1図は本発明の実施例ではないが参考例とし
ての装置の回路を示し、RHはヒータ抵抗21、
R1は電圧分割抵抗31、RTはガス検出素子41、
R2はガス検出素子RTと直列の比較抵抗、BATは
図示しないが発電機のレギユレータ出力端子に接
続されて充電される車載バツテリを示す。R4
R5は上記バツテリに接続された直列抵抗であり、
中間接続点はコンパレータCの一方の入力端に基
準電圧として入力される。
FIG. 1 shows a circuit of a device as a reference example although it is not an embodiment of the present invention, R H is a heater resistor 21,
R 1 is the voltage dividing resistor 31, R T is the gas detection element 41,
R 2 is a comparison resistor connected in series with the gas detection element RT , and BAT is an on-vehicle battery (not shown) that is connected to the generator's regulator output terminal and charged. R4 ,
R 5 is a series resistor connected to the battery above,
The intermediate connection point is input to one input terminal of comparator C as a reference voltage.

第9図の従来の回路においては、別の定電圧電
源より基準電圧を、第7図dに示すように取つて
いたものを同じBAT電源より基準電圧を取るこ
とにより基準電圧は第7図aのように変化する。
即ち基準電圧はバツテリ電圧の変動に対し、バツ
テリー電圧変動割合と同じ変動割合で変動する。
このため従来より問題とされた変動は少なくなり
制御空燃比λは、第8図aのようにバツテリー電
圧が11〜16Vの範囲で変化するときλ=1±
0.005となり従来dに比較してズレが半減する。
In the conventional circuit shown in Fig. 9, the reference voltage is taken from another constant voltage power supply as shown in Fig. 7d, but by taking the reference voltage from the same BAT power supply, the reference voltage is changed as shown in Fig. 7. It changes like a.
That is, the reference voltage changes at the same rate of change as the battery voltage change rate with respect to the change in battery voltage.
For this reason, the fluctuations that have been a problem in the past are reduced, and the controlled air-fuel ratio λ becomes λ=1± when the battery voltage changes in the range of 11 to 16V as shown in Figure 8a
The difference is 0.005, which reduces the deviation by half compared to the conventional d.

第2図は本発明の第1の実施例を示す。第2図
においては、バツテリーに接続する直列抵抗R6
R7に更にツエナーダイオードD1を挿入して構成
しており、基準電圧を第7図のbのように、バツ
テリ電圧の変動に対しバツテリ電圧変動割合より
大きい変動割合で変動するようにする。このよう
にすることにより制御空燃比λを第8図のbのよ
うに、より理想的に狭く押さえることができた。
FIG. 2 shows a first embodiment of the invention. In Figure 2, the series resistance R 6 connected to the battery,
A Zener diode D1 is further inserted in R7 , and the reference voltage is made to fluctuate at a larger rate than the battery voltage fluctuation rate with respect to battery voltage fluctuations, as shown in FIG. 7b. By doing this, it was possible to keep the control air-fuel ratio λ more ideally narrow, as shown in FIG. 8b.

第2の実施例を第3図に示す。図のように基準
電圧回路を発熱抵抗体用電源に一方の極が接続さ
れたツエナーダイオードD1と、一端が上記ツエ
ナーダイオードの他方の極に接続されると共に、
他端が定電圧源の電圧分割用抵抗直列回路R10
R11の分割点に接続された抵抗回路R8,R9とで構
成したものであり、発生基準電圧特性を第7図c
のようにした。この回路により同じようにフイー
ドバツク制御を行わせたところ、制御空燃比λは
第8図のcとなりbとほぼ同じであつたがbは下
限が11Vまでしか制御できなかつたのに対し、本
実施例においては10Vまで制御させることができ
た。
A second embodiment is shown in FIG. As shown in the figure, the reference voltage circuit is connected to a Zener diode D1 with one pole connected to the power supply for the heating resistor, and one end connected to the other pole of the Zener diode.
The other end is a voltage dividing resistor series circuit R 10 with a constant voltage source,
It consists of resistor circuits R 8 and R 9 connected to the dividing point of R 11 , and the generated reference voltage characteristics are shown in Figure 7c.
I did it like this. When similar feedback control was performed using this circuit, the controlled air-fuel ratio λ became c in Fig. 8, which was almost the same as b, but b could only be controlled up to a lower limit of 11V, whereas in this case In the example, it was possible to control up to 10V.

上記第2の実施例においてR10,R11からなる
直列回路は定電圧源に接続したが、これをバツテ
リBATに接続してもよい。また第4図に示すよ
うにツエナーダイオードと抵抗との直列回路を多
段に構成して発生基準電圧の特性を調整すること
もできる。
In the second embodiment, the series circuit consisting of R 10 and R 11 is connected to a constant voltage source, but it may also be connected to a battery BAT. Further, as shown in FIG. 4, the characteristics of the generated reference voltage can be adjusted by configuring a series circuit of Zener diodes and resistors in multiple stages.

なお、ここでフイードバツク制御は2lEFI制御
の3元触媒車を使用し、制御空燃比はラムダスキ
ヤンメーターで測定した。
Note that the feedback control here used a 2lEFI controlled three-way catalyst vehicle, and the controlled air-fuel ratio was measured with a lambda scan meter.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は参考例としての車載内燃機関の空燃比
検知装置、第2図、第3図は、本発明の車載内燃
機関の空燃比検知装置の第1及び第2の実施例の
回路を示す。第4図は本発明の他の実施例を示
す。第5図は上記参考例及び各実施例におけるセ
ンサプローブの要部破断面側面図、第6図は上記
参考例及び各実施例におけるセラミツク担体の正
面図、第7図は上記参考例及び各実施例及び従来
の装置におけるバツテリ電圧変動による基準電圧
変化の模様を示す図。第8図は上記参考例及び各
実施例及び従来の装置における各種運転条件下で
のバツテリー電圧変動に対する制御空燃比特性を
示す図である。第9図は車載内燃機関の空燃比検
知装置の従来の回路の例を示す。 RH……ヒータ抵抗、RT……ガス検出素子抵抗、
R1……電圧分割用抵抗、R2……直列抵抗、SP…
…センサプローブ、BAT……バツテリー、1…
…セラミツク板状担体、13a,13b,13c
……リード線、25(RH)……ヒータ回路、3
1(R1)……電圧分割用抵抗、27……出力取
出し回路、29……分割電圧取出し回路、41
(RT)……ガス検出素子。
FIG. 1 shows an air-fuel ratio detection device for a vehicle-mounted internal combustion engine as a reference example, and FIGS. 2 and 3 show circuits of first and second embodiments of the air-fuel ratio detection device for a vehicle-mounted internal combustion engine according to the present invention. . FIG. 4 shows another embodiment of the invention. Fig. 5 is a side view of the main part of the sensor probe in the above reference example and each example, with a broken section, Fig. 6 is a front view of the ceramic carrier in the above reference example and each example, and Fig. 7 is the above reference example and each example. FIG. 3 is a diagram showing patterns of reference voltage changes due to battery voltage fluctuations in an example and a conventional device. FIG. 8 is a diagram showing control air-fuel ratio characteristics with respect to battery voltage fluctuations under various operating conditions in the above reference example, each embodiment, and the conventional device. FIG. 9 shows an example of a conventional circuit for an air-fuel ratio detection device for an on-vehicle internal combustion engine. R H ...Heater resistance, R T ...Gas detection element resistance,
R 1 ... Voltage division resistor, R 2 ... Series resistance, SP...
...Sensor probe, BAT...Battery, 1...
... Ceramic plate-shaped carrier, 13a, 13b, 13c
...Lead wire, 25 (R H ) ...Heater circuit, 3
1 (R 1 )... Voltage division resistor, 27... Output take-out circuit, 29... Divided voltage take-out circuit, 41
(R T )...Gas detection element.

Claims (1)

【特許請求の範囲】[Claims] 1 セラミツク材からなる基板もしくは担体に、
ガス成分によつて抵抗値が変化する金属酸化物半
導体ガス検出素子と、該ガス検出素子を加熱する
ための金属質発熱抵抗体とを少なくとも設けてな
るガスセンサプローブを用いると共に、上記発熱
抵抗体と直列に抵抗を接続して該発熱抵抗体に印
加される電源電圧を分割し、該分割した電圧を上
記ガス検出素子と抵抗との直列回路に印加し、該
直列回路の接続点電圧を出力電圧として、コンパ
レータの一方の入力端子に入力するようにした車
載内燃機関の空燃比検知装置において、上記コン
パレーターの他方の入力端子に入力する基準電圧
を、発電機レギユレータの出力によつて充電され
かつ上記発熱抵抗体用電源とされるバツテリーに
対してツエナーダイオードを介して接続される抵
抗回路の分割電圧によつて与えることを特徴とす
る車載内燃機関の空燃比検知装置。
1. On a substrate or carrier made of ceramic material,
A gas sensor probe comprising at least a metal oxide semiconductor gas detection element whose resistance value changes depending on the gas component and a metallic heating resistor for heating the gas detection element is used, and the heating resistor and A resistor is connected in series to divide the power supply voltage applied to the heating resistor, the divided voltage is applied to a series circuit of the gas detection element and the resistor, and the voltage at the connection point of the series circuit is set as the output voltage. In an air-fuel ratio detection device for an on-vehicle internal combustion engine, the reference voltage input to the other input terminal of the comparator is charged by the output of the generator regulator. An air-fuel ratio detection device for an on-vehicle internal combustion engine, characterized in that the air-fuel ratio detection device for an on-vehicle internal combustion engine is provided by a divided voltage of a resistance circuit connected via a Zener diode to a battery serving as a power source for the heating resistor.
JP12021384A 1984-06-12 1984-06-12 Air fuel ratio detecting device for on-vehicle internal-combustion engine Granted JPS60263846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12021384A JPS60263846A (en) 1984-06-12 1984-06-12 Air fuel ratio detecting device for on-vehicle internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12021384A JPS60263846A (en) 1984-06-12 1984-06-12 Air fuel ratio detecting device for on-vehicle internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS60263846A JPS60263846A (en) 1985-12-27
JPH053544B2 true JPH053544B2 (en) 1993-01-18

Family

ID=14780692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12021384A Granted JPS60263846A (en) 1984-06-12 1984-06-12 Air fuel ratio detecting device for on-vehicle internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS60263846A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0569669U (en) * 1992-09-18 1993-09-21 日本特殊陶業株式会社 Sensor structure of sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529493A (en) * 1975-07-11 1977-01-25 Omron Tateisi Electronics Co Gas sensing device
JPS5610244A (en) * 1979-07-04 1981-02-02 Matsushita Electric Ind Co Ltd Temperature sensor controlling device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529493A (en) * 1975-07-11 1977-01-25 Omron Tateisi Electronics Co Gas sensing device
JPS5610244A (en) * 1979-07-04 1981-02-02 Matsushita Electric Ind Co Ltd Temperature sensor controlling device

Also Published As

Publication number Publication date
JPS60263846A (en) 1985-12-27

Similar Documents

Publication Publication Date Title
US5823680A (en) Temperature sensor
CA1117789A (en) Temperature compensated resistive exhaust gas sensor construction
EP1026501B1 (en) Gas concentration measuring apparatus compensating for error component of output signal
US4543176A (en) Oxygen concentration detector under temperature control
US4453397A (en) Gas detecting sensor
US4952903A (en) Ceramic heater having portions connecting heat-generating portion and lead portions
EP0157100A2 (en) Heated titania oxygen sensor
US6258232B1 (en) Gas component concentration measuring apparatus
JPS59197847A (en) Smoke sensor
US4824550A (en) Heated solid electrolyte oxygen sensor and securing element therefor
US5935399A (en) Air-fuel ratio sensor
US5503023A (en) Pressure sensor for detecting the pressure in the combustion chamber of internal-combustion engines
US4303613A (en) Gas sensing apparatus
US6580280B2 (en) Multilayered gas sensor and a related gas concentration detecting system
US4450428A (en) Gas detecting sensor
JPS60227158A (en) Gas sensor
JP4198386B2 (en) Oxygen sensor
JP2001508880A (en) Operating method of gas sensor
JPH053544B2 (en)
JP2009036754A (en) Ammonia gas sensor
JP2633641B2 (en) Exhaust gas concentration detector
US4393702A (en) Gas flow measuring device
US4415876A (en) Gas sensor
EP0014090B1 (en) Exhaust gas sensor
JPH07111206A (en) Thermistor type temperature sensor