JPH0535317B2 - - Google Patents

Info

Publication number
JPH0535317B2
JPH0535317B2 JP60058264A JP5826485A JPH0535317B2 JP H0535317 B2 JPH0535317 B2 JP H0535317B2 JP 60058264 A JP60058264 A JP 60058264A JP 5826485 A JP5826485 A JP 5826485A JP H0535317 B2 JPH0535317 B2 JP H0535317B2
Authority
JP
Japan
Prior art keywords
pin
box
barreled
joint
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60058264A
Other languages
Japanese (ja)
Other versions
JPS61218891A (en
Inventor
Takashi Nakano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP5826485A priority Critical patent/JPS61218891A/en
Publication of JPS61218891A publication Critical patent/JPS61218891A/en
Publication of JPH0535317B2 publication Critical patent/JPH0535317B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えば油井管継手のように、胴付き
部を持つねじ込み式継手に係り、特に引張の疲労
強度を向上させ得るねじ込み式継手に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a threaded joint having a barrel portion, such as an oil country tubular joint, and particularly relates to a threaded joint that can improve tensile fatigue strength. It is something.

[従来の技術] 油井管のツールジヨイントとして一般には、第
8図に示すようにアプセツト加工等によつて厚肉
化された胴付き部でピンとボツクスが接触した状
態で締上げるねじ込み式継手が使用される。図
は、油井管のねじ込み式継手の要部の断面図で、
1はピン(オネジ側)、2はボツクス(メネジ側)
である。このようなねじ込み式継手の引張に対す
る強度の検討にあたつては、従来は図に示される
ねじの逃げ部1a,2aのA−A断面及びB−B
断面の面積に注目し、強度計算が行われるのが一
般である。
[Prior art] As shown in Fig. 8, a tool joint for oil country tubular goods is generally a screw-in type joint that is tightened with a pin and a box in contact with each other in a barreled part made thickened by upset processing, etc. used. The figure is a cross-sectional view of the main parts of a threaded joint for oil country tubular goods.
1 is pin (male thread side), 2 is box (female thread side)
It is. When examining the tensile strength of such a threaded joint, conventionally, the A-A cross section and the B-B cross section of the screw clearance parts 1a and 2a shown in the figure were
Generally, strength calculations are performed by focusing on the area of the cross section.

[発明が解決しようとする課題] この継手部に外力が加わる場合、第9図に示す
A−A断面、C−C断面の断面積及び逃げ部1a
及びボツクス2の先端部2bの長さlによつて形
成される継手形状によりピン1のA−A断面に負
荷される応力値に大巾な変化がある。
[Problems to be Solved by the Invention] When an external force is applied to this joint, the cross-sectional areas of the A-A cross section and the C-C cross section shown in FIG.
The stress value applied to the A-A cross section of the pin 1 varies widely depending on the shape of the joint formed by the length l of the tip end 2b of the box 2.

第10図は初期の締付けによりF0の力が生じ
ている状態で(A点)、引張による外力Pが作用
する場合のピン1のA−A断面、及びボツクス2
のC−C断面の応力の変化を示す特性図である。
図において、縦軸Fはピン1のA−A断面及びボ
ツクス2のC−C断面に作用する力、横軸△lは
第9図に示すl間のピン1及びボツクス2の変形
量を示す。3はピン1のA−A断面の変形特性、
4はボツクス2のC−C断面の変形特性、Pは作
用する外力、a及びbはピン1及びボツクス2が
引張による外力を受ける分担域を示すものであ
る。
Figure 10 shows the A-A cross section of pin 1 and box 2 when an external force P due to tension is applied in a state where F 0 force is generated due to initial tightening (point A).
It is a characteristic diagram which shows the change of the stress of the CC cross section of.
In the figure, the vertical axis F represents the force acting on the A-A cross section of pin 1 and the C-C cross section of box 2, and the horizontal axis Δl represents the amount of deformation of pin 1 and box 2 between l shown in FIG. . 3 is the deformation characteristic of the A-A cross section of pin 1,
4 is the deformation characteristic of the cross section of box 2 taken along the line C--C, P is the applied external force, and a and b are the areas where pin 1 and box 2 receive the external force due to tension.

第9図及び第10図において、引張による外力
Pを受けると、締結により当初ピン1側へ圧縮さ
れていたボツクス2は、外力Pにより圧縮力が軽
減されていく。一方、ピン1には、逃げ部1aの
A−A断面において、締結により軸両方向への引
張荷重が作用しており、引張による外力Pを受け
ると、A−A断面に作用する引張荷重が更に増大
する。
9 and 10, when the box 2 receives an external force P due to tension, the compression force of the box 2, which was initially compressed toward the pin 1 due to the fastening, is reduced by the external force P. On the other hand, a tensile load is applied to the pin 1 in both axial directions due to the fastening at the A-A cross section of the relief portion 1a, and when it receives an external force P due to tension, the tensile load acting on the A-A cross section is further increased. increase

外力Pのうち、ピン1に加えられる力は、P×
{b/(a+b)}の値で与えられる。従つて、繰
り返し荷重のような外力の作用は、ピン1のA−
A断面(強度上のウイークポイント)に対し応力
値が変化して作用する。従来の胴付継手の設計に
当つて、このようなことが考慮されず、繰返し応
力を受ける場合のねじ込み式継手の大きな問題と
なつていた。
Of the external force P, the force applied to pin 1 is P×
It is given by the value of {b/(a+b)}. Therefore, the action of an external force such as a repeated load will cause the A-
The stress value changes and acts on the A section (weak point in terms of strength). This has not been considered in the design of conventional barreled joints, and has become a major problem for threaded joints that are subject to repeated stress.

本発明は叙上の点に鑑み、少なくともピン側に
引張により付加される応力振巾を許容応力振巾値
内におさめて、継手の疲労強度を向上させること
のできるねじ込み式継手を得ることを目的とす
る。
In view of the above points, the present invention aims to provide a threaded joint that can improve the fatigue strength of the joint by keeping the stress amplitude applied by tension to at least the pin side within the allowable stress amplitude value. purpose.

[課題を解決するための手段] 本発明の第1の発明に係るねじ込み式継手は、
雌ねじを有する胴付きボツクスに、根元部に逃げ
部を設けた雄ねじを有する胴付きピンを互いの胴
付き部端面が当接するまで螺合するものにおい
て、胴付き部におけるピンとボツクスとの剛性比
を、前記ピンの逃げ部における断面積と、該逃げ
部を覆うボツクスの断面積と、該ボツクスの胴付
き部の軸方向長さとによつて調整することによ
り、引張により付加される応力振巾を許容応力振
巾値内におさめたものである。
[Means for solving the problem] The screw-type joint according to the first invention of the present invention has the following features:
In a case where a barreled pin having a male thread with a relief part at the base is screwed into a barreled box having a female thread until the end surfaces of the barreled parts come into contact with each other, the rigidity ratio of the pin and the box in the barreled part is determined. , by adjusting the cross-sectional area of the relief part of the pin, the cross-sectional area of the box covering the relief part, and the axial length of the barreled part of the box, the stress amplitude applied by tension can be reduced. This is within the allowable stress amplitude value.

また、本発明の第2の発明に係るねじ込み式継
手は、雌ねじを有する胴付きボツクスに、根元部
に逃げ部を設けた雄ねじを有する胴付きピンを互
いの胴付き部端面が当接するまで螺合するものに
おいて、胴付き部におけるピンとボツクスとの剛
性比を、前記ボツクスの端部にて囲繞される前記
ピン逃げ部の軸方向長さと、該逃げ部より連続し
てピンの胴付き部端面より軸方向に凹陥させて形
成したスリツトの長さとによつて調整することに
より、引張により付加される応力振巾を許容応力
振巾値内におさめたものである。
Further, in the screw-in joint according to the second aspect of the present invention, a barreled pin having a male thread with a relief portion at the root is screwed into a barreled box having a female thread until the end surfaces of the barreled portions of the two are in contact with each other. In the case where the rigidity ratio between the pin and the box in the barreled portion is determined by the axial length of the pin relief portion surrounded by the end of the box, and the end surface of the barreled portion of the pin continuous from the relief portion, By adjusting the length of the slit, which is formed by recessing in the axial direction, the stress amplitude applied due to tension is kept within the allowable stress amplitude value.

[作用] 本発明においては、ピンとボツクスとの剛性比
が適正に保持されることによつて、引張による繰
り返し外力を受けた場合の発生応力が、少なくと
もピン側で減少し、これによつて前記外力による
応力振巾がピン側では確実に許容応力振巾値内に
おさまり、継手の疲労強度が向上する。
[Function] In the present invention, by maintaining an appropriate rigidity ratio between the pin and the box, the stress generated when subjected to repeated external force due to tension is reduced at least on the pin side, and thereby the above-mentioned The stress amplitude due to external force is reliably kept within the allowable stress amplitude value on the pin side, improving the fatigue strength of the joint.

[実施例] 以下、図示実施例により、本発明を説明する。[Example] The present invention will be explained below with reference to illustrated embodiments.

先ず、断面積を基本として考えた場合、第1図
Aに示すピン1のねじの逃げ部1a及びボツクス
2の先端部2bの夫々の断面積をA及びC、外力
に対する応力をσ、応力振巾を△σ、許容応力振
巾を△σaとした場合に、静的強度としてのピン1
の断面積Aを定めた後、これにA/(A+C)=
△σa/σの条件を組み合わせれば、ボツクス2の
断面積Cが求められる。
First, when considering the cross-sectional area as the basis, let A and C be the respective cross-sectional areas of the screw relief part 1a of the pin 1 and the tip part 2b of the box 2 shown in FIG. When the width is △σ and the allowable stress amplitude is △σ a , pin 1 as static strength
After determining the cross-sectional area A, we add A/(A+C)=
By combining the conditions Δσ a /σ, the cross-sectional area C of box 2 can be determined.

これに従つて、胴付き部近傍において第1図B
に示すようにボツクス2の先端の肉厚を増すこと
になる。図のlはボツクス2のねじの先端部2b
の長さを示し、Lは外径を大きくした部分の長さ
を示すもので、前記lの長さに2〜3ねじ山が加
えられた長さである。
According to this, in the vicinity of the barreled part, Fig. 1B
As shown in the figure, the thickness of the tip of box 2 will be increased. l in the figure is the tip 2b of the screw in box 2.
L indicates the length of the portion with an increased outer diameter, which is the length of L plus 2 to 3 threads.

又、ツールの外径が種々の理由で制限される場
合が多いので、外径を増大しないで継手部の剛性
比を調整するためには、逃げ部1a及び先端部2
bの長さを調整して、第2図に示す如くスリツト
6を設けることが出来る。図において、ピン1の
スリツト長さをL1とし、ボツクス2の先端部2
bの長さをl、外径をDとすれば、先ず、静的強
度から外力に対する断面積Aが決まり、外径Dの
制約から断面積Cも決定し、これに伴いC/Aの
値が決定される。したがつて外力による応力σに
対して応力振巾は△σ={A/(A+C)}+σと
なる。
In addition, since the outer diameter of the tool is often limited for various reasons, in order to adjust the rigidity ratio of the joint without increasing the outer diameter, it is necessary to
By adjusting the length of b, a slit 6 can be provided as shown in FIG. In the figure, the slit length of pin 1 is L 1 , and the tip of box 2 is
If the length of b is l and the outer diameter is D, first, the cross-sectional area A against external force is determined from the static strength, and the cross-sectional area C is also determined from the constraint of the outer diameter D, and the value of C/A is accordingly determined. is determined. Therefore, the stress amplitude for stress σ due to external force is Δσ={A/(A+C)}+σ.

許容応力振巾を△σaとすれば、一般に△σ>△
σaとなるから、このとき第2図に示すスリツト6
の長さL1を(△σ−△σa)/△σa=l/(L1
l)なる条件で求められるL1以上に設定すれば、
△σ′は減衰して△σ′となり、更に△σ′≦△σa

る。
If the allowable stress amplitude is △σ a , generally △σ>△
Since σ a , in this case, the slit 6 shown in Figure 2
The length L 1 of (△σ−△σ a )/△σ a = l/(L 1 +
If L is set to 1 or more, which is determined by the condition l),
△σ′ is attenuated and becomes △σ′, and furthermore, △σ′≦△σ a .

このように設計されたねじ込み式継手部のピン
1とボツクス2の形状差が、剛性の差としてどの
ようになるかを剛性変化による特性曲線によつて
求めてみる。
How the difference in shape between pin 1 and box 2 of the screw-in joint designed in this way results in a difference in rigidity will be determined using a characteristic curve of changes in rigidity.

第3図A及びBはピン1とボツクス2の形状差
によつてピン1の逃げ部1aに負荷される応力並
びに応力振巾の変化を示したもので、剛性比(F
=E・A・△l/LのE・A/Lで示されるも
の)による違いが明らかである。図に示すFはピ
ン1の断面Aに使用する力、△lはボツクス2の
先端部2bの長さl間のピン1及びボツクス2の
変化量を示し、3′はピン1の剛性、4′はボツク
ス2の剛性を示す特性曲線、△σ及び△σ′は繰り
返し応力振巾を示す。第3図Aにおいては、ボツ
クス2の剛性曲線4′を矢印に示す如く上げる
(F=E・C・△l/LのE・C/Lを大きくす
る)ことで、同じ外力Pに対してピンに作用する
外力振巾△σが△σ′に減少することを示す。
Figures 3A and 3B show changes in the stress and stress amplitude applied to the relief part 1a of pin 1 due to the difference in shape between pin 1 and box 2, and show the rigidity ratio (F
=E・A・△l/L (represented by E・A/L). In the figure, F is the force used on the cross section A of the pin 1, Δl is the amount of change in the pin 1 and the box 2 between the length l of the tip 2b of the box 2, 3' is the rigidity of the pin 1, and 4 ' is a characteristic curve showing the rigidity of box 2, and Δσ and Δσ' are the cyclic stress amplitudes. In Fig. 3A, by increasing the stiffness curve 4' of box 2 as shown by the arrow (increasing E・C/L of F=E・C・△l/L), for the same external force P, This shows that the external force amplitude △σ acting on the pin decreases to △σ'.

同様に第3図Bにおいては、ピン1の剛性曲線
3′を矢印に示す如く下げることにより、同じ外
力Pに対してピンに作用する圧力振巾△σが△
σ′に減少することを示している。
Similarly, in FIG. 3B, by lowering the stiffness curve 3' of pin 1 as shown by the arrow, the pressure amplitude △σ acting on the pin for the same external force P is reduced to △
It shows that it decreases to σ′.

第4図は油井管のジヨイントとして海水等の腐
蝕性の高い環境下で使用されたツールジヨイント
(材質 クロームモリブデン鋼)の海水中での疲
労強度を示す線図の一例である。縦軸△σは応力
振巾、横軸Nは疲労破壊に至るまでの繰返し回数
を示す。5は疲労強度を示す曲線である。
Figure 4 is an example of a diagram showing the fatigue strength in seawater of a tool joint (material: chrome molybdenum steel) used as a joint for oil country tubular goods in highly corrosive environments such as seawater. The vertical axis Δσ represents the stress amplitude, and the horizontal axis N represents the number of repetitions until fatigue failure occurs. 5 is a curve showing fatigue strength.

次に、本発明の第1の発明の具体例を数値を挙
げて説明するが、その前にこの具体例との比較の
ために従来の一般のツールジヨイントの一例を第
11図に示し説明する。図において、1はピン、
2はボツクス、d1=270mmφ、d2=285mmφ、d3
320mmφ、d4=200mmφ、l=25mmの場合、ピン1
及びボツクス2の継手部にかかる負荷を夫々
Fpio、FBOXとすれば、次の計算式となる。
Next, a specific example of the first invention of the present invention will be explained by citing numerical values, but before that, for comparison with this specific example, an example of a conventional general tool joint is shown and explained in Fig. 11. do. In the figure, 1 is a pin,
2 is box, d 1 = 270mmφ, d 2 = 285mmφ, d 3 =
320mmφ, d 4 = 200mmφ, l = 25mm, pin 1
and the load applied to the joint of box 2, respectively.
If F pio and F BOX are used, the calculation formula is as follows.

A断面積S1=π・(27−3.5)×3.5 ≒258.4cm2 C断面積S2=π(32−1.75)×1.75 ≒166.3cm2 Fpio=E・A/l・△lp=2.1×106×258.4/2.5 ×△lp=2.17×108・△lp FBOX=E・C/l・△lp=2.1×106×166.3/2.5 ×△lp=1.40×108・△lp 上記の計算式による特性図は第12図に示す通
りである。図において、A及びCは夫々A断面、
C断面の剛性比を示すもので、その他の符号は前
記の説明と同じである。
A cross-sectional area S 1 = π・(27-3.5)×3.5 ≒258.4cm 2 C cross-sectional area S 2 = π(32-1.75)×1.75 ≒166.3cm 2 F pio = E・A/l・△l p = 2.1×10 6 ×258.4/2.5 ×△l p =2.17×10 8・△l p F BOX =E・C/l・△l p =2.1×10 6 ×166.3/2.5 ×△l p =1.40×10 8・△l pThe characteristic diagram based on the above calculation formula is as shown in Fig. 12. In the figure, A and C are A cross section, respectively.
It shows the stiffness ratio of the C section, and the other symbols are the same as in the above description.

今、外力、P=1000tonが加えられた場合、ピ
ンの負荷はFpio=1000×{258.4/(258.4+166.3)}
=600.84ton、となり、これによる発生応力σ=
600.84×103/258.4=2325Kgf/cm2=23.25Kgf/
mm2、となる。これは従来のこのサイズの継手にお
ける平均的な作用荷重であり、この場合の破壊に
至るまでの繰返し数は第4図を照合すると、N=
2×105となる。
Now, if an external force of P = 1000 tons is applied, the load on the pin is F pio = 1000 x {258.4/(258.4+166.3)}
= 600.84ton, and the resulting stress σ =
600.84×10 3 /258.4=2325Kgf/cm 2 =23.25Kgf/
mm 2 . This is the average acting load on a conventional joint of this size, and the number of repetitions until failure in this case is N =
It becomes 2×10 5 .

次に、前記と同径のツールジヨイントに、本発
明を取り入れて第5図に示す如くボツクス2の先
端部2bの肉厚を増大した場合を説明する。
Next, a case will be described in which the present invention is incorporated into a tool joint having the same diameter as described above and the thickness of the tip end 2b of the box 2 is increased as shown in FIG.

図において、ピン1、ボツクス2の夫々の寸法
をd1=270mmφ、d2=280mmφ、d3=320mmφ、d4
=200mmφ、d5=360mmφ、L=50mmとした。その
結果、C断面の断面積S=π(36−3.75)×3.75≒
380.0となり、外力P=1000tonに対するピン1の
負荷Fpio=1000×{258.4/(380.0+258.4)}=
404.8tonとなり、これによる発生応力σpin=
404.8/258.4=15.67Kgf/mm2、となる。これを第
4図に照合すると、破断に至る繰返し数N=8×
105となる。
In the figure, the dimensions of pin 1 and box 2 are d 1 = 270mmφ, d 2 = 280mmφ, d 3 = 320mmφ, d 4
=200mmφ, d5 =360mmφ, and L=50mm. As a result, the cross-sectional area of C cross-section S = π (36-3.75) × 3.75≒
380.0, and the load on pin 1 for external force P = 1000 tons F pio = 1000 x {258.4/(380.0 + 258.4)} =
The resulting stress is 404.8ton, σpin=
404.8/258.4=15.67Kgf/mm 2 . Comparing this with Figure 4, the number of repetitions leading to breakage N = 8 x
10 5 .

また、小径サイズのねじ込み式継手による実験
によれば、従来の継手形状による場合P=100ton
に対しσ=8Kgf/mm2であつたが、実施例1によ
る剛性を増したことによつてσ=3.9Kgf/mm2
減少しうることが明らかとなつた。
In addition, according to an experiment using a small-diameter screw-in joint, when using a conventional joint shape, P = 100 tons.
However, it became clear that by increasing the rigidity according to Example 1 , σ could be reduced to 3.9 Kgf/mm 2 .

次に、本発明の第2の発明の具体例について説
明する。この例のものは第6図に示す如くツール
ジヨイントのピン1の根元部にスリツト6を設け
ている。この場合、スリツト6の寸法を巾D1
5mm、長さL1=50mmとする。その他の寸法は第
11図の場合と同じである。この場合、ピン1と
ボツクス2の剛性比は、 (A断面)E・A/l+L1=2.1×258.4×106/2.5+
5.0 (C断面)E・C/l=2.1×166.3×106/2.5 から34.5:66.5となる。
Next, a specific example of the second aspect of the present invention will be described. In this example, a slit 6 is provided at the base of the pin 1 of the tool joint, as shown in FIG. In this case, the dimensions of the slit 6 are width D 1 =
5 mm, and the length L 1 = 50 mm. Other dimensions are the same as in FIG. 11. In this case, the rigidity ratio of pin 1 and box 2 is (cross section A) E・A/l+L 1 = 2.1×258.4×10 6 /2.5+
5.0 (C section) E・C/l=2.1×166.3×10 6 /2.5, so it becomes 34.5:66.5.

したがつて、外力P=1000tonに対するピン1
の負荷Fpio=1000×{34.5/(66.5+34.5)}=
341.6ton、発生応力σpio=341.6×103/258.4=
13.22Kgf/mm2となる。この場合の破断に至る繰
返し数は第4図に照合して、N=9.2×105とな
る。
Therefore, pin 1 for external force P = 1000 tons
Load F pio = 1000×{34.5/(66.5+34.5)}=
341.6ton, generated stress σ pio = 341.6×10 3 /258.4=
It becomes 13.22Kgf/ mm2 . The number of repetitions leading to breakage in this case is N=9.2×10 5 when compared with FIG. 4.

尚、本発明による前記の2つの実施例を組合せ
た場合は、A断面、C断面の剛性比は258.4/
7.5:380/2.5=34.45:152となる。
In addition, when the above two embodiments according to the present invention are combined, the stiffness ratio of the A section and the C section is 258.4/
7.5:380/2.5=34.45:152.

したがつて、P=1000tonに対するピンの負荷
Fpio=1000×{34.45/(34.45+152)}=184.77ton、
発生応力σpio=184.77×103/258.4=7.15Kgf/mm2
となり、破壊に至る繰返し数は第4図に照合し
て、N=2×106となる。
Therefore, the load on the pin for P=1000ton
F pio = 1000 x {34.45/(34.45+152)} = 184.77ton,
Generated stress σ pio = 184.77×10 3 /258.4 = 7.15Kgf/mm 2
Therefore, the number of repetitions leading to destruction is N=2×10 6 when compared with FIG. 4.

このように、スリツト6は剛性比の調整に有効
であり、又外部からの荷重の作用方向と平行であ
るから、亀裂を発生するようなことはない。ま
た、第7図に示すようにスリツト6に密着性のゴ
ム等による詰物7を装着すれば、〓間腐蝕を防止
することが出来る。
In this way, the slit 6 is effective in adjusting the rigidity ratio, and since it is parallel to the direction in which the external load is applied, no cracks will occur. Furthermore, as shown in FIG. 7, if a filler 7 made of adhesive rubber or the like is attached to the slit 6, intercalary corrosion can be prevented.

[発明の効果] 以上述べたように、本発明によれば、ピンとボ
ツクスとの剛性比が適正に保持されることによつ
て、引張による繰り返し外力を受けた場合の発生
応力を少なくともピン側で減少するようにしたの
で、繰り返し外力による応力振巾が、ピン側で確
実に許容応力振巾値内におさまり、継手の疲労強
度が向上するという効果がある。これにより、破
断に至る寿命を4〜4.6倍とすることが出来た。
これを実際の海洋に適用した場合は、従来の油井
管の寿命1、2年のものが4.8〜5.5年になり、実
施による効果きわめて大である。
[Effects of the Invention] As described above, according to the present invention, by maintaining an appropriate rigidity ratio between the pin and the box, stress generated when subjected to repeated external force due to tension is reduced at least on the pin side. Since the stress amplitude is reduced, the stress amplitude due to repeated external forces is reliably kept within the allowable stress amplitude value on the pin side, which has the effect of improving the fatigue strength of the joint. This made it possible to increase the life before breakage by 4 to 4.6 times.
When this is applied to the actual ocean, the lifespan of conventional oil country tubular goods (OCTG) of 1 or 2 years will be increased to 4.8 to 5.5 years, and the effect of implementation will be extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A,Bは本発明の第1の発明の実施例の
構成図、第2図は本発明の第2の発明の実施例の
構成図、第3図A,Bは継手部の剛性比による付
加応力と応力振巾の変化の線図、第4図は繰り返
し応力とその破壊に至るまでの回数の線図、第5
図はボツクスの肉厚を増加した本発明の第1の発
明の具体例の説明図、第6図はスリツトを設けた
本発明の第2の発明の具体例の説明図、第7図は
本発明の第2の発明の他の実施例の説明図、第8
図は従来の継手の構造図、第9図は従来の継手構
造の一部詳細図、第10図は従来の継手部にかか
る応力の変化を示す特性図、第11図は従来の一
実施例の説明図、第12図は従来の一実施例の特
性図である。 1:ピン、1a:逃げ部、2:ボツクス、3:
ピンの変形特性曲線、4:ボツクスの変形特性曲
線、5:疲労強度曲線、6:スリツト。
Figures 1A and B are configuration diagrams of an embodiment of the first invention of the present invention, Figure 2 is a configuration diagram of an embodiment of the second invention of the invention, and Figures 3A and B are rigidity diagrams of the joint portion. Figure 4 is a diagram of the changes in added stress and stress amplitude depending on the ratio, Figure 4 is a diagram of repeated stress and the number of times it takes to break, Figure 5
The figure is an explanatory diagram of a specific example of the first aspect of the present invention in which the wall thickness of the box is increased, FIG. 6 is an explanatory diagram of a specific example of the second aspect of the present invention in which a slit is provided, and FIG. Explanatory diagram of another embodiment of the second invention, No. 8
Figure 9 is a structural diagram of a conventional joint, Figure 9 is a partial detail view of a conventional joint structure, Figure 10 is a characteristic diagram showing changes in stress applied to a conventional joint, and Figure 11 is an example of a conventional joint. FIG. 12 is a characteristic diagram of a conventional embodiment. 1: Pin, 1a: Recess, 2: Box, 3:
Pin deformation characteristic curve, 4: Box deformation characteristic curve, 5: Fatigue strength curve, 6: Slit.

Claims (1)

【特許請求の範囲】 1 雌ねじを有する胴付きボツクスに、根元部に
逃げ部を設けた雄ねじを有する胴付きピンを互い
の胴付き部端面が当接するまで螺合するねじ込み
式継手において、 胴付き部におけるピンとボツクスとの剛性比
を、前記ピンの逃げ部における断面積と、該逃げ
部を覆うボツクスの断面積と、該ボツクスの胴付
き部の軸方向長さとによつて調整することによ
り、引張により付加される応力振巾を許容応力振
巾値内におさめることを特徴とするねじ込み式継
手。 2 雌ねじを有する胴付きボツクスに、根元部に
逃げ部を設けた雄ねじを有する胴付きピンを互い
の胴付き部端面が当接するまで螺合するねじ込み
式継手において、 胴付き部におけるピンとボツクスとの剛性比
を、前記ボツクスの端部にて囲繞される前記ピン
逃げ部の軸方向長さと、該逃げ部より連続してピ
ンの胴付き部端面より軸方向に凹陥させて形成し
たスリツトの長さとによつて調整することによ
り、引張により付加される応力振巾を許容応力振
巾値内におさめることを特徴とするねじ込み式継
手。
[Scope of Claims] 1. A threaded joint in which a barreled pin having a male thread with a relief portion at the base is screwed into a barreled box having a female thread until the end surfaces of the barreled parts abut each other, comprising: By adjusting the rigidity ratio between the pin and the box in the part by adjusting the cross-sectional area of the pin relief part, the cross-sectional area of the box covering the relief part, and the axial length of the barreled part of the box, A screw-in joint characterized by keeping the stress amplitude added due to tension within the allowable stress amplitude value. 2. In a screw-in joint in which a barreled pin having a male thread with a relief portion at the base is screwed into a barreled box having a female thread until the end surfaces of the barreled portions touch each other, the connection between the pin and the box in the barreled portion The rigidity ratio is determined by the axial length of the pin relief portion surrounded by the end of the box and the length of a slit formed by concave in the axial direction from the end surface of the barreled portion of the pin, continuing from the relief portion. A screw-in joint characterized in that the stress amplitude added due to tension is kept within an allowable stress amplitude value by adjusting the stress amplitude.
JP5826485A 1985-03-25 1985-03-25 Screwing type joint Granted JPS61218891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5826485A JPS61218891A (en) 1985-03-25 1985-03-25 Screwing type joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5826485A JPS61218891A (en) 1985-03-25 1985-03-25 Screwing type joint

Publications (2)

Publication Number Publication Date
JPS61218891A JPS61218891A (en) 1986-09-29
JPH0535317B2 true JPH0535317B2 (en) 1993-05-26

Family

ID=13079303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5826485A Granted JPS61218891A (en) 1985-03-25 1985-03-25 Screwing type joint

Country Status (1)

Country Link
JP (1) JPS61218891A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3057857B2 (en) * 1991-11-08 2000-07-04 日本鋼管株式会社 High torque tool joint
UA71575C2 (en) * 1998-09-07 2004-12-15 Валлурек Маннесманн Ойл Енд Гес Франс Threaded joint of two metal tubes with large screwing moment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599387A (en) * 1982-07-05 1984-01-18 川崎重工業株式会社 Structure of pipe joint
JPS59159486A (en) * 1983-02-28 1984-09-10 住友金属工業株式会社 Pipe joint for oil well pipe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599387A (en) * 1982-07-05 1984-01-18 川崎重工業株式会社 Structure of pipe joint
JPS59159486A (en) * 1983-02-28 1984-09-10 住友金属工業株式会社 Pipe joint for oil well pipe

Also Published As

Publication number Publication date
JPS61218891A (en) 1986-09-29

Similar Documents

Publication Publication Date Title
US4040328A (en) Thread-forming fastener having dual lobulation and dies for making the same
US4432682A (en) Threaded fastener assembly
US5722808A (en) Threaded fastener system
EP1296088A1 (en) Taper threaded joint
JPH0743667U (en) Drill member for impact drill string
US4799844A (en) Elliptical thread design
US4040327A (en) High fatigue screw threads
US7938609B2 (en) Tightening structure using high-strength self-forming screws
JPH0231271B2 (en)
JPS6030877B2 (en) Threaded joints for oil country tubular goods
US5549336A (en) High torque tool joint
US3205756A (en) Thread system
JPH0535317B2 (en)
JP4713387B2 (en) Bolt joint structure
JPWO2006100766A1 (en) screw
JP7184169B2 (en) threaded joints for pipes
JPH08177831A (en) High strength bolt which excels in delayed fracture resistance characteristic
JP2000081173A (en) Screw joint for oil well pipe
JP6528292B2 (en) Drilling steel pipe with double shoulder tool joint
JP6703191B2 (en) Threaded joint for steel pipe
JPS58109709A (en) Screw clamper having excellent breakdown-resistant characteristic
JPH04157280A (en) Threaded fitting for petroleum excavating pipe with excellent fatigue and torsion characteristics
JPH0577610U (en) Lock nut
JPH0687713U (en) Lock screw
JPS5891915A (en) Screw joint of connecting rod excellent in breakage resistance