JPH0535234B2 - - Google Patents

Info

Publication number
JPH0535234B2
JPH0535234B2 JP63060575A JP6057588A JPH0535234B2 JP H0535234 B2 JPH0535234 B2 JP H0535234B2 JP 63060575 A JP63060575 A JP 63060575A JP 6057588 A JP6057588 A JP 6057588A JP H0535234 B2 JPH0535234 B2 JP H0535234B2
Authority
JP
Japan
Prior art keywords
ion
plated
ions
alloy
press
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63060575A
Other languages
Japanese (ja)
Other versions
JPH01234592A (en
Inventor
Ryoichi Mukai
Kazuo Mochizuki
Hajime Kimura
Toshiro Ichida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP63060575A priority Critical patent/JPH01234592A/en
Priority to DE68925858T priority patent/DE68925858T2/en
Priority to EP89903215A priority patent/EP0364596B1/en
Priority to PCT/JP1989/000276 priority patent/WO1989008730A1/en
Priority to CA 601174 priority patent/CA1338621C/en
Publication of JPH01234592A publication Critical patent/JPH01234592A/en
Priority to US07/821,439 priority patent/US5266182A/en
Publication of JPH0535234B2 publication Critical patent/JPH0535234B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/34Anodisation of metals or alloys not provided for in groups C25D11/04 - C25D11/32
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は、プレス成形性の優れたZn−Ni合金
めつき鋼板の製造方法に関するものである。 <従来の技術> Zn−Ni合金めつき鋼板は、同一付着量のZnめ
つき鋼板と比較して5〜10倍の耐食性があるた
め、近年問題となつている冬季の道路凍結防止剤
による自動車車体の早期腐食の対策鋼板としてそ
の使用量が増加し、使用部位もフロントフエンダ
ーからボンネツト・トランクリツドアウターまで
多種多様に渡つてきている。そして、使用めつき
鋼板もめつき鋼板使用初期の頃の自動車車体内面
など塗装が十分行き渡らない部分での防錆効果
(穴開き錆防止効果)を狙つた片面めつき鋼板か
ら、車体外面に用いて小石などを跳ねた後の塗膜
剥離後の耐食性向上(外面錆防止)を狙つた両面
めつき鋼板へと移行しつつある。 このZn−Ni合金めつき鋼板の両面めつき化に
際して、両面めつき板は片面めつき板とは異なつ
た特性を必要とする。そのうちの一つがプレス成
形性である。 片面めつき鋼板は前述のような使用目的を考え
ると、めつき面がプレス加工時のポンチの内側、
言い換えれば冷延面がプレス加工時の張り出し面
となることが多いため、めつき面のプレス成形性
に与える影響が少なかつた。 ところが、両面めつき鋼板では、めつき面がプ
レス加工時の張り出し面となりめつき面自身の摩
擦が問題となり始めた。もちろん、プレス加工時
に粘度の高いプレス油を用いるとプレス加工がし
やすくなるが、現実にはユーザーでの脱脂・塗装
を行い易くするため、粘度の低い防錆油をめつき
鋼板に塗布し、この防錆油のまま各ユーザーはプ
レス加工を行つている。めつき板はこの防錆油で
の良好な加工性が必要とされる。 Zn−Ni合金めつきのプレス成形性を向上させ
る方法としては、特開昭60−141894号に開示され
ているようにZn−Ni合金めつきを二層にめつき、
上層のNi含有率を上昇させる方法がある。 この方法ではめつき上層のZn−Ni層のパウダ
リングを利用してプレス成形性を向上させるの
で、大量のサンプルを連続的に成形するような場
合、剥離したパウダーがプレスの型に付着してた
まつていき星目の原因となるので実用的ではな
い。 <発明が解決しようとする課題> 本発明は、Zn−Ni合金めつき鋼板のめつき面
の摩擦抵抗にもとづくプレス成形性の低下を解決
しようとするものであり、特に従来技術の如きめ
つき層のパウダリングを伴うことなく、プレス成
形性の向上をはかることを目的とするものであ
る。 <課題を解決するための手段> すなわち本発明は、鋼板の表面にNi含有率が
10〜17wt%のZn−Ni合金めつきを施し、しかる
後に該めつき面をH2PO4 -イオンおよびHPO4 2-
イオンの少なくとも一方とK+イオン,Na+イオ
ン,Mg2+イオン,Ca2+イオン,NH4+イオン,
Al3+イオンの一種以上からなる塩の溶液であつ
て、好ましくはPHが4〜10の範囲である溶液で浸
すことを特徴とするプレス成形性の優れたZn−
Ni合金めつき鋼板の製造方法である。 <作用> まず本発明に至つた経過を説明する。 第3図に冷延板と片面Zn−Ni合金めつき鋼板、
両面Zn−Ni合金めつき鋼板でのプレス加工性の
難易度を円筒深絞り試験における限界絞り比
(LDR)で表した。限界絞り比は、第4図に示す
ような円筒深絞り試験機を用いてブランク径を60
〜80φの間を変化させて板が破断するときのポン
チ径とブランク径の比を取ることによつて測定し
た。なおこの試験で片面Zn−Ni合金めつき鋼板
は、冷延面が張り出し側となるように試験を行つ
た。使用した油は、出光興産株式会社製の防錆油
であるダフニーオイルコートZ5(商品名)を用
い、めつき層の影響のみを見るために鋼板の材種
は一定(SPCC相当)とした。めつき層のNi含有
率は12.5%であつた。 この図を見ると明らかであるが、冷延板と比較
して両面めつき板はLDRが小さく成形性が数段
劣つている。めつき鋼板は冷延板の代替品である
ため、冷延板用に設計されたプレス型でプレスさ
れるが、特に超深絞り鋼板を用いることを前提と
して設計されたプレス型では板が破断して割れて
いた。 次にめつき板の低いLDRは、めつき板の表面
の摩擦が影響を与えていると思われたので、めつ
き板表面の摩擦抵抗を摺動抵抗試験より求めてみ
た。用いた試験機の形状を第5図に示す。この試
験機は、サンプルを挟んで一定スピードで引つ張
り、そのときに必要な荷重の大小で表面の摩擦力
の大小を評価するものである。なお試験は無塗油
で行つた。試験結果を第6図に示す。 冷延板とめつき板では、この図から明らかなよ
うに表面の摩擦が異なつておりこれが成形性に影
響を与えていると思われる。 次にさらにZn−Ni合金めつき鋼板のめつき面
の摩擦係数を支配している因子の解明のために鋭
意研究を行つた結果、次のことが判明した。 めつき層の最表面を変化させるとプレス成形
性が変化する。 めつきを行うことによる顕著な冷延板の品質
劣化はない。 このうちに着目しさらに検討を重ねた結果、
Zn−Niめつき面をH2PO4 -およびHPO4 2-イオン
の少なくとも一方とK+イオン,Na+イオン,
Mg2+イオン,Ca2+イオン,NH4+イオン,Al3+
イオンの一種以上からなる塩の溶液で浸すことに
よりプレス成形性が著しく改善することを発見し
た。 第1図に以下の液にZn−Ni合金めつき板を4
秒浸漬した場合のLDRの変化を示す。使用した
めつき板のNi含有率は12.5%で、使用鋼種は
SPCCを用いた。 処理液 NaH2PO4 K2HPO4 200g/ 150g/ 液温 60℃ PH 5.8 この液で処理することによつてLDRが上昇し
ていることが分かる。グロー放電分析(GDS)
の結果、浸漬後のめつき板の表面にはPのピーク
が存在することがわかつており、めつき表面のP
によつて潤滑性が向上してプレス成形性が改善さ
れるものと思われる。 本発明は以上の知見に基づいて構成されたもの
だが、次により詳細に具体的構成を説明する。 めつき面を浸すために用いる溶液はH2PO4 -
オンおよびHPO4 2-イオンの少なくとも一方とK+
イオン,Na+イオン,Mg2+イオン,Ca2+イオン,
NH4+イオン,Al3+イオンの一種以上からなる塩
の溶液である。 またこの溶液の濃度、温度とも限定されない
が、浸漬処理の場合その効果に時間のかかるもの
もあり、早い効果を得るためには温度・濃度を上
昇させることが好ましい。工業生産に適した10秒
未満の短時間処理では浸漬温度は40℃以上、浸漬
液の濃度はH2PO4 -とHPO4 2-の合計で100g/
以上が好ましい。 また、使用するめつき板もNi含有率が10〜
17wt%、好ましくは11〜15%の範囲がよい。10
%未満ではこの処理方法では効果がなく、17%超
ではZn−Niめつき層がパウダリングを起こし易
くなるため本発明では対象となるZn−Ni合金め
つき鋼板のNi含有率を10〜17wt%に限定した。
なお、本発明のめつき合金層に、さらに耐食性の
一層の向上を目的として、Co,Fe,Cr,Cu,
Mn,Al等を数%以下添加することは本発明の趣
旨を損なうものではい。 溶液のPHは、4〜10程度が好ましい。4未満で
はめつき層の特にZnの溶解が激しくなり、めつ
きの付着量の減少が大きく実用的ではなく、ま
た、10以上ではプレス成形性の改善効果がなくな
るため、溶液のPHを4〜10に限定した。 使用する液中に含まれる陽イオンは、K+
Na+,Mg2+,Ca2+,NH4 +,Al3+のZn,Niより
も電気化学的に卑なものとすべきである。なぜな
ら、金属イオンを含んだ液でめつき板を浸すと
Zn,Niよりも電気化学的に貴な金属がZn,Niと
置換反応を起こしてめつき表面に析出し、外観が
劣化してしまう可能性があるからである。 めつき面に付着させるPの量は、P換算で0.1
〜5mg/m2が好ましい。0.1mg/m2以下では効果
がなく5mg/m2以上では化成処理性が劣化するの
で好ましくない。 <実施例> 表1に供試鋼板とそのめつき条件、浸漬条件お
よびLDRで表したプレス成形性を併せて示す。
なお潤滑油としては防錆油として用いられている
出光興産株式会社製のダフニーオイルコートZ5
(商品名)をすべての場合において用いた。 なお実施例1および比較例1,2については
LDR値を第2図に示し、本発明の効果を一層明
らかにした。
<Industrial Application Field> The present invention relates to a method for producing a Zn-Ni alloy coated steel sheet with excellent press formability. <Conventional technology> Zn-Ni alloy plated steel sheets have 5 to 10 times higher corrosion resistance than Zn-plated steel sheets with the same amount of coating, which has caused problems in recent years in the use of road deicing agents in winter for automobiles. The amount of steel used as a countermeasure against early corrosion in car bodies is increasing, and it is being used in a wide variety of areas, from front fenders to bonnets and trunk lid outer parts. The plated steel plates used ranged from the single-sided plated steel plates that were used on the outside of the car body to have a rust-preventing effect (prevention of hole rust) in areas where the coating was not sufficiently covered, such as the inner surface of the car body in the early days of using the plated steel plate. A shift is being made to double-sided plated steel sheets, which aim to improve corrosion resistance (prevent external rust) after the paint film peels off after being splashed with pebbles, etc. When converting this Zn--Ni alloy plated steel plate into double-sided plating, the double-sided plated plate requires different characteristics from that of the single-sided plated plate. One of them is press formability. Considering the purpose of use of single-sided plated steel plates as mentioned above, the plated side should be on the inside of the punch during press working,
In other words, since the cold-rolled surface often becomes an overhanging surface during press working, there was little influence on the press formability of the plated surface. However, with double-sided plated steel sheets, the plated surface becomes an overhanging surface during press working, and friction on the plated surface itself has begun to become a problem. Of course, using a press oil with a high viscosity during press processing makes it easier to press, but in reality, in order to make it easier for the user to degrease and paint, a low viscosity rust preventive oil is applied to the plated steel plate. Each user performs press processing with this anti-rust oil in place. Plated plates require good workability with this anti-rust oil. As a method for improving the press formability of Zn-Ni alloy plating, as disclosed in JP-A-60-141894, two layers of Zn-Ni alloy plating are used.
There is a method of increasing the Ni content in the upper layer. This method uses powdering of the Zn-Ni layer that is the upper plating layer to improve press formability, so when a large number of samples are continuously molded, the peeled powder may adhere to the press mold. It is not practical because it accumulates and causes star eyes. <Problems to be Solved by the Invention> The present invention aims to solve the problem of deterioration in press formability due to the frictional resistance of the plated surface of Zn-Ni alloy plated steel sheets, and in particular, The purpose is to improve press formability without powdering the layer. <Means for Solving the Problems> In other words, the present invention has a method in which the surface of the steel plate has a Ni content.
10 to 17 wt% Zn-Ni alloy plating is applied, and then the plated surface is treated with H 2 PO 4 - ions and HPO 4 2-
At least one of the ions and K + ion, Na + ion, Mg 2+ ion, Ca 2+ ion, NH 4+ ion,
Zn-, which has excellent press formability, is soaked in a solution of a salt containing one or more Al 3+ ions, preferably with a pH in the range of 4 to 10.
This is a method for manufacturing Ni alloy plated steel sheet. <Function> First, the progress that led to the present invention will be explained. Figure 3 shows a cold-rolled sheet and one-sided Zn-Ni alloy plated steel sheet.
The degree of difficulty in press workability of double-sided Zn-Ni alloy plated steel sheets was expressed as the limit drawing ratio (LDR) in a cylindrical deep drawing test. The critical drawing ratio is determined by measuring the blank diameter by 60 mm using a cylindrical deep drawing tester as shown in Figure 4.
It was measured by changing the diameter between ~80φ and taking the ratio of the punch diameter to the blank diameter when the plate breaks. In this test, the steel sheet plated with Zn-Ni alloy on one side was tested so that the cold-rolled surface was on the overhanging side. The oil used was Daphne Oil Coat Z5 (trade name), a rust preventive oil manufactured by Idemitsu Kosan Co., Ltd., and the steel plate material was kept constant (equivalent to SPCC) in order to see only the effect of the plating layer. The Ni content of the plating layer was 12.5%. As is clear from this figure, compared to cold-rolled sheets, double-sided plated sheets have a smaller LDR and are several steps inferior in formability. Galvanized steel sheets are a substitute for cold-rolled sheets, so they are pressed using press dies designed for cold-rolled sheets, but press dies designed specifically for use with ultra-deep drawn steel sheets can cause the plates to break. It was cracked. Next, since the low LDR of plated plates was thought to be affected by the friction on the plated plate's surface, we determined the frictional resistance of the plated plate's surface using a sliding resistance test. The shape of the testing machine used is shown in Figure 5. This testing machine pinches a sample and pulls it at a constant speed, and evaluates the surface friction force based on the amount of load required at that time. The test was conducted without oil. The test results are shown in Figure 6. As is clear from this figure, the surface friction of the cold-rolled plate and the plated plate is different, and this seems to have an effect on formability. Next, we conducted further intensive research to clarify the factors that govern the friction coefficient of the plated surface of Zn-Ni alloy coated steel sheets, and as a result, we found the following. Changing the outermost surface of the plating layer changes press formability. There is no noticeable deterioration in the quality of the cold-rolled sheet due to plating. After focusing on this and further considering it, we found that
The Zn−Ni plating surface is coated with at least one of H 2 PO 4 - and HPO 4 2- ions, K + ions, Na + ions,
Mg 2+ ion, Ca 2+ ion, NH 4+ ion, Al 3+
It has been discovered that press formability is significantly improved by soaking in a solution of a salt containing one or more types of ions. Figure 1 shows 4 Zn-Ni alloy plated plates in the following solution.
It shows the change in LDR when immersed for seconds. The Ni content of the tamping plate used was 12.5%, and the steel type used was
SPCC was used. Treatment liquid NaH 2 PO 4 K 2 HPO 4 200g/150g/Liquid temperature 60°C PH 5.8 It can be seen that LDR increases by treatment with this liquid. Glow discharge analysis (GDS)
As a result, it is known that a P peak exists on the surface of the plated plate after dipping, and the P peak on the plated surface
It is thought that this improves lubricity and press formability. The present invention has been constructed based on the above findings, and the specific construction will be explained in more detail below. The solution used to soak the plated surface contains at least one of H 2 PO 4 - ions and HPO 4 2- ions and K +
ion, Na + ion, Mg 2+ ion, Ca 2+ ion,
It is a solution of salt consisting of one or more of NH 4+ ions and Al 3+ ions. Although there are no limitations on the concentration or temperature of this solution, in the case of immersion treatment, it may take some time for the effect to be obtained, so it is preferable to increase the temperature and concentration in order to obtain a quick effect. For short-time processing of less than 10 seconds, which is suitable for industrial production, the immersion temperature is 40°C or higher, and the concentration of the immersion liquid is 100 g / H 2 PO 4 - and HPO 4 2 - in total.
The above is preferable. In addition, the plated plate used also has a Ni content of 10~
17 wt%, preferably in the range of 11 to 15%. Ten
If it is less than 17%, this treatment method is ineffective, and if it exceeds 17%, the Zn-Ni plated layer is likely to cause powdering. Therefore, in the present invention, the Ni content of the target Zn-Ni alloy plated steel sheet is set to 10 to 17wt. %.
In addition, Co, Fe, Cr, Cu, Co, Fe, Cr, Cu,
Adding Mn, Al, etc. in a few percent or less does not impair the purpose of the present invention. The pH of the solution is preferably about 4 to 10. If it is less than 4, the dissolution of Zn in the plating layer will be severe, and the amount of plating will be greatly reduced, making it impractical. If it is more than 10, there will be no improvement in press formability, so the pH of the solution should be set to 4 to 10. limited to. The cations contained in the liquid used are K + ,
It should be electrochemically less noble than Zn and Ni of Na + , Mg 2+ , Ca 2+ , NH 4 + , Al 3+ . This is because when a plating plate is soaked in a liquid containing metal ions,
This is because metals that are electrochemically more noble than Zn and Ni may cause a substitution reaction with Zn and Ni, depositing on the plated surface and deteriorating the appearance. The amount of P attached to the plating surface is 0.1 in terms of P.
~5 mg/ m2 is preferred. If it is less than 0.1 mg/m 2 , it will not be effective, and if it is more than 5 mg/m 2 , the chemical conversion properties will deteriorate, which is not preferable. <Example> Table 1 also shows the test steel sheets, their plating conditions, dipping conditions, and press formability expressed in LDR.
The lubricating oil is Daphne Oil Coat Z5 manufactured by Idemitsu Kosan Co., Ltd., which is used as a rust preventive oil.
(trade name) was used in all cases. Regarding Example 1 and Comparative Examples 1 and 2,
The LDR values are shown in FIG. 2 to further clarify the effects of the present invention.

【表】【table】

【表】 <発明の効果> 本発明によつて、 Zn−Ni合金めつき鋼板のプレス成形性が冷
延板並みに向上し、プレスの際のプレス割れが
なくなる。 Ni含有率が10〜17%の範囲でいずれのNi含
有率でも同じ様なプレス成形性を示すため、め
つき浴組成やラインスピードの変動等に起因さ
れるめつき層組成の変動によるプレス加工性の
変動が無い。 等、成形性の安定なZn−Ni合金めつき鋼板が製
造でき工業的な利用価値が大きい。
[Table] <Effects of the Invention> According to the present invention, the press formability of the Zn-Ni alloy plated steel sheet is improved to the same level as that of a cold-rolled sheet, and press cracks during pressing are eliminated. Since press formability is similar regardless of the Ni content in the range of 10 to 17%, press forming is possible due to changes in the plating layer composition caused by changes in the plating bath composition or line speed, etc. There is no change in gender. It is possible to produce Zn-Ni alloy coated steel sheets with stable formability, and has great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は浸漬処理後の本発明の効果を示す
LDRのグラフ、第2図は浸漬処理後のLDRの変
化を示す実施例、第3図はZn−Ni合金めつき板
と冷延板のLDRの比較図、第4図は円筒深絞り
試験機の概要図、第5図は摺動抵抗試験機の概要
図、第6図はZn−Ni合金めつき板と冷延板の摺
動抵抗の差を示す図である。
Figure 1 shows the effect of the present invention after immersion treatment.
Graph of LDR, Figure 2 is an example showing the change in LDR after immersion treatment, Figure 3 is a comparison diagram of LDR of Zn-Ni alloy plated sheet and cold rolled sheet, Figure 4 is cylindrical deep drawing test machine 5 is a schematic diagram of a sliding resistance tester, and FIG. 6 is a diagram showing the difference in sliding resistance between a Zn-Ni alloy plated plate and a cold-rolled plate.

Claims (1)

【特許請求の範囲】 1 鋼板の表面にNi含有率が10〜17wt%のZn−
Ni合金めつきを施し、しかる後に該めつき面を
H2PO4 -イオンおよびHPO4 2-イオンの少なくと
も一方とK+イオン,Na+イオン,Mg2+イオン,
Ca2+イオン,NH4+イオン,Al3+イオンの一種以
上からなる塩の溶液で浸すことを特徴とするプレ
ス成形性の優れたZn−Ni合金めつき鋼板の製造
方法。 2 H2PO4 -イオンおよびHPO4 2-イオンの少な
くとも一方とK+イオン,Na+イオン,Mg2+イオ
ン,Ca2+イオン,NH4+イオン,Al3+イオンの一
種以上からなる塩の溶液のPHが4〜10の範囲であ
ることを特徴とする請求項1記載のプレス成形性
の優れたZn−Ni合金めつき鋼板の製造方法。
[Claims] 1. Zn− with a Ni content of 10 to 17 wt% on the surface of the steel plate.
After applying Ni alloy plating, the plated surface is
At least one of H 2 PO 4 - ion and HPO 4 2- ion and K + ion, Na + ion, Mg 2+ ion,
A method for producing a Zn-Ni alloy plated steel sheet with excellent press formability, which comprises soaking it in a solution of a salt consisting of one or more of Ca 2+ ions, NH 4+ ions, and Al 3+ ions. 2 Salt consisting of at least one of H 2 PO 4 - ion and HPO 4 2- ion and one or more of K + ion, Na + ion, Mg 2+ ion, Ca 2+ ion, NH 4+ ion, Al 3+ ion 2. The method for producing a Zn-Ni alloy coated steel sheet with excellent press formability according to claim 1, wherein the pH of the solution is in the range of 4 to 10.
JP63060575A 1988-03-16 1988-03-16 Production of steel sheet plated with zn-ni alloy excellent in press-moldability Granted JPH01234592A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63060575A JPH01234592A (en) 1988-03-16 1988-03-16 Production of steel sheet plated with zn-ni alloy excellent in press-moldability
DE68925858T DE68925858T2 (en) 1988-03-16 1989-03-15 METHOD FOR PRODUCING FINE SHEETS COATED WITH ZINC-NICKEL ALLOY WITH EXCELLENT PRESSING CHARACTERISTICS
EP89903215A EP0364596B1 (en) 1988-03-16 1989-03-15 METHODS FOR PRODUCING Zn-Ni ALLOY-PLATED STEEL SHEET HAVING EXCELLENT PRESS MOLDABILITY
PCT/JP1989/000276 WO1989008730A1 (en) 1988-03-16 1989-03-15 PROCESS FOR PRODUCING Zn-Ni ALLOY-PLATED STEEL SHEET HAVING EXCELLENT PRESS MOLDABILITY
CA 601174 CA1338621C (en) 1988-03-16 1989-05-30 Method for producing zn-ni alloy plated steel plate having superior press formability
US07/821,439 US5266182A (en) 1988-03-16 1992-01-15 Method for producing Zn-Ni alloy plated steel plate having superior press formability

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP63060575A JPH01234592A (en) 1988-03-16 1988-03-16 Production of steel sheet plated with zn-ni alloy excellent in press-moldability
CA 601174 CA1338621C (en) 1988-03-16 1989-05-30 Method for producing zn-ni alloy plated steel plate having superior press formability

Publications (2)

Publication Number Publication Date
JPH01234592A JPH01234592A (en) 1989-09-19
JPH0535234B2 true JPH0535234B2 (en) 1993-05-26

Family

ID=25672767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63060575A Granted JPH01234592A (en) 1988-03-16 1988-03-16 Production of steel sheet plated with zn-ni alloy excellent in press-moldability

Country Status (5)

Country Link
EP (1) EP0364596B1 (en)
JP (1) JPH01234592A (en)
CA (1) CA1338621C (en)
DE (1) DE68925858T2 (en)
WO (1) WO1989008730A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100462481C (en) * 2000-12-04 2009-02-18 杰富意钢铁株式会社 Zinc-based metal plated steel and method for production thereof
DE102015118869A1 (en) 2014-11-04 2016-05-04 Voestalpine Stahl Gmbh Method for producing a corrosion protection coating for hardenable steel sheets and corrosion protection layer for hardenable steel sheets

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1229932A (en) * 1967-07-24 1971-04-28
JPS56130477A (en) * 1980-03-13 1981-10-13 Sumitomo Metal Ind Ltd Surface treated steel plate
JPS61288098A (en) * 1985-06-14 1986-12-18 Nippon Steel Corp Colored zn-ni alloy plated steel sheet and its production
JPH06164884A (en) * 1992-11-20 1994-06-10 Mitsubishi Electric Corp Facsimile equipment

Also Published As

Publication number Publication date
EP0364596B1 (en) 1996-03-06
EP0364596A1 (en) 1990-04-25
CA1338621C (en) 1996-10-01
WO1989008730A1 (en) 1989-09-21
DE68925858T2 (en) 1996-08-01
EP0364596A4 (en) 1990-07-03
JPH01234592A (en) 1989-09-19
DE68925858D1 (en) 1996-04-11

Similar Documents

Publication Publication Date Title
RU2689824C1 (en) Sheet steel with applied metal coating, which is based on aluminium and contains titanium
JPH03191093A (en) Galvanized steel sheet excellent in press formability and chemical conversion treating property
JPH0535234B2 (en)
US5266182A (en) Method for producing Zn-Ni alloy plated steel plate having superior press formability
JP2001131762A (en) Galvanized steel sheet for automobile body
JP6682691B1 (en) Surface-treated galvanized steel sheet and method for producing the same
JP3280450B2 (en) High corrosion resistance, high workability ultra-high tensile cold rolled steel sheet and method for producing the same
JP3204823B2 (en) Method of forming zinc phosphate composite coating layer with excellent high-speed press formability on zinc-containing metal plated steel sheet
KR950000909B1 (en) Electroplated steel sheet having a plurality of coatings, excellent in workability, corrosion resistance and water-resistant paint adhesivity
JP2819429B2 (en) Galvanized steel sheet with excellent press formability and chemical conversion properties
JP2957350B2 (en) Manufacturing method of steel plate for fuel tank with excellent corrosion resistance and formability
JPS63162886A (en) Surface treated steel sheet having superior corrosion resistance, weldability, lubricity and resistance to corrosion and leaving of fingerprint after working
WO1993002225A1 (en) Aluminum alloy plate with excellent formability and production thereof
JPH0617296A (en) Production of composite plated al sheet excellent in moldability
JP2024001900A (en) Steel sheet and method for producing the same
JP3111886B2 (en) Manufacturing method of high lubrication alloyed hot-dip galvanized steel sheet
JPH03183797A (en) Galvanized steel sheet excellent in press formability and chemical conversion treatability
JP2974891B2 (en) Zn-Ni alloy plated steel sheet with excellent press formability
JP4638619B2 (en) Al alloy plate excellent in press formability and manufacturing method thereof
JPH03191091A (en) Galvanized steel sheet excellent in press formability and chemical conversion treating property
JPH02153058A (en) Alloying hot dip galvanized steel sheet
KR930007153B1 (en) Two layer coating steel sheet excellent in lubricity, corrosion resistant and painting properity
JP4720830B2 (en) Method for producing galvanized steel sheet with excellent perforation resistance and press workability
JPH03249182A (en) Galvanized steel sheet having excellent press formability and chemical convertibility
JPH03191092A (en) Galvanized steel sheet excellent in press formability and chemical conversion treating property

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees