JPH0535193B2 - - Google Patents

Info

Publication number
JPH0535193B2
JPH0535193B2 JP7358583A JP7358583A JPH0535193B2 JP H0535193 B2 JPH0535193 B2 JP H0535193B2 JP 7358583 A JP7358583 A JP 7358583A JP 7358583 A JP7358583 A JP 7358583A JP H0535193 B2 JPH0535193 B2 JP H0535193B2
Authority
JP
Japan
Prior art keywords
oil fatty
water
fatty acid
drying oil
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7358583A
Other languages
Japanese (ja)
Other versions
JPS59197402A (en
Inventor
Yosei Nakayama
Tetsuo Aihara
Koichi Umeyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Original Assignee
Kansai Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd filed Critical Kansai Paint Co Ltd
Priority to JP7358583A priority Critical patent/JPS59197402A/en
Publication of JPS59197402A publication Critical patent/JPS59197402A/en
Publication of JPH0535193B2 publication Critical patent/JPH0535193B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は酸化硬化型水分散性樹脂組成物に関
し、さらに詳しくは酸化硬化性基を有する付加重
合ポリマーのマレイン化物と水酸基含有非水溶性
付加重合ポリマーとの反応生成物を主要成分とす
る酸硬化化型水分散性樹脂組成物に関する。 従来から主鎖とエステル結合によつて結ばれた
乾性油脂肪酸残基及び/又は半乾性油脂肪酸残基
を側鎖として有する付加重合ポリマーのマレイン
化物は、その主鎖が加水分解に強い炭素−炭素結
合であるため、貯蔵安定性にすぐれていること、
また水性塗料用樹脂として使用した場合には、そ
れから形成される塗膜が耐水性にすぐれているこ
と等の利点を有しているため広く実用化されてい
る。しかしながら、逆に、主鎖に炭素−炭素結合
が多いため油性が強くこのポリマーを水溶液にし
た場合には粘度が高くなりやすくそのため固形分
含有量を上げることができないなど使用に際し大
きな制限を受ける欠点がある。 そこで、本発明者らは、上記従来の付加重合ポ
リマーのマレイン化物を水溶化する際に高粘度化
する欠点を改良することを目的に鋭意研究を重ね
た結果、該付加重合ポリマーのマレイン化物に水
酸基含有非水溶性付加重合ポリマーを反応せしめ
ると、得られる樹脂は中和して水溶性化せしめる
場合、水溶性化よりもむしろ水分散体になりやす
く、その結果低粘度で且つ容易に高固形分にする
ことができ上記問題点が解決できることを見いだ
し本発明の完成に至つたものである。 かくして本発明に従えば、 (A) 主鎖とエステル結合によつて結ばれた乾性油
脂肪酸残基及び/又は半乾性油脂肪酸残基を側
鎖として有する付加重合ポリマーのマレイン化
物〔以下、このものを「付加重合ポリマー(A)」
と略称することもある〕及び (B) 水酸基含有非水溶性付加重合ポリマー〔以
下、このものを「付加重合ポリマー(B)」と略称
することもある〕との反応生成物を中和して、
水中に分散して得られる酸化硬化型水分散性樹
脂組成物が提供される。 本発明において付加重合ポリマー(A)を形成する
乾性油脂肪酸残基及び/又は半乾性油脂肪酸残基
を側鎖として有する付加重合ポリマーは例えば次
のようにして得られる。その一つは例えば含水酸
基若しくは含グリシジン基ビニルモノマーの単独
重合体又は他の水酸基及びグリシジル基を含まな
いビニルモノマーとの共重合体と乾性油脂肪酸及
び/又は半乾性油脂肪酸とをエステル化反応させ
る方法である。ここで上記共重合体を用いるとき
は、該共重合体中には含水酸基若しくは含グリシ
ジル基ビニルモノマー成分を5重量%以上含むの
が好ましい。又別の方法としてグリシジルメタク
リレート又はグリシジルアクリレートに乾性油脂
肪酸及び/又は半乾性脂肪酸を付加して得られる
モノマーの単独重合体又は上記ビニルモノマーと
の共重合体とする方法が挙げられる。この方法に
おいても共重合体とするときは、該共重合体中に
は上記付加モノマー成分を5重量%以上含むのが
好ましい。 ここで上記含水酸基若しくは含グリシジン基ビ
ニルモノマーとして例えばアリルアルコール、2
−ヒドロキシエチルメタクリレート、2−ヒドロ
キシエチルアクリレート、ヒドロキシプロピルメ
タクリレート、ヒドロキシプロピルアクリレー
ト、グリシジルメタクリレート、グリシジルアク
リレート、メタツクーP(日油化学(株)製、商品名)
等を挙げることができる。 上記で述べたビニルモノマーとしては、例えば
スチレン、ビニルトルエン、α−メチルスチレ
ン、アクリロニトリル、メタクリロニトリル、炭
素数1〜26、好ましくは1〜18のアルコールとア
クリル酸若しくはメタクリル酸とのエステル、エ
チレングリコールモノアルキルエーテル若しくは
ジエチレングリコールモノアルキルエーテル(ア
ルキル基の炭素数1〜8)とアクリル酸若しくは
メタクリル酸とのエステル、プロピレングリコー
ルモノアルキルエーテル若しくはジプロピレング
リコールモノアルキルエーテル(アルキル基の炭
素数1〜8)とアクリル酸若しくはメタクリル酸
とのエステル、乾性油脂肪酸及び半乾性油脂肪酸
以外の炭素数4〜26のモノカルボン酸とグリシジ
ルメタクリレート若しくはグリシジルアクリレー
トとの付加モノマー等が挙げられ、前記含水酸基
若しくは含グリシジル基ビニルモノマー、グリシ
ジルメタクリレート付加脂肪酸モノマー及びグリ
シジルアクリレート付加脂肪酸モノマーとの共重
合性にすぐれ、生成したポリマーが高温で安定で
あるモノマーを使用するのが望ましい。その他ブ
タジエン、イソプレン、クロロプレン、ペンタジ
エン、酢酸ビニル、塩化ビニル、ベオバモノマー
(アメリカ、シエルケミカル社製、商品名)等の
一般のラジカル重合に使用されるモノマーも使用
できる。 又乾性油脂肪酸、半乾性油脂肪酸としては、脂
肪酸油長にして5〜90の範囲で使用可能であり、
好ましくは10〜80、さらに好ましくは15〜60の範
囲で、例えばサフラワー油脂肪酸、ダイズ油脂肪
酸アマニ油脂肪酸、麻実油脂肪酸、ケシ油脂肪
酸、ヒマワリ油脂肪酸、クルミ油脂肪酸等の非共
役の二重結合を多く含みゲル化することなくマレ
イン化及び重合反応が起こりやすく硬化性のよい
ものが特に好ましい。さらにトウモロコシ油脂肪
酸、綿実油脂肪酸、カラシ油脂肪酸、オイチシカ
油脂肪酸、落花生油脂肪酸、エノ油脂肪酸、ケシ
油脂肪酸、ゴム種油脂肪酸、ゴマ油脂肪酸、トー
ル油脂肪酸、キリ油脂肪酸、脱水ヒマシ油脂肪
酸、ハイジエン脂肪酸等も使用できる。 本発明の付加重合ポリマー(A)は上記主鎖とエス
テル結合によつて結ばれた乾性油脂肪酸残基及
び/又は半乾性油脂肪酸残基を側鎖として有する
付加重合ポリマーをマレイン化して合成される。
マレイン化は通常の方法により行なえば良く、無
水マレイン酸を約120〜250℃で反応させれば良
い。特にポリマー中に水酸基が多く残つている場
合には酢酸、プロピオン酸、ステアリン酸等の低
分子又は高分子の酸でエステル化して過剰の水酸
基を除いた後、マレイン化を行なうのが好まし
い。付加重合ポリマー(A)におけるマレイン化量は
全酸価が5〜300、好ましくは10〜150、さらに好
ましくは20〜100になる量である。酸価が5より
低すぎる場合には得られる水分散性樹脂組成物が
安定な水分散体になりにくく、他方酸価が300よ
り高すぎる場合には耐水性等の塗膜性能が悪くな
る。また分子量は、あまり低すぎると安定な水分
散体になりえず、反対に高すぎると分散操作が困
難となるので、通常数平均分子量で800〜500000、
好ましくは、1000〜100000の範囲である。 また、本発明で使用される付加重合ポリマー(B)
は水酸基を有し、且つ実質的に非水溶性であり、
例えば前記付加重合ポリマー(A)のマレイン化前の
付加重合ポリマーであることができる。このもの
はマレイン化反応が不必要なので、付加重合ポリ
マー(A)において特に好適でなかつた共役二重結合
を有する乾性油脂肪酸もしくは半乾性油脂肪酸も
自由にその構成成分として使用することができ
る。しかしながら、付加重合ポリマー(B)は付加重
合ポリマー(A)と反応させられるため、該付加重合
ポリマー(B)には必ずしも架橋反応にあずかる乾性
油脂肪酸もしくは半乾性油脂肪酸を導入しなくて
もよいが反応生成物の架橋反応をより確実にする
ためには上記脂肪酸を導入したほうが好ましい。
すなわち油長で0〜90の範囲であり、塗膜性能面
から好ましくは10〜70、さらに好ましくは20〜60
である。 また、付加重合ポリマー(B)の水酸基の量は、該
水酸基と付加重合ポリマー(A)の酸無水基との反応
が確実になされれるので多量である必要がなく、
水酸基価で0.5〜300の範囲であることができ、よ
り好ましくは1〜50である。水酸基量が多すぎる
と反応中にゲル化が生じやすくなる。 前記した付加重合ポリマー(A)と付加重合ポリマ
ー(B)との反応は、前者の有する酸無水基と後者の
有する水酸基との反応によつてなされ、且つ確実
に結合するので、相溶性の悪い樹脂の組合せにお
いても透明な光沢ある塗膜を形成することができ
る。 付加重合ポリマー(A)と付加重合ポリマー(B)との
混合割合は、重量比で97/3〜3/97、好ましく
は10/90〜90/10、さらに好ましくは20/80〜
80/20である。付加重合ポリマー(A)の割合が多く
なるほど得られる分散体の粒子径は小さく、粘度
が高くなる傾向がある。また全体としての酸価
は、3〜150、好ましくは5〜100、さらに好まし
くは10〜50の範囲である。酸価が高くなるほど水
溶性となりやすく、反対に低いと水分散不能とな
る。 付加重合ポリマー(A)と付加重合ポリマー(B)の反
応は両者を混合したあと50〜250℃で0.5〜4時間
加熱して行なう。反応後、水、アルコール、アミ
ン、アンモニア等により残りの酸無水基を開環し
たあと、アルカリ金属、アンモニア、アミン等の
中和剤によつて中和し、水中に分散して使用す
る。 本発明によつて得られる水分散性樹脂組成物を
塗料用バインダーとして使用する場合には、これ
に顔料、顔料分散剤、増粘剤、ドライヤー、その
他有機溶剤等を必要に応じて添加して使用され
る。 本発明によつて得られる水分散性樹脂組成物は
常温硬化型の被覆形成剤として使用されるが、焼
付乾燥型被覆形成剤としても使用できる。この場
合には、メラミン等の硬化剤を加えることもでき
る。さらに、その他樹脂加工剤等の用途にも使用
できる。本発明の水分散性樹脂組成物はそれ自身
すぐれた性能を発揮するが、更に広い範囲の適用
のためには、他の水性樹脂と混合して使用しても
よい。 次に実施例及び比較例により本発明を更に詳細
に説明する。又、以下で使用される部及び%は特
に限定のない限り、重量部及び重量%を示す。 実施例 1 RJ−100(数平均分子量1600、OH含有率7.7%
のスチレン・アリルアルコール共重合体、米国モ
ンサント社製)305g、アマニ油脂肪酸302g及び
ジブチルチンオキサイド0.6gを2の4ツ口フ
ラスコに入れ、240℃で6時間キシレン還流下で
脱水反応を行なつて、酸価0.5の樹脂を得た。こ
れに、無水マレイン酸37gを加え200℃で4時間
付加反応を行ない、ついで減圧蒸留で溶剤をのぞ
いてマレイン化樹脂を得た。 別の2の4ツ口フラスコに、RJ−101(数平
均分子量1150、OH含有率7.7%のスチレン・アリ
ルアルコール共重合体、米国モンサント社製)
508g、アマニ油脂肪酸408g及び無水フタル酸58
gを入れ上記と同じ方法で酸価が4になるまで脱
水反応を行なつて非水溶性樹脂を得た。 かくして得られた非水溶性樹脂427gを前記マ
レイン化樹脂に加えよく撹拌する。混合物の粘度
は、75%ブチルセロソルブ溶液でZ5であつた。こ
れを150℃で1時間加熱すると、Z7にまで粘度が
上昇した。このものに水10gを加え100℃で1時
間放置した。 実施例 2 RJ−101を660g、アマニ油脂肪酸325g、無水
フタル酸75g及び安息香酸90gを実施例1と同様
の方法によつて脱水縮合し、酸価6の非水溶性樹
脂1を得た。さらに別に、RJ−101の1015gとハ
イジエン脂肪酸1254gを同じ方法によつて脱水縮
合して酸価1.3の非水溶性樹脂2を得た。ついで
実施例1で得られたマレイン化樹脂400gに、前
者の樹脂(1)500g及び後者の樹脂(2)100gを加えよ
く撹拌する。混合物の粘度は、75%ブチルセロソ
ルブ溶液でZ5であつた。これを200℃1時間加熱
するとZ6+となつた。かくして得られた反応生成
物に水7gを加え、さらに100℃で1時間反応さ
せた。 実施例 3 RJ−101を660g、ハイジエン脂肪酸325g、無
水フタル酸43g及び安息香酸143gを実施例1と
同じ方法で酸価6まで縮合して非水溶性樹脂を得
た。この樹脂417gを実施例1で得られたマレイ
ン化樹脂626gに加えてよく混合する。混合物の
粘度は75%ブチルセロソルブ溶液でZ3-4であつ
た。これを200℃で2時間加熱し、粘度Z+ 5になる
まで反応させた。かくして得られた反応生成物に
水10gを加え、さらに100℃で1時間反応させた。 実施例 4 RJ−101を305gとアマニ油脂肪酸376gを実施
例1と同様の方法で脱水縮合反応を行ない、酸化
0.4の樹脂を得てついで無水マレイン酸41gを加
え200℃で4時間反応を行なつてマレイン化樹脂
を得た。これに、実施例2でハイジエン脂肪酸を
使用して合成した非水溶性樹脂(2)465gを加えて
よく撹拌した。この時の粘度は75%ブチルセロソ
ルブ溶液でZ〜Z1であつた。このものを200℃で
2時間加熱してZ+ 4まで反応させた。かくして得
られた反応生成物に水11gを加えさらに100℃で
1時間加熱した。 比較例 1 実施例3と同じ組成からなる組成物であるが、
マレイン化樹脂はあらかじめその酸無水基を開環
した後に単に混合した。 比較例 2 実施例1のマレイン化樹脂の製造において無水
マレイン酸量を60%(22g)にした以外は同じ方
法で合成したマレイン化樹脂を実施例1と同様の
方法でその酸無水基を開環せしめた。 比較例 3 RJ−101を508g、アマニ油脂肪酸470g、無水
フタル酸41gを用いて実施例1と同じように脱水
縮合反応を行なつたあと、無水マレイン酸38gを
加えてマレイン化反応を行なつた。ついで得られ
たマレイン化樹脂の酸無水基を水によつて開環し
た。 比較例 4 比較例3において、無水マレイン酸量を27gと
した以外は同様に処方した。 以上の実施例及び比較例で得られた組成物をそ
れぞれトリエチルアミンで当量中和して水に分散
せしめて性状及び塗膜性能を調べた。その結果を
後記表−1に示す。
The present invention relates to an oxidation-curable water-dispersible resin composition, and more specifically, an acid-curable water-dispersible resin composition containing as a main component a reaction product of a maleated addition polymer having an oxidation-curable group and a water-insoluble addition polymer containing a hydroxyl group. The present invention relates to a water-dispersible resin composition. Conventionally, maleated addition polymers having drying oil fatty acid residues and/or semi-drying oil fatty acid residues connected to the main chain by ester bonds as side chains have been known to have a carbon-based main chain that is resistant to hydrolysis. Because it is a carbon bond, it has excellent storage stability.
Furthermore, when used as a resin for water-based paints, the coating film formed therefrom has advantages such as excellent water resistance, so it is widely put into practical use. However, on the other hand, because the main chain has many carbon-carbon bonds, it is highly oily, and when this polymer is made into an aqueous solution, it tends to have a high viscosity, so it is difficult to increase the solid content, which is a drawback that severely limits its use. There is. Therefore, the present inventors conducted extensive research with the aim of improving the drawback of high viscosity when making the maleated product of the conventional addition polymerized polymer solubilized in water. When a hydroxyl group-containing water-insoluble addition polymer is reacted, the resulting resin tends to become an aqueous dispersion rather than a water-soluble one when neutralized to make it water-soluble, resulting in low viscosity and high solidity. The present invention has been completed based on the discovery that the above-mentioned problems can be solved in just a few minutes. Thus, according to the present invention, (A) a maleated product of an addition polymer having as a side chain a drying oil fatty acid residue and/or a semi-drying oil fatty acid residue connected to the main chain by an ester bond [hereinafter, this ``Addition polymerization polymer (A)''
] and (B) a hydroxyl group-containing water-insoluble addition polymer [hereinafter, this may be abbreviated as "addition polymer (B)"] by neutralizing the reaction product. ,
An oxidation-curable water-dispersible resin composition obtained by dispersing in water is provided. The addition polymerization polymer having a drying oil fatty acid residue and/or a semi-drying oil fatty acid residue as a side chain, which forms the addition polymerization polymer (A) in the present invention, can be obtained, for example, as follows. One example is the esterification reaction of a homopolymer of a vinyl monomer containing a hydrous acid group or a glycidine group or a copolymer with a vinyl monomer containing no hydroxyl group or glycidyl group and a drying oil fatty acid and/or a semi-drying oil fatty acid. This is the way to do it. When the above-mentioned copolymer is used here, it is preferable that the copolymer contains 5% by weight or more of a hydrous acid group-containing or glycidyl group-containing vinyl monomer component. Another method is to add a drying oil fatty acid and/or a semi-drying fatty acid to glycidyl methacrylate or glycidyl acrylate to form a homopolymer of the monomer or a copolymer with the above-mentioned vinyl monomer. Also in this method, when a copolymer is produced, it is preferable that the copolymer contains 5% by weight or more of the above-mentioned additional monomer component. Here, the hydrous acid group-containing or glycidine group-containing vinyl monomer is, for example, allyl alcohol, 2
-Hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, hydroxypropyl methacrylate, hydroxypropyl acrylate, glycidyl methacrylate, glycidyl acrylate, Metatsuku P (manufactured by NOF Chemical Co., Ltd., trade name)
etc. can be mentioned. Examples of the vinyl monomers mentioned above include styrene, vinyltoluene, α-methylstyrene, acrylonitrile, methacrylonitrile, esters of alcohols having 1 to 26 carbon atoms, preferably 1 to 18 carbon atoms, and acrylic acid or methacrylic acid, ethylene Ester of glycol monoalkyl ether or diethylene glycol monoalkyl ether (alkyl group has 1 to 8 carbon atoms) and acrylic acid or methacrylic acid, propylene glycol monoalkyl ether or dipropylene glycol monoalkyl ether (alkyl group has 1 to 8 carbon atoms) ) and acrylic acid or methacrylic acid, addition monomers of monocarboxylic acids having 4 to 26 carbon atoms other than drying oil fatty acids and semi-drying oil fatty acids, and glycidyl methacrylate or glycidyl acrylate, etc. It is desirable to use a monomer that has excellent copolymerizability with the glycidyl group vinyl monomer, glycidyl methacrylate-added fatty acid monomer, and glycidyl acrylate-added fatty acid monomer, and the resulting polymer is stable at high temperatures. Other monomers commonly used in radical polymerization such as butadiene, isoprene, chloroprene, pentadiene, vinyl acetate, vinyl chloride, and Beoba monomer (manufactured by Shell Chemical Co., USA, trade name) can also be used. In addition, as drying oil fatty acids and semi-drying oil fatty acids, fatty acid oil lengths can be used in the range of 5 to 90.
Preferably, it is in the range of 10 to 80, more preferably 15 to 60. Particularly preferred are those that contain a large number of double bonds, easily undergo maleation and polymerization reactions without gelation, and have good curability. In addition, corn oil fatty acids, cottonseed oil fatty acids, mustard oil fatty acids, oiticica oil fatty acids, peanut oil fatty acids, eno oil fatty acids, poppy oil fatty acids, rubber seed oil fatty acids, sesame oil fatty acids, tall oil fatty acids, tung oil fatty acids, dehydrated castor oil fatty acids, and hygienic oil fatty acids. Fatty acids etc. can also be used. The addition polymerization polymer (A) of the present invention is synthesized by maleating the addition polymerization polymer having a drying oil fatty acid residue and/or a semi-drying oil fatty acid residue connected to the main chain by an ester bond as a side chain. Ru.
Maleation may be carried out by a conventional method, and maleic anhydride may be reacted at about 120 to 250°C. In particular, when many hydroxyl groups remain in the polymer, it is preferable to esterify with a low-molecular or high-molecular acid such as acetic acid, propionic acid, or stearic acid to remove excess hydroxyl groups, and then maleate the polymer. The amount of maleation in the addition polymerization polymer (A) is such that the total acid value is from 5 to 300, preferably from 10 to 150, and more preferably from 20 to 100. If the acid value is too low than 5, the resulting water-dispersible resin composition will be difficult to form a stable water dispersion, while if the acid value is too high than 300, coating film performance such as water resistance will deteriorate. In addition, if the molecular weight is too low, it will not be possible to form a stable aqueous dispersion, and if it is too high, dispersion will be difficult, so the number average molecular weight is usually 800 to 500,000.
Preferably, it is in the range of 1,000 to 100,000. Additionally, addition polymerization polymer (B) used in the present invention
has a hydroxyl group and is substantially water-insoluble,
For example, it can be an addition polymerization polymer before maleation of the addition polymerization polymer (A). Since this product does not require a maleation reaction, drying oil fatty acids or semi-drying oil fatty acids having a conjugated double bond, which are not particularly suitable for the addition polymerization polymer (A), can also be freely used as a constituent thereof. However, since the addition polymerization polymer (B) is reacted with the addition polymerization polymer (A), it is not necessarily necessary to introduce a drying oil fatty acid or a semi-drying oil fatty acid that participates in the crosslinking reaction into the addition polymerization polymer (B). However, in order to ensure the crosslinking reaction of the reaction product, it is preferable to introduce the above-mentioned fatty acid.
That is, the oil length is in the range of 0 to 90, preferably 10 to 70, more preferably 20 to 60 in terms of coating film performance.
It is. Further, the amount of hydroxyl groups in the addition polymerization polymer (B) does not need to be large because the reaction between the hydroxyl groups and the acid anhydride groups in the addition polymerization polymer (A) is ensured.
The hydroxyl value can range from 0.5 to 300, more preferably from 1 to 50. If the amount of hydroxyl groups is too large, gelation tends to occur during the reaction. The reaction between the addition polymerization polymer (A) and the addition polymerization polymer (B) described above is carried out by the reaction between the acid anhydride group of the former and the hydroxyl group of the latter, and since they are reliably bonded, there is no need to worry about poor compatibility. Even with a combination of resins, a transparent and glossy coating film can be formed. The mixing ratio of addition polymerization polymer (A) and addition polymerization polymer (B) is 97/3 to 3/97, preferably 10/90 to 90/10, and more preferably 20/80 to 3/97 by weight.
It's 80/20. As the proportion of addition polymerization polymer (A) increases, the resulting dispersion tends to have a smaller particle size and a higher viscosity. The overall acid value is in the range of 3 to 150, preferably 5 to 100, more preferably 10 to 50. The higher the acid value, the more likely it is to be water-soluble, while the lower the acid value, the less water-dispersible it becomes. The reaction between addition polymerization polymer (A) and addition polymerization polymer (B) is carried out by mixing the two and then heating at 50 to 250°C for 0.5 to 4 hours. After the reaction, the remaining acid anhydride group is ring-opened with water, alcohol, amine, ammonia, etc., and then neutralized with a neutralizing agent such as an alkali metal, ammonia, amine, etc., and used after being dispersed in water. When using the water-dispersible resin composition obtained by the present invention as a paint binder, pigments, pigment dispersants, thickeners, dryers, other organic solvents, etc. may be added to it as necessary. used. The water-dispersible resin composition obtained according to the present invention is used as a cold-curable coating forming agent, but can also be used as a bake-drying coating forming agent. In this case, a hardening agent such as melamine can also be added. Furthermore, it can also be used for other applications such as resin processing agents. Although the water-dispersible resin composition of the present invention exhibits excellent performance by itself, it may be used in combination with other water-based resins for a wider range of applications. Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples. Further, parts and percentages used below indicate parts by weight and percentages by weight unless otherwise specified. Example 1 RJ-100 (number average molecular weight 1600, OH content 7.7%
305 g of styrene/allylic alcohol copolymer (manufactured by Monsanto, USA), 302 g of linseed oil fatty acid, and 0.6 g of dibutyltin oxide were placed in a 4-necked flask, and a dehydration reaction was carried out at 240°C for 6 hours under xylene reflux. A resin with an acid value of 0.5 was obtained. To this, 37 g of maleic anhydride was added and an addition reaction was carried out at 200°C for 4 hours, and then the solvent was removed by vacuum distillation to obtain a maleated resin. In another 2 four-necked flasks, put RJ-101 (styrene/allylic alcohol copolymer with number average molecular weight 1150 and OH content 7.7%, manufactured by Monsanto Company, USA).
508g, linseed oil fatty acid 408g and phthalic anhydride 58g
g was added and dehydration was carried out in the same manner as above until the acid value reached 4 to obtain a water-insoluble resin. 427 g of the water-insoluble resin thus obtained was added to the maleated resin and stirred well. The viscosity of the mixture was Z 5 in 75% butyl cellosolve solution. When this was heated at 150°C for 1 hour, the viscosity increased to Z7 . 10 g of water was added to this mixture and left at 100°C for 1 hour. Example 2 660 g of RJ-101, 325 g of linseed oil fatty acid, 75 g of phthalic anhydride, and 90 g of benzoic acid were dehydrated and condensed in the same manner as in Example 1 to obtain water-insoluble resin 1 with an acid value of 6. Separately, 1015 g of RJ-101 and 1254 g of high diene fatty acids were dehydrated and condensed using the same method to obtain water-insoluble resin 2 having an acid value of 1.3. Next, 500 g of the former resin (1) and 100 g of the latter resin (2) were added to 400 g of the maleated resin obtained in Example 1, and the mixture was thoroughly stirred. The viscosity of the mixture was Z 5 in 75% butyl cellosolve solution. When this was heated at 200°C for 1 hour, it became Z 6 +. 7 g of water was added to the reaction product thus obtained, and the mixture was further reacted at 100° C. for 1 hour. Example 3 660 g of RJ-101, 325 g of high diene fatty acid, 43 g of phthalic anhydride, and 143 g of benzoic acid were condensed in the same manner as in Example 1 to an acid value of 6 to obtain a water-insoluble resin. 417 g of this resin was added to 626 g of the maleated resin obtained in Example 1 and mixed well. The viscosity of the mixture was Z 3-4 in 75% butyl cellosolve solution. This was heated at 200° C. for 2 hours and reacted until the viscosity reached Z + 5 . 10 g of water was added to the reaction product thus obtained, and the mixture was further reacted at 100° C. for 1 hour. Example 4 305 g of RJ-101 and 376 g of linseed oil fatty acid were subjected to a dehydration condensation reaction in the same manner as in Example 1, and oxidized.
0.4 of the resin was obtained, 41 g of maleic anhydride was added thereto, and the reaction was carried out at 200° C. for 4 hours to obtain a maleated resin. To this was added 465 g of the water-insoluble resin (2) synthesized in Example 2 using the hydene fatty acid, and the mixture was thoroughly stirred. The viscosity at this time was Z to Z 1 for a 75% butyl cellosolve solution. This product was heated at 200° C. for 2 hours to react until Z + 4 . 11 g of water was added to the reaction product thus obtained, and the mixture was further heated at 100° C. for 1 hour. Comparative Example 1 A composition having the same composition as Example 3, but
The maleated resin was simply mixed after previously ring-opening its acid anhydride groups. Comparative Example 2 A maleated resin synthesized in the same manner as in Example 1 except that the amount of maleic anhydride was changed to 60% (22 g) was used to open the acid anhydride group in the same manner as in Example 1. I made a circle. Comparative Example 3 After performing a dehydration condensation reaction in the same manner as in Example 1 using 508 g of RJ-101, 470 g of linseed oil fatty acid, and 41 g of phthalic anhydride, 38 g of maleic anhydride was added to perform a maleation reaction. Ta. Then, the acid anhydride groups of the maleated resin obtained were ring-opened with water. Comparative Example 4 The same formulation as in Comparative Example 3 was repeated except that the amount of maleic anhydride was changed to 27 g. The compositions obtained in the above Examples and Comparative Examples were neutralized in equivalent amounts with triethylamine, dispersed in water, and their properties and coating performance were examined. The results are shown in Table 1 below.

【表】【table】

【表】 めた後の鉛筆硬度を示す。
(注2) 1週間乾燥後の塗膜を5時間水中に浸漬した
後の塗面状態を調べた。
[Table] Shows the pencil hardness after hardening.
(Note 2) The state of the coated surface was examined after the coated film had been dried for one week and immersed in water for 5 hours.

Claims (1)

【特許請求の範囲】 1 (A) 水酸基もしくはグリシジル基を有する数
平均分子量800〜500000の付加重合ポリマーに、
乾性油脂肪酸及び/又は半乾性油脂肪酸をエス
テル化させて得られる主鎖とエステル結合によ
つて結ばれた乾性油脂肪酸残基及び/又は半乾
性油脂肪酸残基を側鎖として有する油長5〜90
の付加重合ポリマーを無水マレイン酸で酸価が
5〜300になるようにマレイン化したマレイン
化物と、 (B) 水酸基価が0.5〜300の水酸基含有非水溶性付
加重合ポリマー リシジルを付加重合ポリマーのマレイン化物(A)
と付加重合ポリマー(B)との混合割合が重量比で
97/3〜3/97となるような割合で(A)の有する
酸無水基と(B)の有する水酸基とをエステル化反
応させることによつて得られる反応生成物を中
和して、水中に分散して得られる塗料用酸化硬
化型水分散性樹脂組成物。
[Scope of Claims] 1 (A) An addition polymer having a hydroxyl group or a glycidyl group and having a number average molecular weight of 800 to 500,000,
Oil length 5 having a drying oil fatty acid residue and/or semi-drying oil fatty acid residue as a side chain connected by an ester bond to the main chain obtained by esterifying a drying oil fatty acid and/or a semi-drying oil fatty acid. ~90
(B) Addition polymer of lysidyl, a hydroxyl group-containing water-insoluble addition polymer with a hydroxyl value of 0.5 to 300. maleide (A)
and addition polymerization polymer (B) in weight ratio.
The reaction product obtained by esterifying the acid anhydride group of (A) and the hydroxyl group of (B) at a ratio of 97/3 to 3/97 is neutralized, and the reaction product is dissolved in water. An oxidation-curable water-dispersible resin composition for paints obtained by dispersing it in.
JP7358583A 1983-04-26 1983-04-26 Oxidation-curable water-dispersible resin composition Granted JPS59197402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7358583A JPS59197402A (en) 1983-04-26 1983-04-26 Oxidation-curable water-dispersible resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7358583A JPS59197402A (en) 1983-04-26 1983-04-26 Oxidation-curable water-dispersible resin composition

Publications (2)

Publication Number Publication Date
JPS59197402A JPS59197402A (en) 1984-11-09
JPH0535193B2 true JPH0535193B2 (en) 1993-05-25

Family

ID=13522526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7358583A Granted JPS59197402A (en) 1983-04-26 1983-04-26 Oxidation-curable water-dispersible resin composition

Country Status (1)

Country Link
JP (1) JPS59197402A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE265505T1 (en) * 2000-02-07 2004-05-15 Sartomer Co Inc CROSS-LINKABLE POLYMER COMPOSITIONS

Also Published As

Publication number Publication date
JPS59197402A (en) 1984-11-09

Similar Documents

Publication Publication Date Title
US3806476A (en) Quick drying coatings containing copolymers having t-aliphatic hydrocarbon groups and t-aliphatic alkyd resins
JP3822235B2 (en) Process for the production of a naturally dry paint binder which can be diluted with water and its use
EP0754729B1 (en) Water-based printing ink
US4309321A (en) Aqueous coating composition
JPS5922722B2 (en) emulsion composition
JP4870250B2 (en) Water-dilutable resin, its production method and its usage
HU198742B (en) Process for producing oxidative drying alkyde resin emulsions
JPH0535193B2 (en)
EP0049479B1 (en) Vinyl type polymer composition and its use
JPS60110765A (en) Room temperature curing aqueous coating composition
JPS6038427B2 (en) Aqueous coating composition
JP2539590B2 (en) Emulsion composition
JP3583445B2 (en) Resin composition for water-based paint and paint
JPH0139456B2 (en)
JP3274156B2 (en) Paint composition using oxidation-curable fatty acid-modified vinyl resin
JPH03250079A (en) Resin composition for water-based coating material, and water-based coating material prepared therefrom
JPS6126608A (en) Aqueous pigment dispersion
JPH0482022B2 (en)
JPS61103537A (en) Aqueous pigment dispersion liquid
JPS5850671B2 (en) Coating composition
JP2000095996A (en) Cold-setting coating composition
JPS6321685B2 (en)
JPH0260973A (en) Composition for electrodeposition coating
MXPA96002807A (en) Ink for printing based on a
JPS63258961A (en) Water-based pigment dispersion