JPH0535160B2 - - Google Patents

Info

Publication number
JPH0535160B2
JPH0535160B2 JP60234335A JP23433585A JPH0535160B2 JP H0535160 B2 JPH0535160 B2 JP H0535160B2 JP 60234335 A JP60234335 A JP 60234335A JP 23433585 A JP23433585 A JP 23433585A JP H0535160 B2 JPH0535160 B2 JP H0535160B2
Authority
JP
Japan
Prior art keywords
csf
molecular weight
colony formation
stimulating factor
ultrafiltration membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60234335A
Other languages
Japanese (ja)
Other versions
JPS6293238A (en
Inventor
Kazuo Morimoto
Yoshiaki Kawahata
Takehiko Kawano
Masayuki Nishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morinaga Nyugyo KK
Original Assignee
Morinaga Nyugyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morinaga Nyugyo KK filed Critical Morinaga Nyugyo KK
Priority to JP60234335A priority Critical patent/JPS6293238A/en
Priority to KR1019860008679A priority patent/KR930008097B1/en
Priority to CN198686107102A priority patent/CN86107102A/en
Publication of JPS6293238A publication Critical patent/JPS6293238A/en
Publication of JPH0535160B2 publication Critical patent/JPH0535160B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K9/00Peptides having up to 20 amino acids, containing saccharide radicals and having a fully defined sequence; Derivatives thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Peptides Or Proteins (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔技術分野〕 本発明はヒト尿由来コロニー形成刺激因子(以
下、CSFという)含有液から高純度かつ高収率で
CSFを回収する方法に関する。 〔従来技術〕 CSFは、ヒト尿中に極めて微量に存在する生理
活性物質で、骨髄中前駆細胞に作用して白血球構
成細胞であるところの顆粒球および単球−マクロ
フアージの分化、増殖を促進する糖蛋白であり、
白血球減少症治療剤としての薬効が期待されてい
る。 CSFの精製方法としては、吸着体を用いる方
法、陰イオン交換体を用いる方法、限外濾過膜を
用いる方法などがある。 〔発明が解決しようとする問題点〕 ところで、ヒト尿中にはCSFがごく微量にしか
含まれていないので、効率よくCSFを分離、濃
縮、精製することが困難である。たとえば、従来
から繁用されている珪酸塩、珪藻土などの鉱物を
尿自体に接触させてCSFを吸着、溶出する方法、
種々の陰イオン交換クロマトグラフイーによつて
回収する方法においては操作性が繁雑であり、一
度に処理できる尿も限られているため、微量成分
であるCSFを多量に回収するにはコスト高になる
という欠点がある。 すなわち、例えば種々の陰イオン交換体による
クロマトグラフイーにおいて、カラム法における
カラムへの吸着剤の充填やバツチ法における濾過
または遠心等による吸着剤の回収など操作性が繁
雑となり、工業的規模において効率よくCSFを得
る方法としては不利な面がある。 また、尿中には多量の不純物が存在するが、従
来法では、これらがCSFと共に回収されやすいた
め、後の精製において不利な面があつた。 従つて、本発明は尿などのCFSを微量にしか含
有せず、かつ多量の不純物をも含む溶液から高収
率、高純度、低コストで、しかも簡単な操作で
CSFを回収、製造する方法を提供することを目的
とするものである。 〔問題点を解決するための手段〕 本発明の目的は、ヒト尿由来コロニー形成刺激
因子を含有する溶液に対して、セルロースを母体
としたシート状素材を渦巻状に巻いた構造物でカ
ートリツジ形式とした陰イオン交換体を用いた処
理することを特徴とする、ヒト尿由来コロニー形
成刺激因子の精製方法によつて達成される。 本発明にて使用されるCSFを含有する溶液は、
CSFの水溶液であれば特に限定されることはな
く、たとえば尿などのようにCSFの含量が微量
で、かつ、多量の不純物を含むものであつてもよ
い。 陰イオン交換体としては、たとえばDEAE−セ
フアデツクス、QAE−セフアデツクス、DEAE
−セルロース、QAE−セルロース、DEAE−セ
フアロース、DEAE−セフアセル、スフエロシル
−DEAなどがあげられるが、好適には陰イオン
交換基を有するセルロースを母体としたシート状
素材を渦巻状に巻いた構造物でカートリツジ形式
としたものが有利である。 当該構造物は、通常担体(たとえば、セルロー
ス)をビニルポリマーで架橋し、これにイオン交
換基として、QAE−基、DEAE−基等を導入し
たもの(イオン交換マトリツクス、第1図参照)
を渦巻状としたものである。その好ましい一態様
は第2図に示した通りであり、第2図において1
はイオン交換マトリツクスを、2は水透過性支持
体を示す。当該支持体は、たとえば格子状、織物
状であることが好ましく、その材料としては、た
とえばポリスチレン、ナイロン、ポリカーボネー
ト、ポリアセタール、テフロン、ステンレス等が
用いられる。 第3図は、当該構造物を使用する精製方法の一
実施例の断面図であり、入口3から入つたCSF液
は、外周から内側へ向かい中央のコア4に集めら
れ、出口5より出る。矢印はCSF液の流れを示す
ものである。6はベントを、7はドレインを示
す。第4図は横断面図であり、外周から入つた
CSF液がコアに集められている状態を示すもので
ある。 これを使用する条件としては、たとえばCSF含
有溶液をPH5〜7、電導度20mS/cm(25℃)以
下でカートリツジに通じてCSFを吸着させるのが
好ましく、この条件でCSFは吸着され、大部分の
不純物は吸着されずにそのまま通過する。次い
で、PH5〜7の希薄塩溶液〔例えば、電導度20m
S/cm(25℃)以下のリン酸緩衝液〕で洗浄す
る。この洗浄操作によりさらに不純物は除かれる
が、CSFは吸着されたまま残る。 吸着しているCSFを溶出させるには、PH5〜9
の濃塩溶液〔例えば、電導度30mS/cm(25℃)
以上のリン酸緩衝液、食塩溶液〕を通じることに
よつて容易に行うことができる。 本発明においては、さらに限外濾過膜による処
理を組合わせることが好ましい。この限外濾過膜
による処理は前記陰イオン交換体による処理の前
に行われる。 限外濾過膜としては、CSFより低分子物質を除
去するもの(即ち、低分子側分子量分画用)と
CSFより高分子物質を除去するもの(即ち、高分
子側分子量分画用)の一方または双方を用いれば
よく、低分子側分子量分画用としては、通常1×
104〜4×104ダルトンの限外濾過膜が、また高分
子側分子量分画用としては、通常105〜106ダルト
ンの限外濾過膜が使用される。限外濾過膜として
は、ポリアクリロニトリル系限外濾過膜、ポリス
ルホン系限外濾過膜などがあげられる。 CSF含有溶液を限外濾過膜に通じる際の条件
は、一般に次の通りである: 処理溶液のPH:5〜8 操作圧:1〜5Kg/cm2 本発明に関する限外濾過膜による処理はCSFの
回収、製造の任意の工程にて行えばよいが、まず
低分子側分子量分画用の濾過膜による処理を行
い、後に高分子側分子量分画用の濾過膜による処
理を行うことが好ましい。 かくして回収されたCSFは、好ましくはさらに
自体既知の高度精製手段(例えば、アフイニテイ
ークロマトグラフイー、ゲル濾過など)、加熱
(例えば、50〜80℃、1〜10時間滅菌処理などに
付した後、凍結乾燥することによつて医療用CSF
製剤とすることができる。もちろん凍結乾燥する
ことなく、既知の手段にて単離、精製することが
できる。 〔発明の効果〕 本発明によりCSFを高純度かつ高収率で回収す
ることができる。しかも、比活性が高く、発熱性
物質を除去したCSFを得ることができる。また、
従来法に比べて容易に、かつ、効率的に優れた操
作性、経済性を有している。 本発明により詳しく説明するために以下に実施
例を挙げるが、本発明は、これらによつて何等限
定されるものではない。 実施例 1 新鮮尿50をポリアクリロニトリル系限外濾過
膜(分画分子量20000カツト)を用いて、低分子
側不純物を除去するとともに、1まで濃縮し
た。 次にこの濃縮液を、予め0.05M−リン酸緩衝液
(PH6.5)〔電導度8.5mS/cm(25℃)に相当〕で
平衡化したAMF社製Zetaprep QAE−カートリ
ツジR250に通じ、CSFを吸着させる。 次いで、このQAE−カートリツジを0.05M−
リン酸緩衝液(PH6.5)で十分洗浄した後、1.0M
−NaCl含有0.05M−リン酸緩衝液(PH6.5)〔電導
度85mS/cm(25℃)に相当〕で溶出させ、CSF
を含む溶出液を得た。またこれとは別に、比較対
照として、新鮮尿50を4倍希釈した後、0.05M
−リン酸緩衝液(PH6.5)で平衡化させたDEAE
−セルロース100gを添加し、1時間撹拌吸着さ
せ、前記と同様に洗浄、溶出を行い、CSFを含む
溶出液を得た。 これらの溶出液について、それぞれCSF活性を
測定し、比活性および回収率を求め、表1−1お
よび表1−2に示した。 なお、CSF活性は、C57BL/6Nマウス骨髄細
胞を用いる単層寒天平板法によるコロニー形成法
で測定した。すなわち、試料を2%(v/v)牛
血清を含有する蒸留水で適宜希釈して、徐菌濾過
(0.45μメンブレンフイルター)した後、3枚のシ
ヤーレへ0.1ml宛分注し、これに0.3%(w/w)
寒天、20%(v/v)牛胎児血清および
C57BL/6Nマウス骨髄細胞105個を含有する
McCoy′s5A培地1mlを加えて十分混和した後、
37℃、7.5%(v/v)炭酸ガス通気下のふらん
器で7日間培養した。培養後、顕微鏡視野下で50
個以上の細胞からなる集塊をコロニーとして、形
成されたコロニー数を計測し、形成されたコロニ
ー数(単位)でCSF活性を表わした。すなわち、
CSF活性、1単位は1形成コロニーとした。 表1−1および表1−2に示すように、本発明
法は従来法に比べ、回収率は同程度であるが、比
活性(純度)は限外濾過膜による精製を導入し、
不純物をあらかじめ除去したことにより十数倍上
昇した。 また、従来法が吸着時、希釈による電導度調整
のために液量が増加するのに反して、本発明法は
前処理して限外濾過膜による精製を導入したこと
により、液量が小量化されるとともに電導度調整
も簡単に行え、後の陰イオン交換体による処理も
操作性が向上し、作業効率も改善することができ
た。また、カートリツジ形式のものを導入するこ
とで、さらに陰イオン交換体によるクロマトグラ
フイー時の作業性をアツプすることができた。
[Technical field] The present invention provides highly purified and high-yield methods for producing human urine-derived colony formation stimulating factor (hereinafter referred to as CSF)-containing fluid.
Concerning how to collect CSF. [Prior art] CSF is a physiologically active substance that exists in extremely small amounts in human urine, and acts on bone marrow progenitor cells to promote the differentiation and proliferation of granulocytes and monocytes-macrophages, which are white blood cell constituent cells. is a glycoprotein,
It is expected to be effective as a therapeutic agent for leukopenia. Methods for purifying CSF include methods using adsorbents, methods using anion exchangers, and methods using ultrafiltration membranes. [Problems to be Solved by the Invention] By the way, since human urine contains only a very small amount of CSF, it is difficult to efficiently separate, concentrate, and purify CSF. For example, a method that adsorbs and elutes CSF by bringing minerals such as silicates and diatomaceous earth into contact with urine itself, which have been frequently used in the past,
Collection methods using various anion exchange chromatography methods are complicated to operate, and the amount of urine that can be processed at one time is limited, making it expensive to collect a large amount of CSF, which is a trace component. It has the disadvantage of becoming. In other words, for example, in chromatography using various anion exchangers, the operability is complicated, such as packing the adsorbent into the column in the column method and recovering the adsorbent by filtration or centrifugation in the batch method, and it is not efficient on an industrial scale. There are disadvantages to this method of obtaining CSF. Furthermore, there are a large amount of impurities in urine, and in conventional methods, these are likely to be recovered together with CSF, which is disadvantageous in subsequent purification. Therefore, the present invention enables high yield, high purity, low cost, and simple operation to extract CFS from solutions containing only trace amounts of CFS, such as urine, and also containing large amounts of impurities.
The purpose is to provide a method for collecting and manufacturing CSF. [Means for Solving the Problems] The object of the present invention is to apply a solution containing a human urine-derived colony formation stimulating factor to a solution containing a human urine-derived colony formation stimulating factor using a structure in which a sheet-like material made of cellulose is spirally wound in a cartridge format. This is achieved by a method for purifying human urine-derived colony formation stimulating factor, which is characterized by treatment with an anion exchanger. The solution containing CSF used in the present invention is
There is no particular limitation as long as it is an aqueous solution of CSF, and it may be, for example, urine, which has a trace amount of CSF and contains a large amount of impurities. Examples of anion exchangers include DEAE-Sephadex, QAE-Sephadex, DEAE
-cellulose, QAE-cellulose, DEAE-cepharose, DEAE-cephacel, sphaerosil-DEA, etc., but preferably a structure in which a sheet-like material with cellulose as a matrix having an anion exchange group is wound into a spiral shape. A cartridge format is advantageous. The structure is usually a carrier (e.g., cellulose) crosslinked with a vinyl polymer, into which QAE- groups, DEAE- groups, etc. are introduced as ion exchange groups (ion exchange matrix, see Figure 1).
It has a spiral shape. A preferable embodiment thereof is as shown in FIG.
2 indicates an ion exchange matrix and 2 indicates a water permeable support. The support is preferably in the form of a lattice or fabric, and its material includes, for example, polystyrene, nylon, polycarbonate, polyacetal, Teflon, stainless steel, and the like. FIG. 3 is a cross-sectional view of an embodiment of the purification method using the structure, in which CSF fluid enters from the inlet 3, moves inward from the outer periphery and is collected in the central core 4, and exits from the outlet 5. Arrows indicate the flow of CSF fluid. 6 indicates a vent, and 7 indicates a drain. Figure 4 is a cross-sectional view, entering from the outer periphery.
This shows the state in which CSF fluid is collected in the core. As conditions for using this, for example, it is preferable to pass a CSF-containing solution through a cartridge at a pH of 5 to 7 and an electrical conductivity of 20 mS/cm (25°C) or less to adsorb CSF. Under these conditions, CSF is adsorbed and most of the CSF is absorbed. Impurities pass through without being adsorbed. Next, a dilute salt solution with a pH of 5 to 7 [e.g., conductivity of 20 m
S/cm (25°C) or less of phosphate buffer]. This washing operation further removes impurities, but the CSF remains adsorbed. To elute adsorbed CSF, pH 5-9
Concentrated salt solution [e.g. conductivity 30mS/cm (25℃)
This can be easily carried out by passing the above phosphate buffer and saline solution]. In the present invention, it is preferable to further combine treatment with an ultrafiltration membrane. This treatment with the ultrafiltration membrane is performed before the treatment with the anion exchanger. Ultrafiltration membranes include those that remove low molecular weight substances from CSF (i.e., for low molecular weight fractions).
One or both of those that remove high molecular weight substances from CSF (i.e., for high molecular weight fractions) may be used, and for low molecular weight fractions, usually 1×
An ultrafiltration membrane of 10 4 to 4×10 4 daltons is used, and an ultrafiltration membrane of 10 5 to 10 6 daltons is usually used for high molecular weight fractionation. Examples of the ultrafiltration membrane include polyacrylonitrile ultrafiltration membranes and polysulfone ultrafiltration membranes. The conditions for passing a CSF-containing solution through an ultrafiltration membrane are generally as follows: PH of treatment solution: 5 to 8 Operating pressure: 1 to 5 Kg/cm 2 The treatment by the ultrafiltration membrane according to the present invention Although this may be carried out at any stage of the recovery and production process, it is preferable to first perform treatment using a filtration membrane for low molecular weight fractions, and then to perform treatment using a filtration membrane for high molecular weight fractions later. The CSF thus recovered is preferably further subjected to known high-purification means (e.g., affinity chromatography, gel filtration, etc.), heating (e.g., 50 to 80°C, sterilization treatment for 1 to 10 hours, etc.), and then sterilized. , medical CSF by freeze-drying
It can be made into a formulation. Of course, it can be isolated and purified by known means without lyophilization. [Effects of the Invention] According to the present invention, CSF can be recovered with high purity and high yield. Moreover, CSF with high specific activity and pyrogenic substances removed can be obtained. Also,
It is easier and more efficient than conventional methods and has excellent operability and economy. Examples are given below to explain the present invention in more detail, but the present invention is not limited thereto in any way. Example 1 50% of fresh urine was concentrated to 1% while removing low molecular weight impurities using a polyacrylonitrile ultrafiltration membrane (molecular weight cut off: 20,000). Next, this concentrated solution was passed through Zetaprep QAE-Cartridge R250 manufactured by AMF, which had been equilibrated in advance with 0.05M phosphate buffer (PH6.5) [equivalent to a conductivity of 8.5 mS/cm (25°C)], and the CSF to be adsorbed. Next, this QAE-cartridge is 0.05M-
After thorough washing with phosphate buffer (PH6.5), 1.0M
- Elute with 0.05M phosphate buffer containing NaCl (PH6.5) [corresponding to conductivity 85mS/cm (25℃)], and
An eluate containing the following was obtained. Separately, as a comparison, fresh urine 50 was diluted 4 times and 0.05M
- DEAE equilibrated with phosphate buffer (PH6.5)
- 100 g of cellulose was added, stirred and adsorbed for 1 hour, and washed and eluted in the same manner as above to obtain an eluate containing CSF. The CSF activity of each of these eluates was measured, and the specific activity and recovery rate were determined and shown in Tables 1-1 and 1-2. The CSF activity was measured by colony formation using a single layer agar plate method using C57BL/6N mouse bone marrow cells. That is, the sample was appropriately diluted with distilled water containing 2% (v/v) bovine serum, subjected to sterile filtration (0.45 μ membrane filter), and then dispensed to 0.1 ml onto three plates. 0.3% (w/w)
agar, 20% (v/v) fetal bovine serum and
Contains 105 C57BL/6N mouse bone marrow cells
After adding 1 ml of McCoy's 5A medium and mixing thoroughly,
The cells were cultured for 7 days at 37°C in a flannel with 7.5% (v/v) carbon dioxide aeration. After incubation, under the microscope field 50
The number of formed colonies was counted, and the number of formed colonies (unit) was expressed as the CSF activity. That is,
One unit of CSF activity was defined as one formed colony. As shown in Tables 1-1 and 1-2, the recovery rate of the method of the present invention is comparable to that of the conventional method, but the specific activity (purity) is improved by introducing purification using an ultrafiltration membrane.
By removing impurities in advance, the increase was more than ten times higher. In addition, while the conventional method increases the amount of liquid during adsorption due to conductivity adjustment through dilution, the method of the present invention uses pretreatment and purification using an ultrafiltration membrane, so the amount of liquid is small. In addition to being quantifiable, the conductivity can be easily adjusted, and the subsequent treatment with an anion exchanger has improved operability and work efficiency. In addition, by introducing a cartridge type system, we were able to further improve workability during chromatography using an anion exchanger.

【表】【table】

【表】 実施例 2 CSF含有溶液4000mlを、ポリスルホン系限外濾
過膜(分画分子量1000000カツト)の平膜状のも
のを用い、膜による分離を行つた。溶液4000mlを
循環濾過するのに要した時間は30分であつた。 その後、実施例1と同様にしてQAE−カート
リツジによるイオン交換クロマトグラフイーを行
つた。 濾過前液、濾過後液、QAE−カートリツジ溶
出液について、実施例1の方法にてCSF活性を測
定し、総活性、比活性、回収率を求めた。さらに
第9改正日本薬局方に従つて、ウサギによる発熱
性物質除去効果を測定した。これらの測定結果は
表2に示した。 表2に示すように高回収率でCSFが回収でき、
比活性(純度)も上昇した。また、CSFに関して
は、限外濾過膜によつて阻害物質が除去でき、活
性が上昇した。 さらに、発熱性物質の除去においても顕著な効
果があつた。
[Table] Example 2 4000 ml of a CSF-containing solution was separated using a flat polysulfone ultrafiltration membrane (molecular weight cut off: 1,000,000). The time required to circulate and filter 4000 ml of solution was 30 minutes. Thereafter, ion exchange chromatography using a QAE cartridge was performed in the same manner as in Example 1. The CSF activity of the pre-filtration solution, post-filtration solution, and QAE-cartridge eluate was measured by the method of Example 1, and the total activity, specific activity, and recovery rate were determined. Furthermore, the pyrogenic substance removal effect using rabbits was measured in accordance with the 9th edition of the Japanese Pharmacopoeia. The results of these measurements are shown in Table 2. As shown in Table 2, CSF can be recovered with a high recovery rate.
Specific activity (purity) also increased. Furthermore, regarding CSF, inhibitors could be removed by the ultrafiltration membrane, resulting in increased activity. Furthermore, there was a remarkable effect in removing pyrogenic substances.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、陰イオン交換基を有するシート状素
材を渦巻状に巻いた構造物の概略図を、第2図は
当該構造物の横断面図を、第3図はシート状素材
を渦巻状に巻いた態様の陰イオン交換体の一実施
例の垂直断面図であり、第4図はその横断面図で
ある。 C……担体、P……ビニルポリマー、Q……
QAE−またはDEAE基、1……イオン交換マト
リツクス、2……水透過性支持体、3……入口、
4……コア、5……出口、6……ベント、7……
ドレイン。
Figure 1 is a schematic diagram of a structure in which a sheet material having an anion exchange group is wound into a spiral shape, Figure 2 is a cross-sectional view of the structure, and Figure 3 is a spirally wound sheet material material. FIG. 4 is a vertical cross-sectional view of an embodiment of an anion exchanger in a rolled form, and FIG. 4 is a cross-sectional view thereof. C...Carrier, P...Vinyl polymer, Q...
QAE- or DEAE group, 1... ion exchange matrix, 2... water permeable support, 3... inlet,
4...core, 5...exit, 6...vent, 7...
drain.

Claims (1)

【特許請求の範囲】 1 ヒト尿由来コロニー形成刺激因子を含有する
溶液に対して、セルロースを母体としたシート状
素材を渦巻状に巻いた構造物でカートリツジ形式
とした陰イオン交換体を用いて処理することを特
徴とする、ヒト尿由来コロニー形成刺激因子の精
製方法。 2 さらに該コロニー形成刺激因子より低分子物
質および高分子物質の少なくとも一方を排除でき
る限外濾過膜による処理を組合わせた特許請求の
範囲第1項記載のヒト尿由来コロニー形成刺激因
子の精製方法。
[Claims] 1. For a solution containing a human urine-derived colony formation stimulating factor, an anion exchanger in the form of a cartridge made of a spirally wound sheet-like material with cellulose as the matrix is used. A method for purifying a human urine-derived colony formation stimulating factor, the method comprising: 2. A method for purifying a human urine-derived colony formation stimulating factor according to claim 1, which further combines treatment with an ultrafiltration membrane capable of removing at least one of a low molecular weight substance and a high molecular weight substance from the colony formation stimulating factor. .
JP60234335A 1985-10-18 1985-10-18 Production of colony stimulating factor Granted JPS6293238A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60234335A JPS6293238A (en) 1985-10-18 1985-10-18 Production of colony stimulating factor
KR1019860008679A KR930008097B1 (en) 1985-10-18 1986-10-16 Process for preparing colony forming stimulative factor
CN198686107102A CN86107102A (en) 1985-10-18 1986-10-17 The manufacture method of colony stimulating factor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60234335A JPS6293238A (en) 1985-10-18 1985-10-18 Production of colony stimulating factor

Publications (2)

Publication Number Publication Date
JPS6293238A JPS6293238A (en) 1987-04-28
JPH0535160B2 true JPH0535160B2 (en) 1993-05-25

Family

ID=16969380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60234335A Granted JPS6293238A (en) 1985-10-18 1985-10-18 Production of colony stimulating factor

Country Status (3)

Country Link
JP (1) JPS6293238A (en)
KR (1) KR930008097B1 (en)
CN (1) CN86107102A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1083488C (en) * 1996-06-05 2002-04-24 杭州九源基因工程有限公司 Method for production of recombining human grunulocyte colony stimulation factor

Also Published As

Publication number Publication date
JPS6293238A (en) 1987-04-28
KR930008097B1 (en) 1993-08-25
KR870004055A (en) 1987-05-07
CN86107102A (en) 1987-08-12

Similar Documents

Publication Publication Date Title
SU1268105A3 (en) Composite material for anion-exchanger and method for producing same
US2461505A (en) Removal or replacement of electrolytes in physiologically active materials
FR2461500A1 (en) PROCESS FOR PRODUCING A SUBSTANCE CAPABLE OF STIMULATING THE PROLIFERATION AND DIFFERENTIATION OF HUMAN GRANULOPOIETIC STEM CELLS
DD298110A5 (en) METHOD FOR PRODUCING A CONCENTRATE OF THE BLOOD GENERATION FACTOR VIII FROM WILLEBRAND FACTOR COMPLEX FROM ENTIRE PLASMA
CN110759959B (en) Vitamin B is separated and extracted from fermentation liquor 12 Method (2)
DE3826792C1 (en)
DE3914869C1 (en)
CN101134776A (en) Method for preparing alpha1-antitrypsin
JPH0535160B2 (en)
DE69434001T2 (en) CLEANING VITAMIN-K DEPENDENT PROTEINS BY MEMBRANE CHROMATOGRAPHY
CN100480378C (en) Process for producing lactoperoxidase
JPS6160050B2 (en)
CN103642794B (en) A kind of a large amount of methods for preparing BCG-CpG-DNA
US3905870A (en) Purification of kallikrein
JPH02207090A (en) Extraction and concentration of ganglioside
JPS6159610B2 (en)
JPH07155194A (en) Method for purifying protein
CN1392878A (en) Method of purifying calcium ion-binding protein
Salmon et al. The Effect of Hydrogen Ion Concentration upon Adsorption of the Active Factors of Vitamin B Complex by Fullers' Earth
CN106146608A (en) A kind of extraction preparation method of apidaecin
JPH0244515B2 (en)
RU2356560C1 (en) Ceruloplasmin recovery method
JPS63269992A (en) Concentration preparation of milk ganglioside
JPH054929A (en) Method for fractionating and purifying anti-viral active substance
JPH01141593A (en) Method for recovering urokinase