JPH0535108B2 - - Google Patents

Info

Publication number
JPH0535108B2
JPH0535108B2 JP60255009A JP25500985A JPH0535108B2 JP H0535108 B2 JPH0535108 B2 JP H0535108B2 JP 60255009 A JP60255009 A JP 60255009A JP 25500985 A JP25500985 A JP 25500985A JP H0535108 B2 JPH0535108 B2 JP H0535108B2
Authority
JP
Japan
Prior art keywords
sintered body
pressure
hardness
sintering
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60255009A
Other languages
Japanese (ja)
Other versions
JPS62119166A (en
Inventor
Shuichi Takeda
Hideki Shishiba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP60255009A priority Critical patent/JPS62119166A/en
Publication of JPS62119166A publication Critical patent/JPS62119166A/en
Publication of JPH0535108B2 publication Critical patent/JPH0535108B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高硬度高密度窒化珪素焼結体の製造法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a high hardness, high density silicon nitride sintered body.

従来の技術 従来セラミツクス焼結には結合剤を添加し、
1600〜2000℃の温度で常圧〜2000気圧の条件で最
低60分程度の加熱保持を必要とするものであつ
た。
Conventional technology Traditionally, ceramics are sintered by adding a binder.
It required heating and holding for at least 60 minutes at a temperature of 1,600 to 2,000°C and a pressure of normal pressure to 2,000 atmospheres.

これらの方法についてはすでに特許公報(特公
昭58−49509号、特公昭59−3955号)に開示され
ている。
These methods have already been disclosed in patent publications (Japanese Patent Publications No. 58-49509 and Japanese Patent Publication No. 59-3955).

発明が解決しようとする問題点 しかし、上記の従来技術には下記の欠点があつ
た。
Problems to be Solved by the Invention However, the above-mentioned prior art had the following drawbacks.

(1) 結合剤の添加により、結合剤を添加しないで
焼結した場合に比較して、硬度が低いという欠
点があつた。
(1) Due to the addition of a binder, the hardness was lower than that of sintering without the addition of a binder.

(2) 常圧〜2000気圧程度で得られる焼結体の密度
は、結合剤を使用すれば理論密度に到達可能で
あるが、無添加によつては理論密度に到達は出
来ず、その結果硬度も低いものしか得られない
という欠点があつた。
(2) The density of the sintered body obtained at normal pressure to about 2000 atm can reach the theoretical density by using a binder, but it cannot reach the theoretical density if no additives are used. The drawback was that only low hardness could be obtained.

(3) 高密度の焼結体を得るためには、上述の温度
に1時間以上保持する必要があり、コストも高
く産業上利用を阻害していた。
(3) In order to obtain a high-density sintered body, it is necessary to maintain the above-mentioned temperature for more than one hour, and the cost is high, which hinders industrial use.

発明の目的 本発明は上記の事情に鑑みなされたものであつ
て、その目的とするところは、超高圧、高温加熱
が可能であり、結合剤無添加では従来焼結できな
かつた高融点難焼結物質の焼結が可能であるし超
高圧及びテルミツトによる急速加熱に加えて外部
加熱を併用すること又は原料粉酸素濃度を1.6%
以下とすることにより、熱伝導性の乏しい非酸化
物セラミツクスでも結晶粒を粗大化させず緻密で
高硬度な焼結体を得ることが可能な高硬度高密度
窒化珪素焼結体の製造法を提供することにある。
Purpose of the Invention The present invention has been made in view of the above-mentioned circumstances, and its purpose is to enable ultra-high pressure and high temperature heating, and to achieve a high melting point and refractory material that could not be sintered conventionally without the addition of a binder. It is possible to sinter the solid material by using external heating in addition to ultra-high pressure and rapid heating using thermite, or by reducing the oxygen concentration of the raw material powder to 1.6%.
By doing the following, we have developed a method for manufacturing a high-hardness, high-density silicon nitride sintered body that can obtain a dense and highly hard sintered body without coarsening the crystal grains even in non-oxide ceramics with poor thermal conductivity. It is about providing.

問題点を解決するための手段及び作用 上記の目的を達成するために、本発明は、Al
あるいはSiとFe2O3の混合組成物(以後テルミツ
ト組成物と呼ぶ)をSi3N4から成る成型体と共に
高圧装置中に充填し、前記テルミツト組成物と
Si3N4を圧力1GPa以上に加圧し、テルミツト組
成物に 2Al+Fe2O3→Al2O3+2Fe+204Kcal Si+2/3Fe2O3→SiO2+4/3Fe+86Kcal なる反応を生じせしめて予備焼結し、この予備焼
結段階に引き続き、当該焼結体を温度1600〜2000
℃、圧力1GPa以上で5〜30min焼結するように
してあり、その実施態様で不可避酸素不純物濃度
が1.6%以下、平均粒径が6μm以下のSi3N4原料粉
を用い結合剤無添加で焼結するようにしたもので
ある。
Means and Effects for Solving the Problems In order to achieve the above objects, the present invention provides Al
Alternatively, a mixed composition of Si and Fe 2 O 3 (hereinafter referred to as a thermite composition) is filled into a high-pressure device together with a molded body made of Si 3 N 4 , and the mixture composition is combined with the thermite composition.
Si 3 N 4 is pressurized to a pressure of 1 GPa or higher to cause a reaction in the thermite composition as follows: 2Al + Fe 2 O 3 → Al 2 O 3 + 2Fe + 204Kcal Si + 2/3Fe 2 O 3 → SiO 2 + 4/3Fe + 86Kcal, and this is pre-sintered. Following the preliminary sintering step, the sintered body is heated to a temperature of 1600 to 2000.
℃, pressure of 1 GPa or more for 5 to 30 minutes, and in this embodiment, Si 3 N 4 raw material powder with an unavoidable oxygen impurity concentration of 1.6% or less and an average particle size of 6 μm or less is used without the addition of a binder. It is designed to be sintered.

実施例 以下、本発明の実施例を図面に基づいて説明す
る。
Embodiments Hereinafter, embodiments of the present invention will be described based on the drawings.

第1図に超高圧発生装置を示す。同図中1はシ
リンダ、2はピストン、3はパイロフイライト製
ガスケツト、4はパイロフイライト製断熱材、
5,6,7はそれぞれ鋼板、鋼製リング、鋼板又
はMo板、8はセラミツクス製断熱材、9は黒鉛
ヒータ、10はパイロフイライト製断熱材、11
は六方晶窒化ホウ素成型体、12はテルミツト組
成物、13は被焼結セラミツクス粉末である。
Figure 1 shows an ultra-high pressure generator. In the figure, 1 is a cylinder, 2 is a piston, 3 is a pyrofluorite gasket, 4 is a pyrofluorite insulation material,
5, 6 and 7 are steel plates, steel rings, steel plates or Mo plates, 8 is a ceramic insulation material, 9 is a graphite heater, 10 is a pyrofluorite insulation material, 11
1 is a hexagonal boron nitride molded body, 12 is a thermite composition, and 13 is a ceramic powder to be sintered.

そして、シリンダ1とピストン2は超高圧発生
容器を形成するものであり、パイロフイライト製
ガスケツト3は圧力シールの役割をもつ。
The cylinder 1 and piston 2 form an ultra-high pressure generating container, and the pyrofluorite gasket 3 has the role of a pressure seal.

銅板5、鋼製リング6、鋼板又はMo板7、セ
ラミツクス製断熱材8は黒鉛ヒータ9に電流を供
給する組立物であり、黒鉛ヒータ9はテルミツト
組成物(AlあるいはSiとFe2O3の混合物で例えば
次式2Al+Fe2O3→Al2O3+2Fe+204Kcalの発熱
反応によりセラミツクス焼結の熱源)を着火する
と共に被焼結セラミツクス粉末焼結用外部ヒータ
を構成する。
A copper plate 5, a steel ring 6, a steel plate or Mo plate 7, and a ceramic heat insulating material 8 are an assembly that supplies current to a graphite heater 9 . The mixture ignites a heat source for sintering ceramics by an exothermic reaction of the following formula: 2Al+Fe 2 O 3 →Al 2 O 3 +2Fe+204 Kcal, and also constitutes an external heater for sintering the ceramic powder to be sintered.

六方晶窒化ホウ素成型体11は被焼結セラミツ
クス粉末13とテルミツト組成物12との反応防
止および黒鉛ヒータ9との電気的絶縁の働きをす
る。
The hexagonal boron nitride molded body 11 functions to prevent the reaction between the ceramic powder 13 to be sintered and the thermite composition 12 and to provide electrical insulation from the graphite heater 9.

上記した超高圧発生装置は次のように作動され
る。
The ultra-high pressure generator described above is operated as follows.

被焼結セラミツクス粉末13、テルミツト組成
物12およびその他の構成物をシリンダ1内に配
置し、ピトン2に荷重を加え試料部に2万気圧の
圧力を発生させる。対向したピストン2から黒鉛
ヒータ9に通電し、試料室を830〜920℃に加熱
し、テルミツト組成物12を着火させる。テルミ
ツト着火後黒鉛ヒータ9により試料室温度を1600
〜2000℃に短時間で昇温させ、約5〜30分保持後
試料部を冷却したのち、圧力を除去して焼結体を
回収する。
Ceramic powder to be sintered 13, thermite composition 12, and other components are placed in cylinder 1, and a load is applied to piton 2 to generate a pressure of 20,000 atmospheres in the sample section. Electricity is applied to the graphite heater 9 from the opposed piston 2 to heat the sample chamber to 830 to 920°C and ignite the thermite composition 12. After thermite ignites, the sample chamber temperature is set to 1600 using the graphite heater 9.
The temperature is raised to ~2000°C in a short period of time, held for about 5 to 30 minutes, and then the sample section is cooled down, the pressure is removed, and the sintered body is recovered.

本発明の成果を以下の実施例に基づき説明す
る。
The results of the present invention will be explained based on the following examples.

平均粒径0.6〜6μm、酸素含有量0.5〜2.1%の
Si3N4粉末1.6gを直径12.8mmの円板状に、Al粉末
とFe2O3粉末をモル比で2/1に混合したテルミツ
ト組成物10.5grを直径30mmの円板状及び直径30mm
×21.7mmの円筒状に分割冷間成型し、第1図に示
す超高圧発生装置中に配置した。
Average particle size 0.6~6μm, oxygen content 0.5~2.1%
1.6 g of Si 3 N 4 powder was put into a disk shape with a diameter of 12.8 mm, and 10.5 gr of thermite composition, which is a mixture of Al powder and Fe 2 O 3 powder at a molar ratio of 2/1, was put into a disk shape with a diameter of 30 mm.
It was divided into 21.7 mm x 21.7 mm cylindrical pieces and cold-molded, and placed in the ultra-high pressure generator shown in FIG.

前記した加圧、加熱焼結処理をこれら被焼結セ
ラミツクスにほどこした。圧力は2万気圧、テル
ミツト発熱量は10Kcalである。テルミツト着火
後の黒鉛ヒータ加熱よる試料部温度は1800℃であ
る。得られた焼結体の相対密度、硬さを第2図、
第3図に示す。
These ceramics to be sintered were subjected to the pressure and heat sintering treatment described above. The pressure is 20,000 atmospheres, and the thermite calorific value is 10 Kcal. The temperature of the sample part heated by the graphite heater after thermite ignition was 1800℃. The relative density and hardness of the obtained sintered body are shown in Figure 2.
It is shown in Figure 3.

酸素濃度1.6%以下のSi3N4原料粉は結合剤無添
加で相対焼結密度98〜99%以上に緻密化し、焼結
体の硬さも1800〜2100Kg/mm2以上に増加した。第
4図に焼結体相対密度に及ぼす圧力の効果を示
す。焼結圧力1万気圧以下では、Si3N4の分解が
同時に起こり、緻密化は不充分である。圧力の増
加は緻密化を進行させる傾向にはあるが、得られ
る焼結体特性と超高圧発生コストを比較すると、
1〜2万気圧が好ましい。
The Si 3 N 4 raw material powder with an oxygen concentration of 1.6% or less was densified to a relative sintering density of 98 to 99% or more without the addition of a binder, and the hardness of the sintered body increased to 1800 to 2100 Kg/mm 2 or more. FIG. 4 shows the effect of pressure on the relative density of the sintered body. If the sintering pressure is less than 10,000 atmospheres, decomposition of Si 3 N 4 will occur at the same time, and densification will be insufficient. Although increasing pressure tends to promote densification, when comparing the properties of the sintered body obtained and the cost of generating ultra-high pressure,
10,000 to 20,000 atm is preferable.

第5図に通常の高圧焼結をほどこしたSi3N4
硬さと酸素量の関係を第2図と比較して示した。
両者の比較から本発明焼結法によつて得られた低
酸素Si3N4焼結体は、著しくすぐれた硬さを有す
ることは明らかである。
FIG. 5 shows the relationship between the hardness and oxygen content of Si 3 N 4 subjected to normal high-pressure sintering in comparison with FIG. 2.
From the comparison between the two, it is clear that the low oxygen Si 3 N 4 sintered body obtained by the sintering method of the present invention has significantly superior hardness.

発明の効果 以上詳細したように、本発明に係る高硬度高密
度窒化珪素焼結体の製造法AlあるいはSiとFe2O3
の混合組成物(以後テルミツト組成物と呼ぶ)を
Si3N4から成る成型体と共に超高圧発生装置中に
充填し、前記テルミツト組成物とSi3N4を圧力
1GPa以上に加圧し、テルミツト組成物に 2Al+Fe2O3→Al2O3+2Fe+204Kcal Si+2/3Fe2O3→SiO2+4/3Fe+86Kcal なる反応を生じせしめて予備焼結し、この予備焼
結段階に引き続き当該焼結体を温度1600〜2000
℃、圧力1GPa以上で5〜30min焼結するように
したことを特徴とするものである。
Effects of the Invention As detailed above, the method for producing a high-hardness, high-density silicon nitride sintered body according to the present invention combines Al or Si and Fe 2 O 3
The mixed composition (hereinafter referred to as thermite composition) of
The thermite composition and Si 3 N 4 are put into an ultra-high pressure generator together with a molded body made of Si 3 N 4 under pressure.
Pressure is applied to 1 GPa or more to cause a reaction in the thermite composition as follows: 2Al + Fe 2 O 3 → Al 2 O 3 + 2Fe + 204 Kcal Si + 2/3 Fe 2 O 3 → SiO 2 + 4/3 Fe + 86 Kcal, and pre-sintering is performed. Following this pre-sintering step, The temperature of the sintered body is 1600~2000
℃ and a pressure of 1 GPa or higher for 5 to 30 minutes.

したがつて、超高圧、高温加熱が可能であり、
結合剤無添加では従来焼結できなかつた高融点、
難焼結物質の焼結が可能である。超高圧及びテル
ミツトによる急速加熱に加えて外部加熱を併用す
ること又原料粉酸素濃度を1.6%以下とすること
により、熱伝性の乏しい非酸化物セラミツクスも
結晶粒を粗大させず緻密で高硬度な焼結体が得ら
れる。
Therefore, ultra-high pressure and high temperature heating is possible.
High melting point, which previously could not be sintered without the addition of a binder.
It is possible to sinter difficult-to-sinter materials. By using external heating in addition to rapid heating using ultra-high pressure and thermite, and by keeping the oxygen concentration of the raw material powder to 1.6% or less, non-oxide ceramics with poor thermal conductivity can be made dense and highly hard without coarsening the crystal grains. A sintered body is obtained.

上記効果により、工業的に極めて有用な非酸化
物系セラミツクス材料を製造できる。たとえば実
施例に示したSi3N4焼結体は、結合剤無添加で従
来より高硬度の特性が得られ、切削工具として有
望である。
Due to the above effects, industrially extremely useful non-oxide ceramic materials can be produced. For example, the Si 3 N 4 sintered body shown in the example has higher hardness than conventional materials without the addition of a binder, and is promising as a cutting tool.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法に用いる超高圧発生装置の
構成説明図、第2図はSi3N4の相対焼結密度と酸
素量の関係図、第3図はSi3N4焼結体硬さに及ぼ
す酸素量の関係図、第4図は1.0wt%酸素を含む
Si3N4の相対焼結密度に及ぼす圧力の効果を示す
グラフ図、第5図は通常高圧焼結Si3N4焼結体硬
さと酸素量の関係図である。
Figure 1 is an explanatory diagram of the configuration of the ultra-high pressure generator used in the method of the present invention, Figure 2 is a diagram of the relationship between the relative sintered density of Si 3 N 4 and the amount of oxygen, and Figure 3 is a diagram showing the hardness of the Si 3 N 4 sintered body. Figure 4 contains 1.0wt% oxygen.
FIG. 5 is a graph showing the effect of pressure on the relative sintered density of Si 3 N 4 , and is a graph showing the relationship between the hardness of the normally high-pressure sintered Si 3 N 4 sintered body and the amount of oxygen.

Claims (1)

【特許請求の範囲】 1 AlあるいはSiとFe2O3の混合組成物(以後テ
ルミツト組成物と呼ぶ)をSi3N4から成る成型体
と共に超高圧発生装置中に充填し、前記テルミツ
ト組成物とSi3N4を圧力1GPa以上に加圧し、テ
ルミツト組成物に 2Al+Fe2O3→Al2O3+2Fe+204Kcal Si+2/3Fe2O3→SiO2+4/3Fe+86Kcal なる反応を生じせしめて予備焼結し、この予備焼
結段階に引き続き、当該焼結体を温度1600〜2000
℃、圧力1GPa以上で5〜30min焼結するように
したことを特徴とする高硬度高密度窒化珪素焼結
体の製造法。 2 不可避酸素不純物濃度が1.6%以下、平均粒
径が6μm以下のSi3N4原料粉を用い結合剤無添加
で焼結する特許請求の範囲記載1の高硬度高密度
窒化珪素焼結体の製造法。
[Claims] 1. A mixed composition of Al or Si and Fe 2 O 3 (hereinafter referred to as a thermite composition) is filled into an ultra-high pressure generator together with a molded body made of Si 3 N 4 , and the said thermite composition is and Si 3 N 4 are pressurized to a pressure of 1 GPa or more to cause a reaction in the thermite composition as follows: 2Al + Fe 2 O 3 → Al 2 O 3 + 2Fe + 204 Kcal Si + 2/3 Fe 2 O 3 → SiO 2 + 4/3 Fe + 86 Kcal, and pre-sintering is performed. Following this preliminary sintering step, the sintered body is heated to a temperature of 1600 to 2000.
A method for producing a high-hardness, high-density silicon nitride sintered body, characterized in that sintering is carried out at a temperature of 5 to 30 minutes at a temperature of 1 GPa or higher. 2. The high-hardness, high-density silicon nitride sintered body according to claim 1, which is sintered without adding a binder using Si 3 N 4 raw material powder with an unavoidable oxygen impurity concentration of 1.6% or less and an average particle size of 6 μm or less. Manufacturing method.
JP60255009A 1985-11-15 1985-11-15 Manufacture of high hardness high density silicon nitride sintered body Granted JPS62119166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60255009A JPS62119166A (en) 1985-11-15 1985-11-15 Manufacture of high hardness high density silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60255009A JPS62119166A (en) 1985-11-15 1985-11-15 Manufacture of high hardness high density silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPS62119166A JPS62119166A (en) 1987-05-30
JPH0535108B2 true JPH0535108B2 (en) 1993-05-25

Family

ID=17272929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60255009A Granted JPS62119166A (en) 1985-11-15 1985-11-15 Manufacture of high hardness high density silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JPS62119166A (en)

Also Published As

Publication number Publication date
JPS62119166A (en) 1987-05-30

Similar Documents

Publication Publication Date Title
Shon et al. Simultaneous synthesis and densification of MoSi2 by field‐activated combustion
US4515746A (en) Microcomposite of metal carbide and ceramic particles
EP0429665B1 (en) Method of producing sintered ceramic materials
US4332755A (en) Sintered silicon carbide - aluminum nitride articles and method of making such articles
US3250832A (en) Process for making refractory articles
US5156830A (en) Process for preparing an alpha-phase silicon nitride material and thereafter converting to non-densified beta-phase material
US4209478A (en) Method of sintering ceramics
CN101798222A (en) Al2O3-Ni-C-B4C composite ceramic and preparation method thereof
US4539141A (en) Microcomposite of metal carbide and ceramic particles
JPH0535108B2 (en)
JP2732290B2 (en) Manufacturing method of aluminum nitride based sintered body
JPH05148023A (en) Ceramic composition containing spinel, silicon carbide and boron carbide
JPH04500497A (en) Improving thermal conductivity of aluminum nitride through pre-densification treatment
WO1992001647A1 (en) Ceramic phase in silicon nitride containing cerium
JP3342882B2 (en) Method for compacting preformed workpieces
JPS632913B2 (en)
JP2649220B2 (en) Silicon nitride / silicon carbide composite powder, composite compact, method for producing them, and method for producing silicon nitride / silicon carbide composite sintered body
JP2538340B2 (en) Method for manufacturing ceramics sintered body
JPS61101465A (en) Manufacture of silicon nitride bonded silicon carbide sintered body
JP2628668B2 (en) Cubic boron nitride sintered body
US5876660A (en) Sintered reaction-bonded silicon nitride components
JPH025711B2 (en)
JPH0235705B2 (en)
JP2916934B2 (en) Method for producing sialon-based sintered body
JPH01111778A (en) Production of high-density sintered compact