JPH0535067B2 - - Google Patents

Info

Publication number
JPH0535067B2
JPH0535067B2 JP29832985A JP29832985A JPH0535067B2 JP H0535067 B2 JPH0535067 B2 JP H0535067B2 JP 29832985 A JP29832985 A JP 29832985A JP 29832985 A JP29832985 A JP 29832985A JP H0535067 B2 JPH0535067 B2 JP H0535067B2
Authority
JP
Japan
Prior art keywords
film
vapor
gas barrier
synthetic resin
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29832985A
Other languages
Japanese (ja)
Other versions
JPS62156942A (en
Inventor
Tsutomu Isaka
Hirohisa Fujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP29832985A priority Critical patent/JPS62156942A/en
Publication of JPS62156942A publication Critical patent/JPS62156942A/en
Publication of JPH0535067B2 publication Critical patent/JPH0535067B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Wrappers (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、生鮮食品、加工食品、医薬品、医療
機器等の包装用フイルム、特にこれらの用途にお
いて重要な特性と考えられているガスバリヤー
性、防湿性及び遮光性等が良好なフイルム又はシ
ート、及びその製造方法に関するものである。 [従来の技術] 近年、食品流通形態や食生活そのものの変革に
よつて食品の包装形態も大幅に変わつてきてお
り、包装用のフイルムやシート(以下フイルムで
代表する)に対する要求特性はますます厳しくな
つてきている。中でも気体や水分の透過度が小さ
くしかも冷凍加工、煮沸処理、レトルト処理等の
処理によつても食品としての価値が低下しない様
なフイルムへの要望が高まつている。即ち魚肉、
畜肉、貝類等の包装においては蛋白質や油脂等の
酸化や変質を抑制し味や鮮度を保持することが重
要であるが、それらの為には、ガスバリヤー性の
良い包装材を用いて空気の透過を阻止する必要が
ある。しかもガスバリヤー性フイルムで包装する
と内容物特有の臭気や香気が保持されると共に、
水分の透過も阻止されるので乾燥物にあつては吸
湿劣化が防止されまた含水物の場合は水分の揮発
による変質が固化が防止され、包装当初の新鮮な
風味を長時間保持することができる。 また多くの食品は光(紫外線等)によつても変
質し易く、遮光性フイルムで包装することによつ
て変質は一段と抑制される。こうした理由からか
まぼこ等の練製品、バター、チーズ等の乳製品、
味噌、茶、コーヒー、ハム・ソーセージ類、イン
スタント食品、カステラ、ビスケツト等の菓子類
等の包装フイルムとして、前記ガスバリヤー性
(防湿性を含む)や遮光性は極めて重要な特性と
されている。これらの特性は食品包装用フイルム
に限られるものではなく、無菌状態での取扱いが
必要とされる医療品や医療機器等の包装用フイル
ムとしても極めて重要である。 この様なところからガスバリヤー性及び遮光性
の改善を期して多くの研究が行なわれているが、
上記特性の優れたものとして現在最も汎用されて
いるのはポリエステルやポリオレフイン、ポリ塩
化ビニリデン等の合成樹脂フイルムの片面にアル
ミニウムをはじめとする金属或はSiO2等の金属
化合物を蒸着せしめた蒸着フイルムである。即ち
金属や金属化合物はそれ自体優れたガスバリヤー
性と遮光性を有しているので、合成樹脂の片面に
これらの蒸着層を形成することにより、合成樹脂
フイルムに不足しているガスバリヤー性及び遮光
性を大幅に改善することができる。 [発明が解決しようとする問題点] 金属又は金属化合物蒸着フイルムは前述の如く
通常の合成樹脂フイルムに比べると優れたガスバ
リヤー性と遮光性を有しており、各種の包装用フ
イルムとして賞用されている。しかしながら包装
食品等に対する安全基準が厳しくなり需要者側の
衛生観念が高まつてくるにつれて、包装用フイル
ムに要求されるガスバリヤー性及び遮光性は一段
と厳しさを増しており、現在の金属又は金属化合
物蒸着フイルムでは満足し得なくなつてきてい
る。 本発明はこの様な事情に着目してなされたもの
であつて、その目的は従来の金属又は金属化合物
蒸着フイルムよりも更に優れたガスバリヤー性及
び遮光性を発揮し得る様なフイルム(又はシー
ト)を提供しようとするものであり、本発明の他
の目的は、上記の様な優れたガスバリヤー性及び
遮光性を示すフイルム(又はシート)を生産性良
く製造することのできる方法を提供しようとする
ものである。 [問題点を解決する為の手段] 本発明に係るガスバリヤー性フイルム(又はシ
ート)の構成は、少なくとも一方の外面が、最大
高さ粗さが0.8μm以上で且つ外面構成フイルム又
はシートの厚さの60%以下である粗面で形成され
た複層の合成樹脂製フイルム又はシートの上記両
外面のうちいずれか一方の外面と1以上の積層界
面に金属又は金属化合物の蒸着層が形成されたも
のであるところに要旨を有し、また本発明に係る
製造方法は、最大高さ粗さが0.8μm以上で且つフ
イルム又はシートの厚さの60%以下である粗面上
に金属又は金属化合物の第1蒸着層を有する合成
樹脂製フイルム又はシートと、金属又は金属化合
物の第2蒸着層が形成された合成樹脂製フイルム
又はシートを、前記第1蒸着層が表面側に、前記
第2蒸着層が積層界面にくる様に積層するところ
に要旨を有するものである。 [作 用] 金属又は金属化合物蒸着フイルムは、合成樹脂
フイルムの有する優れた柔軟性に金属又は金属化
合物蒸着層(以下単に金属蒸着層ということがあ
る)の有する高レベルのガスバリヤー性と遮光性
が奏合されたもので、包装用フイルムとしては非
常に優れたものである。そこで本発明者等は上記
2種の基材の組合せを前提として、ガスバリヤー
性及び遮光性を更に高めるべく研究を開始した。
そして先ず最初に金属蒸着層を厚肉化する方向で
研究を行なつたところ、金属蒸着層を厚くすると
素材費が高騰するばかりでなく生産性も著しく低
下し、更には蒸着フイルムの柔軟性が乏しくなつ
て包装用として適正を欠くものとなる、等の問題
が生じることを知つた。そこで他の改善策を見出
すべく更に研究を進めた結果、単層又は複層の合
成樹脂フイルムの両面に金属蒸着層を形成したも
のは、単に各金属蒸着層のガスバリヤー性及び遮
光性を総合しただけのものではなく、2層の金属
蒸着層が相乗的に作用してガスバリヤー性及び遮
光性を飛躍的に改善し得ることを知り、別途特許
出願を行なつた。 ところが上記の如く両面に蒸着層を形成したフ
イルムは片面蒸着フイルムに比べて非常に優れた
ガスバリヤー性を有しているが、蒸着すべきフイ
ルム表面が両方共平滑になつているものを用いた
ときは次の様な問題を生じることが明らかとなつ
た。尚本明細書でいう平滑面とは、後述する粗面
に相対するものであり、JIS B−0601で規定する
最大高さ粗さが0.8μm未満のものをいう。 即ち両面蒸着フイルムの製造及び処理に当たつ
ては通常の合成樹脂フイルムと同様適当な芯材に
巻回されるが、両面蒸着フイルムの場合、フイル
ム表面を両方共平滑としたものでは蒸着面も平滑
となる為蒸着面同士の接触部をミクロ的に観察し
た場合接触面積が非常に広くなり、接触部にブロ
ツキングを起こすことがある。しかも該密接面の
滑りが悪い為(前述の如くミクロ的な接触面積が
広い為)、例えば第2図Aに例示する如く両面蒸
着フイルムF,F間に一旦空気が巻き込まれると
蒸着面が滑つて開放され空気を排出していくとい
う機能が期待できずフイルムFが一部で膨らんだ
状態のままで安定してしまう。この状態で更にそ
の外周側から次の巻回層Gが重ねられてくると、
空気を内部に残したままでフイルムFが屈曲し、
その上へフイルムGが積層されていく為第2図B
に示す如くフイルムFやGにしわ1ができる。そ
うなるとフイルムの外観が著しく損なわれるばか
りでなく、折れ重なり部の蒸着層が折損してクラ
ツクができガスバリヤー性にも少なからぬ悪影響
が現われてくる。 そこでこの様な問題についても改善すべく更に
研究を重ねた結果、片面を合成樹脂のままで残し
てやれば巻回時における蒸着層同士の直接的な接
触がなくなつてブロツキングが防止されるばかり
でなく、巻回時におけるフイルム相互間の滑りも
良好に保たれ、しかも外面の少なくとも一方を粗
面化してやれば巻回時のミクロ的な接触面積が少
なくなつて滑りが一段と改善され前述の如く巻回
工程で空気が巻き込まれても次層の巻回圧によつ
て空気が側縁方向へ押し出されフイルムFとGが
きれいに巻き重ねられ、前記第2図Bに示した様
な“しわ”を全く生じなくなることが明らかとな
つた。そしてこの様に滑りを一段と改善する為の
粗さの程度を明確にする目的で更に研究を重ねた
結果、合成樹脂製フイルムの蒸着膜形成面を最大
高さ粗さ(JIS B−0601)が0.8μm以上となる様
に粗面化しておくことにより、前記“しわ”やク
ラツクの発生を確実に防止し得ることが分かつ
た。但し上記最大高さ粗さが当該蒸着膜の形成さ
れる合成樹脂製フイルム(又はシート)の厚さの
60%を超えると、基材たる該合成樹脂製フイルム
の強度が乏しくなつて包装用等としての適正を欠
くものとなる。この様なところから本発明では、
蒸着膜の形成される合成樹脂製フイルム(又はシ
ート)の蒸着膜形成面側に形成される粗面を、最
大高さ粗さが0.8μm以上で且つ該フイルム厚さの
60%以下に設定した。尚この様な粗面化合成樹脂
製フイルムに蒸着膜を形成すると、当該粗面が若
干均質化されるが、該蒸着膜の外面には合成樹脂
性フイルムの粗度にほぼ対応する粗面が形成され
ることになり、フイルム巻回面の滑りを著しく改
善することができる。また上記の様な粗面化によ
る滑り改善効果は、巻回時に接触する少なくとも
一方の蒸着膜が発揮すれば十分であるから本発明
の片面蒸着フイルムは、両外面に粗面化処理を施
したものと片面だけに粗面化処理を施したものの
両方を包含するものとする。 尚ガスバリヤー性を相乗的に高める為の他の蒸
着層については、複層に形成される合成樹脂層の
積層境界面に設けることによつて目的を達成する
こととした。 加えて最表面に蒸着層を有する場合は、屈曲疲
労等により蒸着層が損傷を受けたり剥離すること
があり、そうなるとガスバリヤー性が急激に悪く
なる、という問題も生じてくるが、前述の如く蒸
着層を積層界面に形成したものであれば、当該両
面側を合成樹脂製フイルム(又はシート)で挟み
込まれた状態となる為、使用時の屈曲疲労等によ
つてクラツクや剥離を生ずる様な恐れもなく、耐
久性の優秀なガスバリヤー性フイルム(又はシー
ト)となる。 本発明フイルムにおけるベースとなる合成樹脂
フイルムは金属蒸着層の支持基盤となるものであ
り、包装用途において必要と考えられる強度と柔
軟性を保障するものであり、例えばポリエチレン
テレフタレートやポリブチレンテレフタレート等
のポリエステル、ナイロン、ポリプロピレンやポ
リエチレン等のポリオレフイン、エチレン−酢酸
ビニル共重合体、ポリエーテルスルホン、ポリイ
ミド、ふつ素樹脂、ポリスチレン、ポリビニルア
ルコール、ポリ塩化ビニル、ポリ塩化ビニリデ
ン、再生セルロースの如く、従来から包装用とし
て知られたすべての合成樹脂を使用することがで
き、またこれらの樹脂フイルムは未延伸のままで
使用してもよく或は1軸若しくは2軸延伸したも
のであつても勿論かまわない。該樹脂フイルム
(又はシート)の肉厚は用途に応じて任意に決め
ればよいが、包装袋の様にフイルム状で使用する
場合は2〜500μm程度、また包装箱素材の様な
シート状のものとする場合は100〜1000μm程度
が一般的である。 一方蒸着用の金属としてはアルミニウム、亜
鉛、銅、白金、インジウム、スズ、金、銀、珪素
等が例示され、また金属化合物として酸化珪素等
が挙げられ、その肉厚は50〜2000mμ程度が最も
一般的である。これらの蒸着素材の種類は用途
(包装内容物の種類等)に応じて適宜選択すれば
よい。 また本発明に係るフイルムの基本的な断面構造
は第1図A〜Lに略示する通りであり[A1,A2
は合成樹脂層、B1,B2は蒸着層、Cは粗面化処
理面、Dは接着(ヒートシール材を含む)層を
夫々示す]、接着層Dを介して積層された2枚の
合成樹脂層A1,A2(A1とA2は同種であつても異
種であつてもよい)の一方又は両面に粗面化処理
が施されている他両外面の一方に蒸着層B1が形
成され、且つ合成樹脂層A1,A2の積層界面には
接着層Dを介して蒸着層B2(B1,B2は同種であつ
ても異種であつてもよい)が形成されている。尚
積層界面は平滑なものであつてもよいが、積層界
面の片面又は両面に粗面化処理を施しておけば層
間接着力を一段と高めることが好ましい。第1図
M〜Oは本発明の応用例を示したもので、3枚の
合成樹脂層A1〜A3(4層以上であつても勿論かま
わない)を積層してなる少なくとも1つ(図では
1又は2)の積層界面に蒸着層B2,B3を形成し、
最外面側の一方又は双方に粗面化処理を施した例
を示しており、殊に第1図Oに示す如く2つ(又
は3以上)の積層界面に蒸着層を形成すると合計
3層(或はそれ以上)の蒸着層が形成されること
になり、これらの相乗作用によつてガスバリヤー
性を一段と高めることができる。 また本発明フイルムの表面には必要に応じて離
形剤或は粘着剤やヒートシーラー等を一部若しく
は全面に付着させておくこともでき、また使用に
当たつては印刷を施すことも可能である。 上述の如き本発明フイルムを製造する方法は
色々考えられるが、工業的に最も有利なのは、粗
面化処理面上又は平滑面上に蒸着層の形成された
2種の合成樹脂フイルム(又はシート)を、蒸着
層の一方が外面側に位置し、他の蒸着層が積層界
面にくる様に、且つ粗面化処理が最外面の少なく
とも一方に位置する様に積層する方法である。例
えば第3図A,Bは本発明に係るガスバリヤー性
フイルムの製法を略示する説明図であり、第3図
Aに示す如く1つの真空設備内で夫々の合成樹脂
フイルムA1(又はA2)の片面に蒸着層B1(又は
B2)を形成しておき、次いで第3図Bに示す如
く常圧雰囲気下で蒸着層B1が外面側、蒸着層B2
が積層界面となる様に各フイルムA1,A2を積層
させる方法を採用すれば、比較的小規模な真空設
備を用意するだけで蒸着層B1,B2を有するフイ
ルムを得ることができる。この場合、合成樹脂フ
イルムの片面又は両面(蒸着面、非蒸着面のどち
らでもよい)に粗面化処理を施しておくべきこと
は当然である。しかも蒸着層B1,B2を形成した
後の各フイルムA1,A2の積層工程では、必要に
応じて該積層間へ他の合成樹脂フイルムや蒸着膜
等を挟み込んで第1図E〜Fに示した様な多層構
造のフイルム(又はシート)を得ることも容易で
ある。 この様にして得られる本発明のガスバリヤー性
フイルム(又はシート)は、前述の如く各種食品
や医薬品、医療器具等の柔軟包装材、或は箱状ボ
トルの如き硬質容器やそのラミネート材等として
幅広く利用することができる。 [実施例]実施例 1 厚さ12μmの2軸延伸ナイロン−6(2酸化珪
素0.15重量%配合)の片面に1.1μmの粗面化処理
を施した後、この面に厚さ400mμのアルミニウ
ム蒸着層を形成し、該片面粗面化蒸着フイルムを
第2図Bに示す方法に準じて、一方の蒸着層が外
面側に、他方の蒸着層が積層界面に夫々くる様に
積層し(接着剤としてはイソシアネート系接着剤
を用いた)、ガスバリヤー性フイルムを得た。こ
のフイルムを用いて製袋し、直径2.8mmの球状粒
子を充填して真空包装し、該充填袋の経時的な硬
さ変化によつてガスバリヤー性を評価した。また
比較の為片面蒸着フイルム単独で製袋し上記と同
様にしてガスバリヤー性を調べた。更に各々のフ
イルムを100回の屈曲処理に付し、処理前後にお
ける酸素透過量を調べた。 結果を第1表に示す。但し真空包装におけるガ
スバリヤー性の評価基準は下記の通りである。 ◎:手で触れると硬い板状感がある。 〇:手で触れると板状感をわずかに柔らげるこ
とができるが依然として硬い板状外観を呈
している。 △:手で触れると軟らかい状態となり、明らか
に真空度が低下している。 ×:袋の外部から粒状物をつかんで容易に動か
すことができ、真空度が極端に低下してい
る。 即ち内部の真空度が保たれている限り粒状物は
硬く締め付けられており、袋は硬い板状に保たれ
るが、真空度が低下すると空気の混入によつて充
填袋が軟らかくなり、板状を保持し得なくなる。
従つてこの感触によつてガスバリヤー性の良否を
評価することができる。
[Industrial Field of Application] The present invention is directed to packaging films for fresh foods, processed foods, pharmaceuticals, medical devices, etc., particularly those that are considered to have important properties in these applications, such as gas barrier properties, moisture proofing properties, light blocking properties, etc. The present invention relates to a film or sheet with good quality and a method for manufacturing the same. [Conventional technology] In recent years, food packaging formats have changed significantly due to changes in food distribution formats and eating habits themselves, and the required characteristics of packaging films and sheets (hereinafter referred to as "film") have been increasing. It's getting tougher. In particular, there is a growing demand for films that have low gas and moisture permeability and that do not lose their value as food products even when subjected to freezing, boiling, retorting, and other treatments. i.e. fish meat,
When packaging meat, shellfish, etc., it is important to suppress oxidation and deterioration of proteins, oils, etc. and maintain taste and freshness. It is necessary to prevent penetration. Furthermore, packaging with a gas barrier film retains the unique odor and aroma of the contents, and
Since moisture permeation is also prevented, dry products are prevented from deteriorating due to moisture absorption, and moisture-containing products are prevented from deterioration and solidification due to moisture volatilization, allowing them to retain their original fresh flavor for a long time. . Many foods are also susceptible to deterioration due to light (ultraviolet rays, etc.), and deterioration can be further suppressed by packaging with a light-shielding film. For these reasons, pastry products such as kamaboko, dairy products such as butter and cheese,
The gas barrier properties (including moisture resistance) and light blocking properties are considered to be extremely important properties for packaging films for miso, tea, coffee, ham/sausages, instant foods, and confectionery such as castella and biscuits. These characteristics are not limited to films for food packaging, but are also extremely important for films for packaging medical products, medical devices, etc. that require sterile handling. From this point of view, much research is being carried out with the aim of improving gas barrier properties and light shielding properties.
The most commonly used films with the above properties are vapor-deposited films in which metals such as aluminum or metal compounds such as SiO 2 are vapor-deposited on one side of a synthetic resin film such as polyester, polyolefin, or polyvinylidene chloride. It is. In other words, since metals and metal compounds themselves have excellent gas barrier properties and light blocking properties, by forming a vapor-deposited layer of these on one side of the synthetic resin, the gas barrier properties and light blocking properties that are lacking in the synthetic resin film can be improved. Light blocking properties can be significantly improved. [Problems to be solved by the invention] As mentioned above, metal or metal compound vapor-deposited films have superior gas barrier properties and light-shielding properties compared to ordinary synthetic resin films, and are used as a variety of packaging films. has been done. However, as safety standards for packaged foods become stricter and consumers become more conscious of hygiene, the gas barrier and light shielding properties required of packaging films have become even more stringent. Compound vapor deposited films are becoming unsatisfactory. The present invention was made in view of these circumstances, and its purpose is to develop a film (or sheet) that can exhibit gas barrier properties and light shielding properties that are even better than conventional metal or metal compound vapor-deposited films. ), and another object of the present invention is to provide a method for producing a film (or sheet) with high productivity that exhibits excellent gas barrier properties and light blocking properties as described above. That is. [Means for Solving the Problems] The structure of the gas barrier film (or sheet) according to the present invention is such that at least one outer surface has a maximum height roughness of 0.8 μm or more and the thickness of the outer surface forming film or sheet is 0.8 μm or more. A vapor-deposited layer of a metal or metal compound is formed on either one of the two outer surfaces of the multilayer synthetic resin film or sheet formed with a rough surface having a roughness of 60% or less and one or more laminated interfaces. The manufacturing method according to the present invention is characterized in that the manufacturing method according to the present invention is characterized in that a metal or A synthetic resin film or sheet having a first vapor deposited layer of a compound, and a synthetic resin film or sheet having a second vapor deposited layer of a metal or metal compound formed thereon, with the first vapor deposited layer on the surface side and the second vapor deposited layer. The gist is that the layers are stacked so that the vapor deposited layers are at the interface between the layers. [Function] A metal or metal compound vapor-deposited film combines the excellent flexibility of a synthetic resin film with the high level of gas barrier and light-shielding properties of a metal or metal compound vapor-deposited layer (hereinafter simply referred to as a metal vapor-deposited layer). This combination makes it an extremely excellent packaging film. Therefore, the present inventors began research to further improve gas barrier properties and light shielding properties based on the combination of the above two types of base materials.
First of all, we conducted research in the direction of increasing the thickness of the metal vapor deposited layer, and found that making the metal vapor deposit layer thicker not only increased the material cost, but also significantly reduced productivity, and furthermore, the flexibility of the vapor deposited film decreased. I learned that there are problems such as the product becoming scarce and becoming unsuitable for packaging. As a result of further research to find other improvement measures, we found that a single-layer or multi-layer synthetic resin film with metal vapor deposited layers formed on both sides simply combined the gas barrier and light shielding properties of each metal vapor deposited layer. They discovered that the two metal vapor deposited layers act synergistically to dramatically improve gas barrier properties and light shielding properties, and filed a separate patent application. However, as mentioned above, a film with vapor-deposited layers formed on both sides has extremely superior gas barrier properties compared to a single-sided vapor-deposited film; It became clear that the following problems would occur. The term "smooth surface" as used herein is opposed to a rough surface described later, and refers to a surface having a maximum height roughness of less than 0.8 μm as defined in JIS B-0601. In other words, when manufacturing and processing double-sided vapor-deposited films, they are wound around a suitable core material in the same way as ordinary synthetic resin films, but in the case of double-sided vapor-deposited films, if both surfaces of the film are smooth, the vapor deposition surface will also be Because they are smooth, when microscopically observing the contact area between the vapor-deposited surfaces, the contact area becomes very large, which may cause blocking at the contact area. Moreover, since the close contact surface has poor slippage (due to the large microscopic contact area as mentioned above), for example, once air is caught between double-sided vapor deposited films F and F, the vapor deposition surface becomes slippery, as shown in FIG. 2A. The function of opening and discharging air cannot be expected, and the film F remains partially swollen and stable. In this state, when the next winding layer G is further piled up from the outer circumferential side,
Film F is bent while leaving air inside,
As the film G is layered on top of it, Figure 2B
As shown in the figure, wrinkles 1 are formed on films F and G. If this happens, not only will the appearance of the film be significantly impaired, but the vapor deposited layer at the folded portion will break and crack, and the gas barrier properties will also be adversely affected. Therefore, as a result of further research to improve this problem, it was found that if one side was left as a synthetic resin, there would be no direct contact between the deposited layers during winding, and blocking would be prevented. In addition, if at least one of the outer surfaces is roughened, the microscopic contact area during winding will be reduced, and the slippage will be further improved, and as described above, the slippage between the films during winding will be maintained well. Even if air is caught in the winding process, the winding pressure of the next layer pushes the air toward the side edges, and the films F and G are wound neatly over each other, eliminating the "wrinkles" shown in Figure 2B above. It has become clear that this does not occur at all. As a result of further research aimed at clarifying the degree of roughness to further improve slippage, we found that the maximum height roughness (JIS B-0601) of the deposited film forming surface of the synthetic resin film was It has been found that by roughening the surface to a thickness of 0.8 μm or more, the occurrence of the aforementioned “wrinkles” and cracks can be reliably prevented. However, the maximum height roughness above is based on the thickness of the synthetic resin film (or sheet) on which the vapor deposited film is formed.
If it exceeds 60%, the strength of the synthetic resin film as a base material becomes poor and it becomes unsuitable for packaging purposes. From this point of view, in the present invention,
The rough surface formed on the vapor deposited film forming side of the synthetic resin film (or sheet) on which the vapor deposited film is formed has a maximum height roughness of 0.8 μm or more and the thickness of the film.
It was set to 60% or less. When a vapor deposited film is formed on such a roughened synthetic resin film, the rough surface becomes slightly homogenized, but the outer surface of the vapor deposited film has a rough surface that roughly corresponds to the roughness of the synthetic resin film. As a result, the slippage of the film winding surface can be significantly improved. In addition, the above-mentioned slippage improvement effect due to surface roughening is sufficient as long as at least one of the vapor deposited films in contact with the film during winding is exerted. It includes both those that have been roughened on one side and those that have been roughened on only one side. As for other vapor deposited layers for synergistically enhancing gas barrier properties, the purpose was achieved by providing them on the laminated boundary surfaces of the synthetic resin layers formed in multiple layers. In addition, when a vapor-deposited layer is provided on the outermost surface, the vapor-deposited layer may be damaged or peeled off due to bending fatigue, etc., and if this happens, the gas barrier properties will deteriorate rapidly, which is a problem. If a vapor-deposited layer is formed at the laminated interface, both sides will be sandwiched between synthetic resin films (or sheets), which may cause cracks or peeling due to bending fatigue during use. It becomes a gas barrier film (or sheet) with excellent durability without fear. The synthetic resin film that serves as the base of the film of the present invention serves as a support base for the metal vapor deposited layer and ensures the strength and flexibility considered necessary for packaging applications. Conventional packaging materials include polyolefins such as polyester, nylon, polypropylene and polyethylene, ethylene-vinyl acetate copolymer, polyethersulfone, polyimide, fluororesin, polystyrene, polyvinyl alcohol, polyvinyl chloride, polyvinylidene chloride, and regenerated cellulose. All synthetic resins known for commercial use can be used, and these resin films may of course be used unstretched or uniaxially or biaxially stretched. The thickness of the resin film (or sheet) can be determined arbitrarily depending on the application, but it is approximately 2 to 500 μm when used in a film form such as a packaging bag, or approximately 2 to 500 μm when used in a sheet form such as a packaging box material. In this case, it is generally about 100 to 1000 μm. On the other hand, examples of metals for vapor deposition include aluminum, zinc, copper, platinum, indium, tin, gold, silver, and silicon, and examples of metal compounds include silicon oxide. Common. The type of these vapor deposition materials may be appropriately selected depending on the purpose (type of packaged contents, etc.). Further, the basic cross-sectional structure of the film according to the present invention is as schematically shown in FIGS. 1A to 1L [A 1 , A 2
B 1 and B 2 are synthetic resin layers, B 1 and B 2 are vapor deposited layers, C is a roughened surface, and D is an adhesive (including heat sealing material) layer], two sheets laminated with adhesive layer D interposed therebetween. One or both of the synthetic resin layers A 1 and A 2 (A 1 and A 2 may be of the same type or different types) are roughened, and one of the outer surfaces of the two is coated with a vapor deposited layer B. 1 is formed, and a vapor deposited layer B 2 (B 1 and B 2 may be of the same type or different types) is formed at the laminated interface of the synthetic resin layers A 1 and A 2 via an adhesive layer D. has been done. Although the laminated interface may be smooth, it is preferable to roughen one or both sides of the laminated interface to further increase the interlayer adhesion. FIGS. 1 M to 0 show application examples of the present invention, in which at least one synthetic resin layer A 1 to A 3 (of course, four or more layers may be used) is laminated. In the figure, vapor deposited layers B 2 and B 3 are formed at the lamination interface of 1 or 2),
This shows an example in which one or both of the outermost surfaces are subjected to surface roughening treatment. In particular, when a vapor deposited layer is formed at the interface of two (or three or more) laminated layers as shown in Figure 1 O, a total of three layers ( (or more) are formed, and their synergistic effect can further improve gas barrier properties. Furthermore, if necessary, a release agent, adhesive, heat sealer, etc. can be applied to part or the entire surface of the film of the present invention, and it is also possible to print upon use. It is. Various methods can be considered for producing the film of the present invention as described above, but the most industrially advantageous are two types of synthetic resin films (or sheets) in which a vapor deposited layer is formed on a roughened surface or a smooth surface. This is a method of stacking the vapor-deposited layers so that one of the vapor-deposited layers is located on the outer surface side, the other vapor-deposited layer is located at the lamination interface, and the roughening treatment is located on at least one of the outermost surfaces. For example, FIGS. 3A and 3B are explanatory diagrams schematically illustrating the manufacturing method of the gas barrier film according to the present invention. As shown in FIG. 3A, each synthetic resin film A 1 (or A 2 ) Vapor deposited layer B 1 (or
B 2 ) is formed, and then, as shown in FIG .
If a method is adopted in which the films A 1 and A 2 are laminated so that the lamination interface becomes the lamination interface, it is possible to obtain a film having vapor deposited layers B 1 and B 2 by simply preparing a relatively small-scale vacuum facility. . In this case, it is a matter of course that one or both surfaces (either the vapor-deposited surface or the non-vapor-deposited surface) of the synthetic resin film should be subjected to surface roughening treatment. Moreover, in the lamination step of each film A 1 , A 2 after forming the vapor deposited layers B 1 , B 2 , other synthetic resin films, vapor deposited films, etc. may be inserted between the laminated layers as necessary. It is also easy to obtain a film (or sheet) with a multilayer structure as shown in F. The gas barrier film (or sheet) of the present invention obtained in this way can be used as a flexible packaging material for various foods, medicines, medical instruments, etc., or as a hard container such as a box-shaped bottle, or as a laminate material thereof. It can be used widely. [Example] Example 1 One side of biaxially stretched nylon-6 (containing 0.15% silicon dioxide by weight) with a thickness of 12 μm was roughened to a thickness of 1.1 μm, and then aluminum vapor-deposited with a thickness of 400 μm was applied to this surface. The single-sided roughened vapor-deposited film is laminated in accordance with the method shown in FIG. (using an isocyanate adhesive), a gas barrier film was obtained. A bag was made using this film, filled with spherical particles having a diameter of 2.8 mm, and vacuum packaged, and the gas barrier properties of the filled bag were evaluated based on the change in hardness over time. For comparison, a bag was made using a single-sided vapor-deposited film alone and its gas barrier properties were examined in the same manner as above. Furthermore, each film was subjected to bending treatment 100 times, and the amount of oxygen permeation before and after the treatment was examined. The results are shown in Table 1. However, the evaluation criteria for gas barrier properties in vacuum packaging are as follows. ◎: Feels like a hard plate when touched with the hand. ○: The plate-like appearance can be slightly softened when touched by hand, but it still exhibits a hard plate-like appearance. △: It is soft to the touch, and the degree of vacuum is clearly lowered. ×: Particulate matter can be easily grabbed from outside the bag and moved, and the degree of vacuum is extremely low. In other words, as long as the internal vacuum level is maintained, the granules are tightly clamped and the bag remains in a hard plate shape, but as the vacuum level decreases, the filled bag becomes soft due to air intrusion, and the bag becomes plate-shaped. becomes impossible to hold.
Therefore, the quality of the gas barrier property can be evaluated based on this feel.

【表】 第1表からも明らかな様に片面蒸着フイルムで
は、屈曲処理前のガスバリヤー性自体が劣悪であ
るばかりでなく、屈曲処理によつてガスバリヤー
性には更に悪化し、真空包装状態は3カ月で低下
傾向を示し6カ月で悪化してしまう。これに対し
本発明のフイルムでは、屈曲処理前はもとより屈
曲処理後でも優れたガスバリヤー性を保持してお
り、真空包装状態は6カ月でも全く変わらず、1
年経過した時点でも良好な真空状態を保つてい
る。 尚上記フイルムは何れも片面側が合成樹脂層の
ままで残されており且つ外面の一方に粗面化処理
が施されているので巻回時における滑りは非常に
良好であり、ブロツキングや“しわ”、クラツク
等は一切生じることがなかつた。 [発明の効果] 本発明は以上の様に構成されており、複層合成
樹脂フイルムの一方の外面と積層界面に1層以上
の金属又は金属化合物蒸着層を形成することによ
つてガスバリヤー性を飛躍的に高めることがで
き、内容物の保存日数を大幅に延長することがで
きる。しかもこの蒸着フイルムは蒸着層の少なく
とも1つが積層界面に位置しているので、屈曲力
を受けた場合でも高レベルのガスバリヤー性を維
持することができ、更には金属蒸着層同士が直接
接触することがなく且つ少なくとも一方の外面が
粗面化されているので巻回時等における滑りも良
好に保たれ、ブロツキングやクラツク、“しわ”
等を生じることもない。また本発明の製造方法を
採用すれば、比較的小さな蒸着処理設備によつて
ガスバリヤー性の優れたフイルムを得ることがで
き、製造設備費を加味した生産コストを安価に抑
えることができる。
[Table] As is clear from Table 1, not only is the gas barrier property of the single-sided vapor deposited film poor before bending, but the gas barrier property is further deteriorated by the bending process. shows a declining trend after 3 months and worsens after 6 months. In contrast, the film of the present invention maintains excellent gas barrier properties both before and after the bending process, and the vacuum packaging condition remains unchanged even after 6 months.
It maintains a good vacuum condition even after many years. All of the above films have one side left as a synthetic resin layer, and one of the outer surfaces has been roughened, so it has very good slippage during winding and prevents blocking and "wrinkling". , cracks, etc. did not occur at all. [Effects of the Invention] The present invention is configured as described above, and gas barrier properties are achieved by forming one or more metal or metal compound vapor-deposited layers on one outer surface of the multilayer synthetic resin film and the lamination interface. can be dramatically increased, and the shelf life of the contents can be significantly extended. Moreover, this vapor-deposited film has at least one vapor-deposited layer located at the laminated interface, so it can maintain a high level of gas barrier property even when subjected to bending force, and furthermore, the metal vapor-deposited layers are in direct contact with each other. Since at least one outer surface is roughened, slippage during winding is maintained well, preventing blocking, cracking, and "wrinkling."
etc. will not occur. Further, by employing the manufacturing method of the present invention, a film with excellent gas barrier properties can be obtained using relatively small vapor deposition processing equipment, and production costs including manufacturing equipment costs can be kept low.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A〜Oは本発明のガスバリヤー性フイル
ムを例示する断面模式図、第2図A,Bは“し
わ”の発生状況を示す断面説明図、第3図A,B
は本発明の製造方法を例示する概略説明図であ
る。 A,A1〜A3…合成樹脂層(フイルム)、B1
B3…金属又は金属化合物蒸着層、D,D1,D2
接着(又はヒートシール)層、C…粗面化処理
面。
Figures 1 A to O are schematic cross-sectional views illustrating the gas barrier film of the present invention, Figures 2 A and B are cross-sectional explanatory views showing how wrinkles occur, and Figures 3 A and B.
FIG. 1 is a schematic explanatory diagram illustrating the manufacturing method of the present invention. A, A 1 ~ A 3 ...Synthetic resin layer (film), B 1 ~
B 3 ... Metal or metal compound vapor deposited layer, D, D 1 , D 2 ...
Adhesive (or heat seal) layer, C... roughened surface.

Claims (1)

【特許請求の範囲】 1 少なくとも一方の外面が、最大高さ粗さが
0.8μm以上で且つ外面構成フイルム又はシートの
厚さの60%以下である粗面で形成された複層の合
成樹脂製フイルム又はシートの上記両外面のうち
いずれか一方の外面と1以上の積層界面に金属又
は金属化合物の蒸着層が形成されたものであるこ
とを特徴とする複層ガスバリヤー性フイルム又は
シート。 2 最大高さ粗さが0.8μm以上で且つフイルム又
はシートの厚さの60%以下である粗面上に金属又
は金属化合物の第1蒸着層を有する合成樹脂製フ
イルム又はシートと、金属又は金属化合物の第2
蒸着層が形成された合成樹脂製フイルム又はシー
トを、前記第1蒸着層が表面側に、前記第2蒸着
層が積層界面にくる様に積層することを特徴とす
る複層ガスバリヤー性フイルム又はシートの製造
方法。
[Claims] 1. At least one outer surface has a maximum height roughness.
One or more outer surfaces of a multilayer synthetic resin film or sheet formed with a rough surface of 0.8 μm or more and 60% or less of the thickness of the outer surface constituent film or sheet. 1. A multilayer gas barrier film or sheet, characterized in that a vapor-deposited layer of a metal or metal compound is formed on the interface. 2. A synthetic resin film or sheet having a first vapor-deposited layer of a metal or metal compound on the rough surface with a maximum height roughness of 0.8 μm or more and 60% or less of the thickness of the film or sheet, and a metal or metal second compound
A multilayer gas barrier film or sheet, characterized in that synthetic resin films or sheets on which vapor deposited layers are formed are laminated such that the first vapor deposited layer is on the surface side and the second vapor deposited layer is on the lamination interface. Method of manufacturing sheets.
JP29832985A 1985-12-28 1985-12-28 Double-layer gas-barriering film or sheet and manufacture thereof Granted JPS62156942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29832985A JPS62156942A (en) 1985-12-28 1985-12-28 Double-layer gas-barriering film or sheet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29832985A JPS62156942A (en) 1985-12-28 1985-12-28 Double-layer gas-barriering film or sheet and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS62156942A JPS62156942A (en) 1987-07-11
JPH0535067B2 true JPH0535067B2 (en) 1993-05-25

Family

ID=17858249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29832985A Granted JPS62156942A (en) 1985-12-28 1985-12-28 Double-layer gas-barriering film or sheet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS62156942A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6287672B1 (en) * 1999-03-12 2001-09-11 Rexam, Inc. Bright metallized film laminate
JP4085814B2 (en) * 2001-04-09 2008-05-14 凸版印刷株式会社 Laminated body

Also Published As

Publication number Publication date
JPS62156942A (en) 1987-07-11

Similar Documents

Publication Publication Date Title
JP2016064623A (en) Coextruded non-oriented film for tray molding, and composite sheet
EP3079898B1 (en) A thermoformable blister material with humidity, oxygen and light barrier, for packaging dietary and cosmetic products, medical devices and medicinal products
JPS62156943A (en) Evaporated-layer built-in type double-layer gas-barriering film or sheet and manufacture thereof
JPS62156939A (en) Gas barriering film or sheet and manufacture thereof
WO2006102942A1 (en) Multilayer bioriented film having antiseptic and improved stiffness features
JPH0535067B2 (en)
JPS62156941A (en) Double-layer gas-barriering film or sheet and manufacture thereof
JPH0768692A (en) Gas barrier film or sheet
JPH0535066B2 (en)
JPS6225101B2 (en)
JP4644976B2 (en) Metallized polyester film
JP3179591B2 (en) Food packaging method
JP4392629B2 (en) Easy-open packaging with fragrance retention
JP2007099324A (en) Deep drawing formed vessel and packaging body using the same
KR100251119B1 (en) Food Container, its manufacturing method and device
JPH0655485B2 (en) Paperboard container and manufacturing method thereof
JP6690144B2 (en) Antibacterial film and packaging
JP3264575B2 (en) Container for storing goods
JPH05220913A (en) Multilayer sheet for draw formed vessel
JP3215748U (en) Dry food for disaster prevention stockpile
JP4004311B2 (en) Laminated body
JPH05213337A (en) Multilayer paper container
JP3594687B2 (en) Packaging bag with zipper and method of manufacturing packaging bag with zipper
JPH07205380A (en) Multilayered film
JPH04211937A (en) Packing material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees