JPH05346805A - Control method for process - Google Patents

Control method for process

Info

Publication number
JPH05346805A
JPH05346805A JP9827291A JP9827291A JPH05346805A JP H05346805 A JPH05346805 A JP H05346805A JP 9827291 A JP9827291 A JP 9827291A JP 9827291 A JP9827291 A JP 9827291A JP H05346805 A JPH05346805 A JP H05346805A
Authority
JP
Japan
Prior art keywords
change
pid
objective function
control
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9827291A
Other languages
Japanese (ja)
Inventor
Kazumitsu Nukui
一光 温井
Masahiro Arakawa
正裕 荒川
Toyonori Taniguchi
豊知 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Azbil Corp
Original Assignee
Tokyo Gas Co Ltd
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Azbil Corp filed Critical Tokyo Gas Co Ltd
Priority to JP9827291A priority Critical patent/JPH05346805A/en
Publication of JPH05346805A publication Critical patent/JPH05346805A/en
Pending legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

PURPOSE:To operate the scheduling of a PID constant, and to steppedly and automatically switch and set it to the optimal PID constant, according to the change of an objective function due to the change of each kind of condition. CONSTITUTION:In a process control mechanism 10 being a system in which the objective function is rapidly changed due to the change of each kind of condition, a scheduling means 16 selects the optimal value of the PID constant based on the detection signal of the change of the quantity and direction of the objective function based on the change of each kind of condition, and derives the signal of the optimal value to a PID control part 11. At that time, the scheduling means 16 executes the procedure of steppedly and automatically switching and setting the PID constant. Thus, a controllability can be maintained even in the system in which the objective function is rapidly changed due to a disturbance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、外乱によって目的関数
が急激に変化するような系に対するプロセスの制御方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a process control method for a system in which an objective function changes rapidly due to a disturbance.

【0002】[0002]

【従来の技術】従来より、各種制御機構には、PID制
御方式が広く採用されてきている。図2に、このPID
制御方式を適用したプロセスの制御機構1のブロック線
図を示す。このプロセスの制御機構1は、PID制御部
2と操作部3と制御対象4と、制御対象4から出力され
る制御量を検出してフィードバックする検出部5とを有
し、そのフィードバック信号と設定された目標値とから
偏差を求め、この偏差に基づいてPID制御部2から操
作部3に調節信号を導出してPID制御を行うものであ
る。この場合、PID制御部2におけるPID制御定数
(比例項、積分項、微分項の各係数)は、制御範囲全般に
おいて、ある範囲の制御性を示すように、固定定数とし
てあらかじめ設定されるものである。
2. Description of the Related Art Conventionally, a PID control system has been widely adopted for various control mechanisms. This PID is shown in Figure 2.
The block diagram of the control mechanism 1 of the process to which the control method is applied is shown. The control mechanism 1 of this process includes a PID control unit 2, an operation unit 3, a control target 4, and a detection unit 5 that detects and feeds back a control amount output from the control target 4, and a feedback signal and a setting thereof. The deviation is obtained from the set target value, and the PID control is performed from the PID control section 2 to the operation section 3 based on the deviation to perform the PID control. In this case, the PID control constant in the PID control unit 2
Each coefficient of the proportional term, the integral term, and the derivative term is preset as a fixed constant so as to show the controllability of a certain range in the entire control range.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、各種制
御機構の中には、各種条件(制御量、制御量以外の要素
および変化の方向)の変化により目的関数が変化するも
のがある。例えば、図3に示すコージェネレーションシ
ステムにおける冷却水制御機構6においては、制御量以
外の要素である発電量の変化が冷却水温度に対して影響
を及ぼす。すなわち、この系では、冷却水温度は、発電
量の変化と冷却水流量の変化の両方の影響を受けて変化
する。つまり、発電量の変化に対して、温度変化がある
ということから、前記冷却水制御機構6は、制御量以外
の要素によって目的関数が変化する系であることがわか
る。一方、冷却水流量の変化による冷却水温度変化応答
の所定数は、図4、図5、図6に示すように、変化の方
向で大幅に違う。尚、図中、矢印は変化の方向を示して
いる。このように、各種条件(制御量、制御量以外の要
素および変化の方向)の変化により目的関数が変化する
ので、あらかじめ固定されたPID制御定数では、制御
性を維持することは困難である。本発明はこのような課
題に鑑みてなされたもので、各種条件の変化による目的
関数の変化に応じて、PID定数を最適値に切換設定す
ることができるプロセスの制御方法を提供することを目
的とする。
However, among various control mechanisms, there is one in which the objective function changes due to changes in various conditions (control amount, elements other than the control amount and the direction of change). For example, in the cooling water control mechanism 6 in the cogeneration system shown in FIG. 3, a change in the power generation amount, which is an element other than the control amount, affects the cooling water temperature. That is, in this system, the cooling water temperature changes under the influence of both the change in the amount of power generation and the change in the cooling water flow rate. In other words, it can be seen that the cooling water control mechanism 6 is a system in which the objective function changes according to factors other than the control amount, because the temperature changes with changes in the amount of power generation. On the other hand, the predetermined number of the cooling water temperature change response due to the change of the cooling water flow rate is significantly different depending on the changing direction, as shown in FIGS. 4, 5, and 6. In the figure, the arrow indicates the direction of change. In this way, the objective function changes due to changes in various conditions (control amount, elements other than the control amount, and the direction of change). Therefore, it is difficult to maintain controllability with a PID control constant fixed in advance. The present invention has been made in view of the above problems, and an object thereof is to provide a process control method capable of switching and setting a PID constant to an optimum value in accordance with a change in an objective function due to a change in various conditions. And

【0004】[0004]

【課題を解決するための手段】前記した課題を解決する
ために、本発明は、PID制御を行うプロセスの制御機
構において、外的要因による各種条件の変化に基づく目
的関数の量的、方向的変化を検出して、この量的、方向
的変化にかかる検出信号に基づいて、PID定数をスケ
ジューリングして、ステップ的且つ自動的に最適値へ切
換設定することを特徴とする。
In order to solve the above-mentioned problems, the present invention relates to a control mechanism of a process for performing PID control, in which the objective function is quantitatively and directionally based on changes in various conditions due to external factors. It is characterized in that a change is detected, a PID constant is scheduled on the basis of a detection signal relating to this quantitative or directional change, and the PID constant is stepwise and automatically switched to an optimum value.

【0005】[0005]

【作用】先ず、実際に制御機構を運転し、運転の際に、
外的要因による各種条件が変化し、目的関数の量的、方
向的変化が検出されると、その目的関数の変化の度合
い、変化の方向性に応じたPID定数の最適値が選択さ
れる。これによって、プロセスの制御機構は、そのPI
D定数の最適値に基づいて、PID制御を行う。尚、各
種条件の変化によって、目的関数が急激に変化するプロ
セスの制御機構においては、PID定数は、ステップ的
に、自動的に切り換えられてPID制御が行われる。
First, the control mechanism is actually operated, and during operation,
When various conditions due to external factors change and quantitative or directional changes in the objective function are detected, the optimum value of the PID constant is selected according to the degree of change in the objective function and the direction of change. This allows the process control mechanism to
PID control is performed based on the optimum value of the D constant. In the process control mechanism in which the objective function changes abruptly due to changes in various conditions, the PID constants are automatically switched in steps to perform PID control.

【0006】[0006]

【実施例】次に、本発明にかかるプロセスの制御方法に
ついて、それを実施するためのプロセスの制御機構の一
実施例を示し、添付の図面を参照しながら以下説明す
る。図1において、参照符号10はプロセスの制御機構
のブロック線図を示し、このプロセスの制御機構10
は、各種条件の変化によって目的関数が急激に変化する
系を示し、PID制御部11と操作部12と制御対象1
3と、制御対象13から出力される制御量を検出してフ
ィードバックする検出部14とを有し、そのフィードバ
ック信号と設定された目標値とから偏差を求め、前記P
ID制御部11に導出してPID制御を行うものであ
る。また、このプロセスの制御機構10は、外的要因に
よる各種条件の変化に基づく目的関数の量的、方向的変
化を検出する外乱変化判別手段15と、この量的、方向
的変化にかかる検出信号に基づいて、あらかじめ設定さ
れたPID定数の最適値を選択してその最適値にかかる
信号を前記PID制御部11に導出するスケジューリン
グ手段16を具備するものである。このスケジューリン
グ手段16は、PID定数を、ステップ的に切り換え設
定する手順を実行する。尚、スケジューリング手段16
は、適宜な記憶手段を具備し、実際に装置を稼働して得
られた、各種条件の変化に対応したPID定数の最適値
をデータとして記憶しておくことができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A process control method according to the present invention will now be described with reference to the accompanying drawings showing an embodiment of a process control mechanism for carrying out the method. In FIG. 1, reference numeral 10 indicates a block diagram of a control mechanism of the process, and the control mechanism 10 of the process is shown.
Indicates a system in which the objective function changes abruptly due to changes in various conditions, and the PID control unit 11, the operation unit 12, and the controlled object 1
3 and a detector 14 that detects and feeds back the control amount output from the controlled object 13, and obtains the deviation from the feedback signal and the set target value,
It is derived to the ID control unit 11 to perform PID control. Further, the control mechanism 10 of this process includes a disturbance change determination unit 15 that detects a quantitative and directional change in the objective function based on a change in various conditions due to external factors, and a detection signal related to the quantitative and directional change. Based on the above, a scheduling means 16 is provided for selecting an optimum value of a preset PID constant and deriving a signal related to the optimum value to the PID control unit 11. The scheduling means 16 executes the procedure of stepwise switching and setting the PID constant. The scheduling means 16
Is equipped with an appropriate storage means and can store the optimum value of the PID constant corresponding to the change of various conditions obtained as a result of actually operating the apparatus as data.

【0007】以上のようなプロセスの制御機構10にお
いて、先ず、各種条件の変化を想定して、プロセスの制
御機構10をテスト稼働し、それぞれの変化に応じたP
ID定数の最適値を求め、記憶しておく。PID定数の
最適値を求めるには、手動によって行い、あるいは、自
動的に最適値を求めるオートチューニング機能を適用す
ることもできるが、他、如何なる方法でもよい。実際に
プロセスの制御機構10を運転し、運転の際に、外乱変
化判別手段15は各種条件が変化したか否かの監視を行
い、各種条件が変化して目的関数の量的、方向的変化が
検出されると、スケジューリング手段16は、変化の度
合い、方向に応じたPID定数の最適値を選択設定し、
PID制御部11にそのPID定数の最適値にかかる信
号を送出し、プロセスの制御機構10はPID制御を行
う。尚、前記プロセスの制御機構10は各種条件の変化
によって、目的関数が急激に変化する系であるので、ス
ケジューリング手段16は、PID定数を、ステップ的
に、且つ自動的に切り換え設定する手順を実行する。こ
れは、目的関数が急激に変化する系においては、ステッ
プ状にPID定数を変化させないと、その遅れにより、
系の制御が不安定となり、安定するまでに時間がかかっ
てしまうからである。このように、外乱等によって、各
種条件が変化して目的関数の量的、方向的変化があって
も、常に、最適値のPID定数によって制御を実行する
ことができるので、制御性を維持することができ、外乱
にも強く、プロセスの制御機構10は安定した制御動作
を行うことが可能となる。
In the process control mechanism 10 as described above, first, assuming a change in various conditions, the process control mechanism 10 is subjected to a test operation, and P corresponding to each change is performed.
The optimum value of the ID constant is calculated and stored. The optimum value of the PID constant can be calculated manually, or the auto-tuning function for automatically calculating the optimum value can be applied. However, any other method may be used. The process control mechanism 10 is actually operated, and during the operation, the disturbance change determination means 15 monitors whether or not various conditions are changed, and the various conditions are changed and the objective function is quantitatively or directionally changed. When is detected, the scheduling means 16 selects and sets the optimum value of the PID constant according to the degree and direction of change,
A signal relating to the optimum value of the PID constant is sent to the PID control unit 11, and the process control mechanism 10 performs PID control. Since the control mechanism 10 of the process is a system in which the objective function changes abruptly according to changes in various conditions, the scheduling means 16 executes a procedure for automatically and stepwise setting the PID constant. To do. This is because, in a system where the objective function changes rapidly, unless the PID constant is changed stepwise, due to the delay,
This is because system control becomes unstable and it takes time to stabilize. As described above, even if various conditions change due to disturbance or the like and the objective function changes quantitatively or directionally, the control can always be executed by the PID constant having the optimum value, so that controllability is maintained. Therefore, the process control mechanism 10 can perform stable control operation against disturbances.

【0008】以上、本発明にかかるプロセスの制御方法
について、プロセスの制御機構10における一実施例を
挙げ、説明したが、既知の種々の制御システムについて
も適用可能である。
Although the process control method according to the present invention has been described above with reference to the embodiment of the process control mechanism 10, it can be applied to various known control systems.

【0009】[0009]

【発明の効果】以上の通り、本発明によれば、各種条件
の変化による目的関数の変化に応じて、PID定数を自
在に最適値に選択設定することができるので、外乱によ
って目的関数が急激に変化するような系に対しても、制
御性を維持することができ、外乱にも強く、安定した制
御が可能となる。
As described above, according to the present invention, the PID constant can be freely selected and set to the optimum value according to the change of the objective function due to the change of various conditions. The controllability can be maintained even for a system that changes to, and it is resistant to disturbance and stable control is possible.

【0010】[0010]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかるプロセスの制御方法を実施する
ためのプロセスの制御機構のブロック線図である。
FIG. 1 is a block diagram of a process control mechanism for carrying out a process control method according to the present invention.

【図2】従来におけるプロセスの制御機構のブロック線
図である。
FIG. 2 is a block diagram of a conventional process control mechanism.

【図3】各種条件の変化によって目的関数が変化する系
の一実例を示す説明図である。
FIG. 3 is an explanatory diagram showing an example of a system in which an objective function changes according to changes in various conditions.

【図4】図3に示す系において、発電量および冷却水量
と、冷却水温度変化応答を示すプロセスゲインとの関係
を示すグラフである。
FIG. 4 is a graph showing the relationship between the power generation amount and the cooling water amount and the process gain indicating the cooling water temperature change response in the system shown in FIG.

【図5】図3に示す系において、発電量および冷却水量
と、冷却水温度変化応答を示す時定数との関係を示すグ
ラフである。
5 is a graph showing the relationship between the power generation amount and the cooling water amount and the time constant indicating the cooling water temperature change response in the system shown in FIG.

【図6】図3に示す系において、発電量および冷却水量
と、冷却水温度変化応答を示すむだ時間との関係を示す
グラフである。
FIG. 6 is a graph showing the relationship between the amount of power generation and the amount of cooling water and the dead time indicating the response to changes in cooling water temperature in the system shown in FIG.

【符号の説明】[Explanation of symbols]

10 プロセスの制御機構 11 PID制御部 12 操作部 13 制御対象 14 検出部 15 外乱変化判別手段 16 スケジューリング手段 10 Process Control Mechanism 11 PID Control Section 12 Operation Section 13 Control Target 14 Detection Section 15 Disturbance Change Discrimination Means 16 Scheduling Means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 PID制御を行うプロセスの制御機構
において、外的要因による各種条件の変化に基づく目的
関数の量的、方向的変化を検出して、この量的、方向的
変化にかかる検出信号に基づいて、PID定数をスケジ
ューリングして、ステップ的且つ自動的に最適値へ切換
設定することを特徴とするプロセスの制御方法。
1. A control mechanism of a process for performing PID control detects a quantitative or directional change of an objective function based on a change of various conditions due to an external factor, and a detection signal relating to the quantitative or directional change. A method for controlling a process, characterized in that a PID constant is scheduled based on the above, and is automatically and stepwise set to an optimum value.
JP9827291A 1991-04-03 1991-04-03 Control method for process Pending JPH05346805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9827291A JPH05346805A (en) 1991-04-03 1991-04-03 Control method for process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9827291A JPH05346805A (en) 1991-04-03 1991-04-03 Control method for process

Publications (1)

Publication Number Publication Date
JPH05346805A true JPH05346805A (en) 1993-12-27

Family

ID=14215309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9827291A Pending JPH05346805A (en) 1991-04-03 1991-04-03 Control method for process

Country Status (1)

Country Link
JP (1) JPH05346805A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58149503A (en) * 1983-02-12 1983-09-05 Yamatake Honeywell Co Ltd Method for controlling operation of controller

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58149503A (en) * 1983-02-12 1983-09-05 Yamatake Honeywell Co Ltd Method for controlling operation of controller

Similar Documents

Publication Publication Date Title
EP0206165B1 (en) Clock thermostat
CA2138114C (en) Apparatus and method for reducing overshoot in response to the setpoint change of an air conditioning system
US6219590B1 (en) State machine controller for operating variable air volume terminal units of an environmental control system
US6738676B2 (en) Controller having PID selection function
US4791548A (en) Discrete time control apparatus
KR20040042874A (en) Hybrid Cascade Model-Based Predictive Control System
EP0435339B1 (en) Compound control method for controlling a system
US7310981B2 (en) Method for regulating the temperature of strip metal
US5170341A (en) Adaptive controller in a process control system and a method therefor
EP0533498B1 (en) PID control unit
JPH05346805A (en) Control method for process
JPH05346806A (en) Control method for process
CN109964180B (en) Device and method for determining parameters of a control device
JPH06236201A (en) Control method for process
US5995532A (en) Method using fuzzy logic for controlling a furnace
JPH05346804A (en) Control method for process
JPH0374942B2 (en)
JP2619044B2 (en) Temperature control device
JP2000350413A (en) Dynamo-electric machine cooling gas temperature control device
Santos et al. Control of a cryogenic process using a fuzzy PID scheduler
JPH0580864A (en) Furnace temperature combustion control method
JPH0648015U (en) Furnace temperature control system
JPH0588705A (en) Process controller
JPH06309007A (en) Automatic controller
JPH04257697A (en) Automatic temperature control device