JPH053465A - Multiplex radio equipment by hot standby communication system - Google Patents

Multiplex radio equipment by hot standby communication system

Info

Publication number
JPH053465A
JPH053465A JP15303791A JP15303791A JPH053465A JP H053465 A JPH053465 A JP H053465A JP 15303791 A JP15303791 A JP 15303791A JP 15303791 A JP15303791 A JP 15303791A JP H053465 A JPH053465 A JP H053465A
Authority
JP
Japan
Prior art keywords
signal
phase
communication system
receivers
systems
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15303791A
Other languages
Japanese (ja)
Other versions
JP2879859B2 (en
Inventor
Akira Nishimura
明 西村
Hideki Nakamura
日出記 中村
Satoshi Abe
聡 阿部
Takayuki Ozaki
貴之 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15303791A priority Critical patent/JP2879859B2/en
Publication of JPH053465A publication Critical patent/JPH053465A/en
Application granted granted Critical
Publication of JP2879859B2 publication Critical patent/JP2879859B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To change over the system without causing phase deviation at all times by synchronizing a carrier phase, a clock and a frame of signals between systems at all times and switching the signal through the use of a high speed switch. CONSTITUTION:An absolute delay time correction circuit DADE is inserted to either of a sender side and a receiver side so that absolute delay times DAD1, DAD2 between a modulator NOD and a demodulator DEM for a main signal S1 of a V polarized wave system and a main signal S2 of an II polarized wave system are made coincident and absolute delay times DAD1' and DAD2' of leaked signals are respectively coincident with the times DAD2 and DAD1. Moreover, when a disturbing wave ratio D/U is deteriorated due to fading or the like between different polarized wave signals, the phase of the sender side of two systems is to be maintained so that a signal wave of the different polarized wave received in addition to the DADE is not at least in opposite phase. Thus, an active channel receiving the effect of frequency selective fading is advantageous to receive positively a different polarized wave signal of a standby system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,ディジタル多重無線装
置に関するものであり,特に通信系統を2系統有して,
両系統とも常時電源を投入しておき,いずれか一方の系
を選択して現用系とし,他系を予備系として待機させ,
現用系に障害が発生したとき現用系と予備系とを動的に
切替え使用するホットスタンドバイ通信方式の多重無線
通信装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a digital multiplex radio apparatus, and in particular, has two communication systems,
For both systems, always turn on the power, select one of the systems as the active system, and make the other system stand by as a standby system.
The present invention relates to a hot standby communication multiplex wireless communication device that dynamically switches between a working system and a standby system when a failure occurs in the working system.

【0002】[0002]

【従来の技術】送信周波数割り当てが一周波の多重無線
方式では送端局での機器故障を救済する目的で送信器と
受信器を2系統有し,2系統を常時電源を入れた状態で
待機させるホットスタンドバイ通信方式が一般に採用さ
れている。
2. Description of the Related Art In a multiplex radio system in which a transmission frequency is assigned to one frequency, there are two transmitters and receivers for the purpose of relieving a device failure at a transmitting end station, and the two systems are in a standby state with a power supply always on. The hot standby communication method is generally adopted.

【0003】図21は,このような従来のホットスタン
ドバイ通信方式の説明図である。図中,1,1’はそれ
ぞれ送信器(TX1,TX2で表す),2は切替スイッ
チ,3は送信アンテナ,4は受信アンテナ,5,5’は
ハイブリッド,6,6’はそれぞれ受信器(RX1,R
X2で表す),7は切替スイッチ,7aは切替制御部で
ある。
FIG. 21 is an explanatory diagram of such a conventional hot standby communication system. In the figure, 1 and 1'are transmitters (represented by TX1 and TX2), 2 is a changeover switch, 3 is a transmitting antenna, 4 is a receiving antenna, 5 and 5'are hybrid, and 6 and 6'are receivers ( RX1, R
X2), 7 is a changeover switch, and 7a is a changeover control unit.

【0004】どちらか切替スイッチ2で選択された一方
の送信器(図示の例ではTX1)から送信された信号
は,2系統の受信器(RX1,RX2)で受信され,切
替スイッチ7で選択されている系の受信器(図示の例で
はRX1)の出力が受信信号として出力される。
A signal transmitted from one of the transmitters (TX1 in the illustrated example) selected by one of the changeover switches 2 is received by two receivers (RX1, RX2) and selected by the changeover switch 7. The output of the receiver of the system (RX1 in the illustrated example) is output as a reception signal.

【0005】切替制御部7aは,受端のヒットレス切替
えを行い,受信信号のビットエラー率を監視して,ビッ
トエラー率が予め定められた一定の値を超えたときに切
替スイッチ7を高速に切替え,他系の受信器(図示の例
ではRX2)の出力を選択して,常に回線品質の良い通
信パスで通信運用が行われるようにする。
The changeover control section 7a performs hitless changeover of the receiving end, monitors the bit error rate of the received signal, and when the bit error rate exceeds a predetermined constant value, the changeover switch 7 operates at high speed. And the output of the receiver of another system (RX2 in the illustrated example) is selected so that the communication operation is always performed on the communication path with good line quality.

【0006】このような受端局でのヒットレス切替え
は,切替スイッチ7に電子論理スイッチを用いることに
よって高速同期切替えが可能であるため,搬端の同期は
ずれを引き起こすことがなく任意の系の受信器を随時切
替え選択できるため,受信系の機器の保守時にも利用で
きる特徴がある。
In such hitless switching at the receiving end station, since high-speed synchronous switching can be performed by using an electronic logic switch as the changeover switch 7, synchronization of the carrying end does not occur and an arbitrary system can be operated. Since the receiver can be switched and selected at any time, it has the feature that it can be used even during maintenance of receiving equipment.

【0007】しかし送端局での送信系の切替えの場合に
は,図示のように切替スイッチ2が送信器終段(高周波
電力増幅器)の出力を切替えるように設けられ,通常は
機械的スイッチが使用されることから高速の切替えがで
きず,無線区間での搬送波再生回路の同期はずれ,クロ
ック再生回路の同期はずれ,フレーム同期回路の同期は
ずれなどを引き起こし,搬端の同期をはずす結果とな
る。このため送端側の切替スイッチを切替えて行う保守
については,通常の運用に悪影響を与えるため,夜間に
保守を行うなど,容易に実行できない欠点があった。
However, in the case of switching the transmission system at the transmitting end station, as shown in the figure, the changeover switch 2 is provided so as to switch the output of the final stage of the transmitter (high frequency power amplifier), and normally a mechanical switch is provided. Since it is used, high-speed switching cannot be performed, which causes loss of synchronization of the carrier recovery circuit in the wireless section, loss of synchronization of the clock recovery circuit, loss of synchronization of the frame synchronization circuit, etc., resulting in loss of synchronization at the carrying end. For this reason, maintenance performed by switching the changeover switch on the sending end side has a drawback that it cannot be easily executed, such as performing maintenance at night because it adversely affects normal operation.

【0008】[0008]

【発明が解決しようとする課題】本発明は,ホットスタ
ンドバイ通信方式の多重通信装置において,同期はずれ
なしに送信器および受信器のヒットレス切替えを可能に
し,通信運用中の保守を容易にすることを目的としてい
る。
SUMMARY OF THE INVENTION The present invention makes it possible to perform hitless switching of a transmitter and a receiver without losing synchronization in a multiplex communication apparatus of a hot standby communication system and facilitate maintenance during communication operation. Is intended.

【0009】[0009]

【課題を解決するための手段】本発明は上記課題を解決
するために,それぞれ送信器,送信アンテナ,受信アン
テナ,受信器からなる独立した2つの通信系統を並列に
設けて,それぞれ単一周波のV偏波とH偏波で使用され
るようにし,受端側で一方の系を任意に選択可能にする
とともに,2つの系間で受信信号同士が同期しているよ
うにするものである。
In order to solve the above problems, the present invention provides two independent communication systems each including a transmitter, a transmitting antenna, a receiving antenna, and a receiver in parallel, and each has a single frequency. It is used for the V polarized wave and the H polarized wave, so that one system can be arbitrarily selected on the receiving end side and the received signals are synchronized with each other between the two systems. .

【0010】そしてそのため各系の送信器から受信器ま
でのパスの信号到着時間を一致させ,またいずれか一系
のレベルが低下した時に生ずる系間の異偏波間干渉の悪
影響を避けるために,各系の受信アンテナに入力される
他系の送信アンテナからの異偏波信号が少なくとも逆相
にならないようにし,さらに周波数選択性フェージング
による信号周波数特性の劣化時には,他系からの異偏波
の漏れ信号がこのフェージングの影響を受けていなけれ
ばむしろこれを積極的に使用するよう制御するものであ
る。これにより受信端での送信器と受信器のヒットレス
切替えが,位相はずれを生じることなく容易に実行可能
となる。
Therefore, in order to make the signal arrival times of the paths from the transmitters to the receivers of the respective systems coincide with each other and to avoid the adverse effect of the cross polarization interference between the systems which occurs when the level of any one system is lowered, At the same time, make sure that the signals of different polarization from the transmitting antennas of other systems that are input to the receiving antennas of each system do not have opposite phases, and when the signal frequency characteristics deteriorate due to frequency selective fading, the signals of different polarization from other systems are generated. If the leak signal is not affected by this fading, it is rather controlled to actively use it. As a result, hitless switching between the transmitter and the receiver at the receiving end can be easily performed without causing phase shift.

【0011】図1は,本発明の原理説明図である。図
中,1,1’は送信部(TX1,TX2),3,3’は
送信アンテナ,4,4’は受信アンテナ,5はハイブリ
ッド,6,6’は受信部(RX1,RX2),7は切替
スイッチ,8,8’,9,9’はそれぞれ同期調整手段
である。
FIG. 1 is a diagram for explaining the principle of the present invention. In the figure, 1 and 1'are transmitters (TX1, TX2), 3 and 3'are transmitter antennas, 4 and 4'are receiver antennas, 5 is hybrid, and 6 and 6'are receivers (RX1, RX2), 7 Is a changeover switch, and 8, 8 ′, 9, 9 ′ are synchronization adjusting means.

【0012】図1において第1の系統では送信部1(T
X1)から出力された送信信号は,送信アンテナ3から
V偏波の電波により送信され,受信アンテナ4で受信さ
れて,受信部6(RX1)で受信処理される。同様に第
2の系統では,送信部1’(TX2)から出力された送
信信号は送信アンテナ3’からH偏波の電波により送信
され,受信アンテナ4’で受信されて,受信器6’(R
X2)で受信処理される。
In FIG. 1, the transmitter 1 (T
The transmission signal output from X1) is transmitted from the transmission antenna 3 as a V-polarized radio wave, received by the reception antenna 4, and received by the reception unit 6 (RX1). Similarly, in the second system, the transmission signal output from the transmission unit 1 '(TX2) is transmitted from the transmission antenna 3'in H-polarized radio waves, received by the reception antenna 4', and received by the receiver 6 '( R
Reception processing is performed in X2).

【0013】送信器側の同期調整手段8,8’と受信器
側の同期調整手段9,9’は,受信器側で両系統の受信
信号の搬送波位相やクロックあるいはフレームが同期し
ているように,必要な箇所に設けられる。例えば図2の
(a) のように,各系統の送信器から受信器までのパスに
ついて,それぞれの絶対遅延時間DAD1とDAD2と
が等しくなり,各受信信号の到着時間が一致するよう
に,遅延時間の短いところを長いところに合わせる形
で,絶対遅延時間補正回路が挿入される。
The synchronization adjusting means 8 and 8'on the transmitter side and the synchronization adjusting means 9 and 9'on the receiver side are such that the carrier phase and clock or frame of the reception signals of both systems are synchronized on the receiver side. In addition, it is provided in the necessary place. For example, in Figure 2
As shown in (a), where the absolute delay times DAD1 and DAD2 of the paths from the transmitter to the receiver of each system are equal and the arrival times of the received signals are the same, the delay time is short. An absolute delay time correction circuit is inserted in the form of adjusting to a long place.

【0014】またフェージング等による信号レベル低下
時の異偏波受信信号間の干渉対策として,図2(b) のよ
うに,各系統の送信器と受信器との間に存在する4つの
パス上の信号S1 ,Si’,S2 ,Sβ’について,S
1 とSβ’の間,およびS2 とSi’の間の相対位相差
Φ1 ,Φ2 がそれぞれ逆相とならないように送端位相制
御を行う方法がとられ,送信器側に位相可変手段を設
け,また受信器側に位相検出手段を設けて位相制御を行
うようにする。
As a measure against interference between different polarization reception signals when the signal level is lowered due to fading or the like, as shown in FIG. 2 (b), there are four paths existing between the transmitter and the receiver of each system. Of the signals S 1 , Si ′, S 2 , Sβ ′ of S
A method of controlling the sending end phase is adopted so that the relative phase differences Φ 1 and Φ 2 between 1 and Sβ ′ and between S 2 and Si ′ do not become opposite phases. And a phase detection means on the receiver side for phase control.

【0015】さらに周波数選択性フェージングにより信
号の周波数特性が劣化した場合に対しては,図2(c) の
ように,受信器側で信号の周波数特性を検出して,送信
器側の電力レベルを制御し,状況により異偏波の受信信
号を使用できるようにする。このため送信器側に信号レ
ベル可変手段を設け,受信器側に振幅周波数特性検出手
段が設けられる。
Further, in the case where the frequency characteristic of the signal is deteriorated by the frequency selective fading, the frequency characteristic of the signal is detected on the receiver side and the power level on the transmitter side is detected as shown in FIG. 2 (c). Control so that a received signal with different polarization can be used depending on the situation. Therefore, the signal level varying means is provided on the transmitter side, and the amplitude frequency characteristic detecting means is provided on the receiver side.

【0016】[0016]

【作用】図1に示す本発明のホットスタンドバイ通信方
式の多重無線装置では,切替スイッチ7を制御して送信
器および受信器を含む系統を単位にヒットレス切替えが
行われる。系統間での信号の搬送波位相,クロック,フ
レームについて常に,同期がとれているため,切替スイ
ッチ7に高速スイッチを用いることにより同期はずれの
ないヒットレス切替えが可能となる。
In the multiplex radio apparatus of the hot standby communication system of the present invention shown in FIG. 1, the changeover switch 7 is controlled to perform hitless switching in units of a system including a transmitter and a receiver. Since the carrier phase of the signal between the systems, the clock, and the frame are always synchronized, it is possible to perform hitless switching without loss of synchronization by using a high-speed switch as the changeover switch 7.

【0017】また同じ理由で任意の系統の送信器あるい
は受信器を保守したい場合も,送信器あるいは受信器単
独に切り離すことが可能となり,保守対象機器を含む系
統を,通信運用中であっても常に安全に非選択側に切替
えることができ,保守を可能にする。
Further, when it is desired to maintain a transmitter or receiver of an arbitrary system for the same reason, it is possible to disconnect the transmitter or the receiver independently, and even if the system including the maintenance target device is in communication operation. You can always safely switch to the non-selected side, which enables maintenance.

【0018】さらに回線状態の悪化により現用系の信号
レベルが低下しても,他系からの異偏波信号の干渉が少
なく,また品質のよい方の偏波信号を採用して同期はず
れのない良好な通信品質の維持が可能となる。
Further, even if the signal level of the working system is lowered due to the deterioration of the line condition, the interference of the different polarization signal from the other system is small, and the polarization signal of the better quality is adopted so that there is no loss of synchronization. It is possible to maintain good communication quality.

【0019】[0019]

【実施例】次に,本発明の実施例を説明する。以下の実
施例の説明で使用される各図中の記号は次の通りである
(アルファベット順で示す)。
EXAMPLES Next, examples of the present invention will be described. The symbols in the figures used in the description of the examples below are as follows (shown in alphabetical order).

【0020】 ATT : 減衰器 B/U :バイポーラ・ユニポーラ変換回路 CONT :制御回路 EPS :無限移相器 F特DET:周波数特性検出器 H :ハイブリッド IFLo :IFローカル信号 MIX :ミキサ MOD :変調器 OSC :発振器 PDET :位相検出回路 RFLo :RFローカル信号 RX :受信部 SW :切替スイッチ SYS1 :系統1 SYS2 :系統2 TX :送信部 U/B :ユニポーラ・バイポーラ変換回路 Vco :再生搬送波 (1) 受信器への信号到着時間を同じにする絶対遅延時間
補正の実施例 偏波の異なる2系統の送信器および受信器において,各
系統の受信器への信号到着時間,つまり絶対遅延時間
は,主の偏波の信号間,主と漏れの偏波の信号間でとも
に等しくするため,第3図に示すように,V偏波の系の
主の信号S1 とH偏波の系の主の信号S2 の変調器MO
Dおよび復調器DEM間の各絶対遅延時間DAD1とD
AD2とが一致するように,またV偏波の系からH偏波
の系への漏れ信号S1 ’の絶対遅延時間DAD1’とH
偏波の系からV偏波の系への漏れ信号Sβ’の絶対遅延
時間DAD2’とがそれぞれDAD2とDAD1とに一
致するように,送信側と受信側のそれぞれにおいて,い
ずれか一方の系に絶対遅延時間補正回路DADEが挿入
される。
ATT: Attenuator B / U: Bipolar / unipolar conversion circuit CONT: Control circuit EPS: Infinite phase shifter F characteristic DET: Frequency characteristic detector H: Hybrid IFLo: IF local signal MIX: Mixer MOD: Modulator OSC : Oscillator PDET: Phase detection circuit RFLo: RF local signal RX: Receiver SW: Changeover switch SYS1: System 1 SYS2: System 2 TX: Transmitter U / B: Unipolar / bipolar conversion circuit Vco: Regenerated carrier wave (1) receiver Delay time to make the signal arrival time to the same
Example of Correction In a transmitter and a receiver of two systems having different polarizations, the signal arrival time to the receiver of each system, that is, the absolute delay time, is calculated between the signals of the main polarization and the polarization of the main and leakage polarizations. In order to make the signals equal to each other, as shown in FIG. 3, the modulator MO of the main signal S 1 of the V polarization system and the main signal S 2 of the H polarization system is used.
Each absolute delay time DAD1 and D between D and the demodulator DEM
As AD2 and matches, also 'absolute delay time DAD1' and H leakage signals S 1 from the series of V-polarized wave of the system of the H-polarized wave
In order to match the absolute delay time DAD2 ′ of the leakage signal Sβ ′ from the polarized wave system to the V polarized wave system with DAD2 and DAD1, respectively, in either of the transmitting side and the receiving side, An absolute delay time correction circuit DADE is inserted.

【0021】図3は,DADEを送信側と受信側のIF
帯区間に挿入した例であるが,図4のようにRF区間に
挿入してもよい。送信側のDADEと受信側のDADE
は,次のような機能をもつ。 送信側DADE 図5はV偏波の系の受信について示したもので,パス1
はV偏波の系の主の信号S1 のパスであり,パス2はH
偏波の系からV偏波の系へ漏れ信号Sβ’のパスであ
る。通常時,パス2側の信号Sβ’の受信レベルは受信
アンテナの異偏波識別度XPD分低いレベルになるが,
パス1側の信号S1 のレベルがフェージング等の影響に
より低下した場合には異偏波間干渉の影響が大きくな
る。これを避けるために,パス1とパス2の絶対遅延時
間DAD1とDAD1’のうちいずれか短い方にDAD
Eを挿入する(図3および図4はDAD1が短い場合の
例である)。H偏波の系の受信についても同様にして送
信側へのDADEの挿入が行われる。 受信側DADE 送信側DADEと同じ理由で,図6に示すように,例え
ばH偏波の系の受信側において信号レベルが低下した場
合の干渉を避けるために,DAD1とDAD2’とが同
一になるよう,絶対遅延時間が短い方の受信側にDAD
Eを挿入する。図3はDADEをRF区間に挿入した場
合の例,そして図4はIF区間に挿入した場合の例であ
る。 (2) 送端位相制御の実施例 異偏波の信号間で,フェージング等により妨害波比D/
Uが低下したとき,前記のDADEに加えて,受信入力
において,受信した異偏波の関係にある2波の信号波
が,少なくとも逆位相とならないように,2系統の送信
器側の位相を維持しなくてはならない。
In FIG. 3, the DADE is the IF on the transmitting side and the IF on the receiving side.
Although the example is inserted in the band section, it may be inserted in the RF section as shown in FIG. Sender's DADE and receiver's DADE
Has the following functions. Sender-side DADE FIG. 5 shows reception in the V-polarized system.
Is the path of the main signal S 1 of the V polarization system, and path 2 is H
This is the path of the leakage signal Sβ ′ from the polarization system to the V polarization system. Normally, the reception level of the signal Sβ ′ on the path 2 side is a level lower by the cross polarization discrimination degree XPD of the reception antenna,
Effect of cross polarization interference is increased if the path 1 side of the signals S 1 level is lowered due to the influence of such fading. To avoid this, DAD is set to the shorter of the absolute delay times DAD1 and DAD1 ′ of path 1 and path 2, whichever is shorter.
E is inserted (FIGS. 3 and 4 are examples when DAD1 is short). Similarly, for reception of the H-polarized wave system, DADE is inserted on the transmission side. For the same reason as the transmitting side DADE, as shown in FIG. 6, for example, in order to avoid interference when the signal level is lowered on the receiving side of the H-polarized system, DAD1 and DAD2 'become the same. The DAD on the receiving side with the shorter absolute delay time.
Insert E. FIG. 3 shows an example in which DADE is inserted in the RF section, and FIG. 4 shows an example in which it is inserted in the IF section. (2) Example of transmission end phase control Between the signals of different polarizations, the interference wave ratio D /
When U decreases, in addition to the above DADE, at the receiving input, the phase on the transmitter side of the two systems is set so that the received two signal waves having the different polarization relationship do not become at least opposite phases. Must be maintained.

【0022】図7〜14は,受信側2系統の受信器の位
相差を検出し,送信側の信号位相を制御することによ
り,2系統の受信器の位相差を最小とするものである。
図7〜14は,2系統の受信器のIF信号を乗算器等に
よる位相検出回路PDETに導入し,位相情報を逆方向
回線のサービスチャネル等で転送し,送信側の信号位相
を制御する方法である。
7 to 14 are for minimizing the phase difference between the two receivers by detecting the phase difference between the two receivers on the receiving side and controlling the signal phase on the transmitter side.
7 to 14 show a method of controlling the signal phase on the transmission side by introducing the IF signals of the two receivers into the phase detection circuit PDET including a multiplier, transferring the phase information through the service channel of the reverse link, etc. Is.

【0023】図7は,送信信号位相を可変にする手段と
して,SYS1の送信系におけるIFローカル信号IF
Lo の位相を,無限移相器EPSを用いて変化させる実
施例を示す。
FIG. 7 shows the IF local signal IF in the transmission system of SYS1 as means for varying the phase of the transmission signal.
An embodiment in which the phase of Lo is changed by using the infinite phase shifter EPS will be described.

【0024】図8は,図7のIFローカル信号IFLo
の代わりにRFローカル信号RFLo を変化させる実施
例を示す。図9は,IF信号をEPSに導入して,その
位相を直接変化させる実施例を示す。
FIG. 8 shows the IF local signal IFLo of FIG.
An example in which the RF local signal RFLo is changed instead of FIG. 9 shows an embodiment in which the IF signal is introduced into the EPS and its phase is directly changed.

【0025】図10は,RF信号をEPSに導入して,
その位相を直接変化させる実施例を示す。図11〜図1
4は,受信器における位相誤差情報を得る手段として,
DEMの再生搬送波Vcoの位相差をPDETにより検出
する方法をとる実施例である。PDETには,論理回路
またはアナログ乗算器などが用いられ,その他の構成は
図7〜図10の実施例と同様である。 (3) 送信電力制御の実施例 以上述べた実施例は,周波数特性に対して均一に作用す
るフェージングに対しては効果的であるが,周波数選択
性フェージングの場合には,振幅周波数特性の劣化が生
じるため,周波数選択性フェージングの影響を被った現
用系のチャネルにおいては,正規の受信偏波信号を捨
て,待機系の異偏波信号を積極的に受信する方が有利で
ある。図15および図16は,その方法をとる実施例で
ある。
FIG. 10 shows that an RF signal is introduced into the EPS,
An example in which the phase is directly changed will be shown. 11 to 1
4 is a means for obtaining phase error information in the receiver,
In this embodiment, a method for detecting the phase difference of the reproduced carrier wave Vco of the DEM by PDET is used. A logic circuit or an analog multiplier is used for PDET, and other configurations are similar to those of the embodiments of FIGS. (3) Embodiment of transmission power control Although the embodiments described above are effective for fading that acts uniformly on frequency characteristics, in the case of frequency selective fading, the amplitude frequency characteristics deteriorate. Therefore, it is advantageous to discard the normal reception polarization signal and actively receive the standby polarization signal in the active channel affected by the frequency selective fading. 15 and 16 show an embodiment that adopts the method.

【0026】図15の実施例では,減衰器ATTが送信
器のIF区間(MOD出力)に挿入されており,図16
の実施例ではATTが送信器のRF区間(TX出力)に
挿入されている。周波数特性の検出は,両実施例とも受
信器のIF信号(RX出力)について行っており,それ
ぞれF特DETを用いて各系のIF信号の周波数特性を
検出し,受信器側のCONTで両系の周波数特性につい
て劣化の有無を調べ受信に適した系を決定し,逆方向回
線を用いて送信器側のCONTにその情報を通知する。
送信器側のCONTは,通知された情報に基づいてAT
Tを制御する。すなわち正規に受信している側の偏波信
号の周波数特性が劣化した場合には強制的にその送信レ
ベルを下げ,異偏波側の信号が主に受信されるようにす
る。この場合,送信レベルを下げる程度は,F特DET
のレベル検出能力によって識別できる範囲内でなければ
ならない。また異偏波側のレベルを同時に上げてやるこ
とも可能であり,効果的である。なお,ATTの代わり
に可変利得増幅器を用いてもよい。
In the embodiment shown in FIG. 15, the attenuator ATT is inserted in the IF section (MOD output) of the transmitter.
In this embodiment, the ATT is inserted in the RF section (TX output) of the transmitter. The frequency characteristic is detected for the IF signal (RX output) of the receiver in both embodiments, and the frequency characteristic of the IF signal of each system is detected using the F characteristic DET, and both are detected by the CONT on the receiver side. The frequency characteristics of the system are checked for deterioration, the system suitable for reception is determined, and the information is notified to the CONT on the transmitter side using the reverse link.
The CONT on the transmitter side is AT based on the notified information.
Control T. That is, when the frequency characteristics of the polarization signal on the side that is normally received deteriorates, the transmission level is forcibly lowered so that the signal on the different polarization side is mainly received. In this case, the extent to which the transmission level is lowered depends on the F special DET.
Must be within the range that can be identified by the level detection ability of. It is also effective because it is possible to raise the level on the different polarization side at the same time. A variable gain amplifier may be used instead of the ATT.

【0027】以上述べた(1),(2),(3) の実施例は任意に
組み合わせることができる。例えば図17は,絶対遅延
時間補正の図3の実施例と送端位相制御の図7の実施例
とを組み合わせた実施例,図18は図3の実施例と図1
2の実施例とを組み合わせた実施例,図19は図3と図
7と図15の各実施例を組み合わせた実施例,図20は
図3と図10と図14の各実施例を組み合わせた実施例
である。
The embodiments (1), (2) and (3) described above can be arbitrarily combined. For example, FIG. 17 is an embodiment in which the embodiment of FIG. 3 of absolute delay time correction and the embodiment of FIG. 7 of sending end phase control are combined, and FIG. 18 is the embodiment of FIG. 3 and FIG.
FIG. 19 is a combination of the embodiments of FIGS. 3, 7, and 15, and FIG. 20 is a combination of the embodiments of FIGS. 3, 10, and 14. This is an example.

【0028】[0028]

【発明の効果】本発明により,V,H両偏波の系統の受
信信号間に位相差がなくなるため,系統の切替えを常に
位相はずれを生じることなく行うことができるため,通
信品質が改善されるとともに,送信器あるいは受信器の
保守を目的とする系統の切替えを随時行うことが可能と
なることによって,従来のように通信運用中の保守を避
けて夜間にのみ保守を行っていたような制約も不要とな
り,保守性が著しく向上する。
According to the present invention, since there is no phase difference between the received signals of the V and H polarized wave systems, the system switching can always be performed without causing a phase shift, so that the communication quality is improved. In addition, the system can be switched at any time for the purpose of maintaining the transmitter or receiver, so that it is possible to avoid maintenance during communication as in the past and perform maintenance only at night. No restrictions are required, and maintainability is significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理説明図である。FIG. 1 is a diagram illustrating the principle of the present invention.

【図2】本発明構成の説明図である。FIG. 2 is an explanatory diagram of the configuration of the present invention.

【図3】DADEをIF区間に挿入した実施例の構成図
である。
FIG. 3 is a configuration diagram of an embodiment in which DADE is inserted in an IF section.

【図4】DADEをRF区間に挿入した実施例の構成図
である。
FIG. 4 is a configuration diagram of an embodiment in which DADE is inserted in an RF section.

【図5】送信側DADEの説明図である。FIG. 5 is an explanatory diagram of a transmitting DADE.

【図6】受信側DADEの説明図である。FIG. 6 is an explanatory diagram of a receiving DADE.

【図7】IF信号位相検出−IFL。位相制御の実施例
の構成図である。
FIG. 7 IF signal phase detection-IFL. It is a block diagram of the Example of phase control.

【図8】IF信号位相検出−RFL。位相制御の実施例
の構成図である。
FIG. 8 IF signal phase detection-RFL. It is a block diagram of the Example of phase control.

【図9】IF信号位相検出−IF信号位相制御の実施例
の構成図である。
FIG. 9 is a configuration diagram of an embodiment of IF signal phase detection-IF signal phase control.

【図10】IF信号位相検出−RF信号位相制御の実施
例の構成図である。
FIG. 10 is a configuration diagram of an embodiment of IF signal phase detection-RF signal phase control.

【図11】再生搬送波Vcoにより位相検出−IFLo 位
相制御の実施例の構成図である。
FIG. 11 is a configuration diagram of an embodiment of phase detection-IFLo phase control by a reproduced carrier wave Vco.

【図12】再生搬送波Vcoにより位相検出−RFLo 位
相制御の実施例の構成図である。
FIG. 12 is a configuration diagram of an embodiment of phase detection-RFLo phase control by a reproduced carrier wave Vco.

【図13】再生搬送波Vcoにより位相検出−IF信号位
相制御の実施例の構成図である。
FIG. 13 is a configuration diagram of an embodiment of phase detection-IF signal phase control by a reproduced carrier wave Vco.

【図14】再生搬送波Vcoによる位相検出−RF信号位
相制御の実施例の構成図である。
FIG. 14 is a configuration diagram of an embodiment of phase detection-RF signal phase control by a reproduced carrier wave Vco.

【図15】IF段による送信電力制御の実施例の構成図
である。
FIG. 15 is a configuration diagram of an embodiment of transmission power control by an IF stage.

【図16】RF段による送信電力制御の実施例の構成図
である。
FIG. 16 is a configuration diagram of an embodiment of transmission power control by the RF stage.

【図17】組み合わせによる実施例(その1)の構成図
である。
FIG. 17 is a configuration diagram of an embodiment (part 1) by combination.

【図18】組み合わせによる実施例(その2)の構成図
である。
FIG. 18 is a configuration diagram of an embodiment (part 2) by combination.

【図19】組み合わせによる実施例(その3)の構成図
である。
FIG. 19 is a configuration diagram of a combination example (part 3).

【図20】組み合わせによる実施例(その4)の構成図
である。
FIG. 20 is a configuration diagram of a combination example (Part 4).

【図21】従来のホットスタンドバイ通信方式の説明図
である。
FIG. 21 is an explanatory diagram of a conventional hot standby communication system.

【符号の説明】[Explanation of symbols]

1,1’:送信器(TX1,TX2) 3,3’:送信アンテナ 4,4’:受信アンテナ 6,6’:受信器(RX1,RX2) 8,8’,9,9’:同期調整手段 1, 1 ': transmitter (TX1, TX2) 3, 3 ': transmitting antenna 4,4 ': receiving antenna 6,6 ': receiver (RX1, RX2) 8, 8 ', 9, 9': synchronization adjusting means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 尾崎 貴之 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Takayuki Ozaki             1015 Kamiodanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture             Within Fujitsu Limited

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 送信器と,送信アンテナと,受信アンテ
ナと,受信器とからなる通信系統を2系統そなえ,各系
統には単一周波の直交するV偏波とH偏波の各一方の電
波が用いられ,受端側で前記各系統の受信器の受信信号
出力の一方が随時切替え選択されるホットスタンドバイ
通信方式による多重無線装置において,前記2系統の通
信系統の各々における受信器の受信信号間を同期させる
同期調整手段をそなえていることを特徴とするホットス
タンドバイ通信方式による多重無線装置。
1. A communication system comprising a transmitter, a transmitting antenna, a receiving antenna and a receiver is provided in two systems, and each system has one of a single frequency orthogonal V polarization and one H polarization. In a multiplex radio apparatus by a hot standby communication system in which radio waves are used and one of the reception signal outputs of the receivers of the respective systems is switched and selected at any time, in the receivers of each of the two communication systems A multiplex radio apparatus according to a hot standby communication system, characterized by comprising synchronization adjusting means for synchronizing received signals.
【請求項2】 請求項1において,各系統の受信器の受
信信号同士を同期させる同期調整手段は,各系統の送信
器から各系統の受信器への全てのパスについて,信号到
着時間が等しくなるように設けられた絶対遅延時間補正
回路であることを特徴とするホットスタンドバイ通信方
式による多重無線装置。
2. The synchronization adjusting means for synchronizing the reception signals of the receivers of the respective systems according to claim 1, wherein the signal arrival times are equal for all paths from the transmitters of the respective systems to the receivers of the respective systems. A multiplex radio apparatus according to a hot standby communication system, which is an absolute delay time correction circuit provided as follows.
【請求項3】 請求項1において,各系統の受信器の受
信信号同士を同期させる同期調整手段は,各系統の送信
器の少なくとも1つに設けた位相可変手段と,各系統の
受信器における受信信号間の位相を検出する位相検出手
段とからなり,前記受信信号間の位相が逆相とならない
ように位相可変手段を制御することを特徴とするホット
スタンドバイ通信方式による多重無線装置。
3. The synchronization adjusting means for synchronizing the reception signals of the receivers of the respective systems according to claim 1, the phase varying means provided in at least one of the transmitters of the respective systems, and the receivers of the respective systems. A multiplex radio apparatus according to a hot standby communication system, comprising: phase detecting means for detecting a phase between received signals, and controlling the phase varying means so that the phases between the received signals do not become opposite phases.
【請求項4】 請求項1において,各系統の送信器に設
けた信号レベル可変手段と,各系統の受信器に設けた振
幅周波数特性検出手段とをそなえ,各系統の受信器にお
ける受信信号の振幅周波数特性から周波数選択性フェー
ジングを検出して,当該フェージングが発生している系
統の送信電力レベルを低下させ,他系統の異偏波信号に
よる受信を行うことを特徴とするホットスタンドバイ通
信方式による多重無線装置。
4. The signal level varying means provided in the transmitter of each system and the amplitude frequency characteristic detecting means provided in the receiver of each system according to claim 1, A hot standby communication system characterized by detecting frequency selective fading from the amplitude frequency characteristic, lowering the transmission power level of the system in which the fading is occurring, and receiving by the different polarization signal of another system Multiple wireless devices by.
JP15303791A 1991-06-25 1991-06-25 Multiplexed wireless device using hot standby communication method Expired - Lifetime JP2879859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15303791A JP2879859B2 (en) 1991-06-25 1991-06-25 Multiplexed wireless device using hot standby communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15303791A JP2879859B2 (en) 1991-06-25 1991-06-25 Multiplexed wireless device using hot standby communication method

Publications (2)

Publication Number Publication Date
JPH053465A true JPH053465A (en) 1993-01-08
JP2879859B2 JP2879859B2 (en) 1999-04-05

Family

ID=15553598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15303791A Expired - Lifetime JP2879859B2 (en) 1991-06-25 1991-06-25 Multiplexed wireless device using hot standby communication method

Country Status (1)

Country Link
JP (1) JP2879859B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0614005A (en) * 1992-06-24 1994-01-21 Nec Corp Active standby changeover device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0614005A (en) * 1992-06-24 1994-01-21 Nec Corp Active standby changeover device

Also Published As

Publication number Publication date
JP2879859B2 (en) 1999-04-05

Similar Documents

Publication Publication Date Title
US5787122A (en) Method and apparatus for transmitting/receiving, encoded data as burst signals using a number of antennas
US4083009A (en) High reliability diversity communications system
WO2010087338A1 (en) Dual polarization transmission system, dual polarization transmission method, reception apparatus, transmission apparatus, reception method, and transmission method
JP4345280B2 (en) Wireless communication apparatus and wireless communication system using the same
JP2879859B2 (en) Multiplexed wireless device using hot standby communication method
JP2800567B2 (en) Wireless device for multipath communication
JP2560617B2 (en) Hot standby transmission / reception system
JP3456405B2 (en) Dual polarization space diversity radio equipment
JPS61101134A (en) Diversity reception method
JP3233965B2 (en) Wireless communication device and its receiving device
JP2000151543A (en) Both-polarized wave transmitter
JP2000353998A (en) Diversity receiver and diversity transmitter
JPH098774A (en) Digital radio communication equipment
JPH08213972A (en) Diversity transmission/reception system
JPH07162332A (en) Hot stand-by transmitter-receiver
JP2682514B2 (en) Receive hot standby system
JP2843033B2 (en) Digital communication system
JP2500781B2 (en) Line switching device
JP3222690B2 (en) Cross-polarization interference compensator and radio receiver
JPH066275A (en) Diversity radio equipment
JP3092608B2 (en) Cross polarization interference compensation method
JPS61262308A (en) Power synthesis circuit
JP2513324B2 (en) Dual polarization transmission device
JP2734310B2 (en) Wireless transmission equipment
JP2787905B2 (en) Transmission power control method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990112