JPH05346422A - Loading material for separating/analyzing anion - Google Patents

Loading material for separating/analyzing anion

Info

Publication number
JPH05346422A
JPH05346422A JP4154910A JP15491092A JPH05346422A JP H05346422 A JPH05346422 A JP H05346422A JP 4154910 A JP4154910 A JP 4154910A JP 15491092 A JP15491092 A JP 15491092A JP H05346422 A JPH05346422 A JP H05346422A
Authority
JP
Japan
Prior art keywords
anions
porous
separating
metal oxide
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4154910A
Other languages
Japanese (ja)
Inventor
Toshishige Suzuki
敏重 鈴木
Yoshinori Inoue
嘉則 井上
Osamu Hirai
修 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Yokogawa Electric Corp
Resonac Corp
Original Assignee
Agency of Industrial Science and Technology
Hitachi Chemical Co Ltd
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Hitachi Chemical Co Ltd, Yokogawa Electric Corp filed Critical Agency of Industrial Science and Technology
Priority to JP4154910A priority Critical patent/JPH05346422A/en
Publication of JPH05346422A publication Critical patent/JPH05346422A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently separate fluoride ions in solution with high selectivity simultaneously with coexisting anions by employing a loading material, composed of porous basic material dispersed with a specified metal oxide containing water, as a separation column. CONSTITUTION:The loading material for separating/analyzing anions is produced by carrying a metal oxide containing water represented by a formula I, M.nH2O on a porous basic material through hydrolysis of metallic alkoxide represented by formula II, MM(OR)4. In the formula, M represents a metallic element and zirconium or cerium is employed in view point of easy availability. (n) is a positive integer and an integer in the range of 1-6 is preferably employed in view point of easy availability. R represents an alkyl group. A crosslinked porous polymer material is preferably employed as the porous basic material in view point of resistance against mobile phase or solvent in sample solution. When such loading material is employed as a separation column, fluoride ions in sample solution can be separated selectively and efficiently together with coexisting anions.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、陰イオン類の分離分析
用充填剤に関する。
TECHNICAL FIELD The present invention relates to a packing material for separating and analyzing anions.

【0002】[0002]

【従来の技術】従来、溶液(主に水溶液)中の陰イオン
類の分離分析には、陰イオン交換樹脂を充填したカラム
を用いた、液体クロマトグラフィーあるいはイオンクロ
マトグラフィーが最も多く使用されている。
2. Description of the Related Art Conventionally, liquid chromatography or ion chromatography using a column packed with an anion exchange resin is most often used for separating and analyzing anions in a solution (mainly an aqueous solution). ..

【0003】しかしながら、イオンクロマトグラフィー
の分離カラムに用いられる陰イオン交換樹脂の選択性
(イオン交換の順位)は、SO4 2->HPO4 2->NO3 -
>Br->NO2 ->Cl->HCOO->CH3COO-
-の順となっており、フッ化イオンに対する選択性が
極めて低いため、フッ化物イオンは被測定溶液の溶媒に
起因するピーク(通常、ウォーターディップと呼ぶ)と
重なり、精度良く測定することは困難である。また、非
イオン性あるいは陽イオン性の物質が共存する場合に
は、これらの物質は溶媒と同様な位置に溶出するため、
フッ化物イオンを良好に分離することは困難となる。更
に、選択性の近い酢酸イオンが多量に共存する場合に
は、相互分離は不可能である。
However, the selectivity of the anion exchange resin used in the separation column of an ion chromatography (rank ion exchange) is, SO 4 2-> HPO 4 2- > NO 3 -
> Br -> NO 2 -> Cl -> HCOO -> CH 3 COO ->
Since the order is F − and the selectivity for fluoride ion is extremely low, the fluoride ion overlaps with the peak (usually called water dip) due to the solvent of the solution to be measured, and accurate measurement is not possible. Have difficulty. Also, when nonionic or cationic substances coexist, these substances elute at the same position as the solvent,
Good separation of fluoride ions becomes difficult. Furthermore, when a large amount of acetate ions having similar selectivity coexist, mutual separation is impossible.

【0004】上記の問題の解決策として、陰イオン交換
樹脂の基材の性質を工夫し、イオン交換作用以外の相互
作用を加味させて、フッ化物イオンをウォーターディッ
プから引き離し、分離を改善するという方法がとられて
いる。つまり、全多孔性の親水性樹脂を基材として用い
ると、基材樹脂との相互作用によりフッ化物イオンの保
持が強まり、ウォーターディップと引き離すことが可能
となる。しかしながら、このような充填剤を用いても選
択性の近い酢酸イオンが多量に共存する場合には相互分
離を行うことは困難である。
As a solution to the above problem, the nature of the base material of the anion exchange resin is devised, and interaction other than ion exchange action is taken into account to separate the fluoride ion from the water dip and improve the separation. The method is taken. That is, when a totally porous hydrophilic resin is used as the base material, the interaction with the base material resin enhances the retention of the fluoride ions, and the water dip can be separated. However, even if such a filler is used, it is difficult to perform mutual separation when a large amount of acetate ions having similar selectivity coexist.

【0005】[0005]

【発明が解決しようとする課題】本発明は、かかる問題
に鑑みてなされたものであり、溶液中のフッ化物イオン
を含む陰イオン類を効率よく分離分析することが可能
な、フッ化物イオンに対して高い選択性を示す陰イオン
類の分離分析用充填剤を提供することを目的とするもの
である。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above problems, and provides a fluoride ion capable of efficiently separating and analyzing anions containing a fluoride ion in a solution. It is an object of the present invention to provide a packing material for separating and analyzing anions which exhibits high selectivity with respect to anion.

【0006】[0006]

【課題を解決するための手段】本発明者らは、被試料溶
液中にフッ化物イオンと共に共存する陰イオン類を、ク
ロマトグラフィック的手法で高率よく分離分析する方法
を開発するために、種々の研究を重ねた結果、多孔性基
材に含水金属酸化物を分散担持させた充填剤を分離カラ
ムとして用いれば、被試料溶液中のフッ化物イオンを選
択的に、かつ効率よく共存する陰イオン類と同時に分離
することができることを見いだし、この知見に基づいて
本発明をなすに至った。
[Means for Solving the Problems] In order to develop a method for efficiently separating and analyzing anions coexisting with fluoride ions in a sample solution by a chromatographic method, the present inventors have developed various methods. As a result of repeated studies of the above, if a packing material in which hydrous metal oxides are dispersed and supported on a porous substrate is used as a separation column, anions that selectively and efficiently coexist with fluoride ions in the sample solution They have found that they can be separated simultaneously with other species, and have completed the present invention based on this finding.

【0007】すなわち、本発明は、一般式(I) MO2・nH2O (I) (式中のMは金属元素を示し、nは正の整数を示す) で示される含水金属酸化物を、一般式(II) M(OR)4 (II) (式中のMは金属元素を示し、Rはアルキル基を示す)
で表される金属アルコキシドの加水分解により他孔性基
材の表面に担持させた陰イオン類の分離分析用充填剤に
関する。
That is, the present invention provides a hydrous metal oxide represented by the general formula (I) MO 2 · nH 2 O (I) (wherein M represents a metal element and n represents a positive integer). , General formula (II) M (OR) 4 (II) (wherein M represents a metal element and R represents an alkyl group)
The present invention relates to a packing material for separating and analyzing anions, which is carried on the surface of a multi-porous substrate by hydrolysis of a metal alkoxide represented by:

【0008】本発明における陰イオン類の分離分析用充
填剤は、多孔性基材に、金属アルコキシドを含浸した
後、該金属アルコキシドを加水分解して、多孔性基材表
面に含水金属酸化物として担持させることによって製造
することができる。多孔性基材としては特に制限がない
が、例えば、多孔性ポリスチレン、多孔性メチロール化
ポリスチレン、多孔性ポリメタクリル酸エステル、多孔
性ポリウレタン、多孔性ポリエチレン、多孔性ポリ塩化
ビニル、多孔性ポリプロピレン、多孔性ポリビニルアル
コール等のような多孔性高分子材料、多孔性シリカゲ
ル、多孔性アルミナ、多孔性カーボン、活性炭等のよう
な多孔性無機材料などが挙げられるが、移動相及び試料
溶液中の溶媒等に対する耐性を考えると、架橋ポリスチ
レン、架橋メチロール化ポリスチレン、架橋ポリメタク
リル酸エステル、架橋ポリビニルアルコール等の架橋さ
れた多孔性高分子材料が好ましい。また、この多孔性基
材の形状については、分離能、測定時間、耐圧性等の点
から比表面積50〜800m2/g、平均孔径5〜10
0nm、粒子径2〜20μmの範囲のものが好ましく用
いられる。
The packing material for separation and analysis of anions in the present invention is obtained by impregnating a porous substrate with a metal alkoxide and then hydrolyzing the metal alkoxide to form a hydrous metal oxide on the surface of the porous substrate. It can be manufactured by supporting. The porous substrate is not particularly limited, for example, porous polystyrene, porous methylolated polystyrene, porous polymethacrylic acid ester, porous polyurethane, porous polyethylene, porous polyvinyl chloride, porous polypropylene, porous Examples include porous polymeric materials such as water-soluble polyvinyl alcohol, porous silica gel, porous alumina, porous carbon, porous inorganic materials such as activated carbon, etc. Considering resistance, crosslinked porous polymer materials such as crosslinked polystyrene, crosslinked methylolated polystyrene, crosslinked polymethacrylic acid ester, and crosslinked polyvinyl alcohol are preferable. Regarding the shape of this porous substrate, the specific surface area is 50 to 800 m 2 / g and the average pore size is 5 to 10 from the viewpoints of separability, measurement time, pressure resistance and the like.
Those having a particle size of 0 nm and a particle diameter of 2 to 20 μm are preferably used.

【0009】本発明において、多孔性基材に含水金属酸
化物を含浸することは、例えば、一般式(II) M(OR)4 (II) (式中のMは金属元素を示し、Rはアルキル基を示す)
で表される金属アルコキシドを低沸点の有機溶媒に溶解
し、この溶液と乾燥した前記多孔性基材とを混合した
後、該溶媒を留去することによって、行うことができ
る。
In the present invention, impregnating a porous substrate with a hydrous metal oxide can be carried out by, for example, formula (II) M (OR) 4 (II) (wherein M represents a metal element and R represents Indicates an alkyl group)
It can be carried out by dissolving the metal alkoxide represented by the following in an organic solvent having a low boiling point, mixing this solution with the dried porous substrate, and then distilling off the solvent.

【0010】前記一般式(I)及び一般式(II)にお
けるMの金属元素は、特に制限はないが、入手容易性等
の点からジルコニウム、セリウム等が好ましい。また、
一般式(I)におけるnは、入手容易性等の点から1〜
6の整数であることが好ましい。
The metal element of M in the general formulas (I) and (II) is not particularly limited, but zirconium, cerium and the like are preferable from the viewpoint of easy availability. Also,
N in the general formula (I) is 1 to 1 from the viewpoint of availability and the like.
It is preferably an integer of 6.

【0011】前記一般式(II)におけるRのアルキル
基としては、メチル、エチル、n−プロピル、iso−
プロピル、n−ブチル、iso−ブチル、tert−ブ
チル基等が挙げられる。
Examples of the alkyl group represented by R in the general formula (II) include methyl, ethyl, n-propyl and iso-.
Examples thereof include propyl, n-butyl, iso-butyl and tert-butyl groups.

【0012】また、前記低沸点の有機溶媒としては、金
属アルコキシドに対応するアルコール類、つまり、メタ
ノール、エタノール、n−プロパノール、iso−プロ
パノール、n−ブタノール、iso−ブタノール、te
rt−ブタノール等やアセトン、ベンゼン、トルエン等
があげられる。
As the low boiling point organic solvent, alcohols corresponding to metal alkoxides, that is, methanol, ethanol, n-propanol, iso-propanol, n-butanol, iso-butanol, te
Examples include rt-butanol, acetone, benzene, toluene and the like.

【0013】次に、多孔性基材に含浸された金属アルコ
キシドを酸あるいはアルカリにより加水分解し、含水金
属酸化物を前記多孔性基材の細孔内及び表面に形成させ
ることによって含水金属酸化物を前記多孔性基材に担持
させる。
Next, the metal alkoxide impregnated in the porous base material is hydrolyzed with an acid or an alkali to form a hydrous metal oxide in the pores and on the surface of the porous base material. Are supported on the porous substrate.

【0014】金属アルコキシドの加水分解は、pH2.
0以下の酸性水溶液またはpH11.0以上のアルカリ
性水溶液で行うことが好ましい。また、温度は高温にな
るほど加水分解は速やかに行われる。通常、pH1.0
〜2.0の硫酸水溶液中で20〜100時間加熱還流す
ることにより金属アルコキシドを加水分解できる。
The hydrolysis of the metal alkoxide is carried out at pH 2.
It is preferable to use an acidic aqueous solution of 0 or less or an alkaline aqueous solution of pH 11.0 or more. Further, the higher the temperature is, the faster the hydrolysis is performed. Usually pH 1.0
The metal alkoxide can be hydrolyzed by heating under reflux for 20 to 100 hours in an aqueous solution of sulfuric acid of up to 2.0.

【0015】このようにして得られた充填剤は多孔性基
材細孔の内部表面に、重合した含水金属酸化物が均一に
分解して析出し、フッ化物イオンを良好に吸着する。ま
た、含水金属酸化物は、酸、アルカリへの溶解度が極め
て小さいため、移動相を通液した際の金属の溶解は無視
できるほど小さく、連続して再現性良く用いることが可
能である。
In the filler thus obtained, the polymerized hydrous metal oxide is uniformly decomposed and deposited on the inner surface of the pores of the porous substrate, and the fluoride ion is favorably adsorbed. In addition, since the hydrous metal oxide has extremely low solubility in acids and alkalis, the dissolution of the metal when passing through the mobile phase is negligibly small, and it can be continuously and reproducibly used.

【0016】本発明の陰イオン類の分離分析用充填剤を
用いて陰イオン類の分離を行う場合、該充填剤のフッ化
物イオンの保持力に応じて、通常pH2.0〜9.0の
移動相を使用することができる。pHが2.0未満又は
9.0を越える場合にはフッ化物イオン保持量が低下す
る傾向がある。しかし、クロマトグラフィックに分離分
析を行う場合には、短時間で良好なピーク形状で分離カ
ラムから溶出されることが好ましく、pH9.0を越え
ても十分使用することが可能である。実用的には、pH
2.0〜11.0の範囲で使用することが好ましい。
When anions are separated using the packing material for separation and analysis of anions according to the present invention, the pH is usually 2.0 to 9.0 depending on the retention capacity of the packing material for fluoride ions. Mobile phases can be used. If the pH is less than 2.0 or exceeds 9.0, the amount of retained fluoride ions tends to decrease. However, in the case of performing chromatographic separation analysis, it is preferable to elute from the separation column with a good peak shape in a short time, and it is possible to sufficiently use even if the pH exceeds 9.0. Practically, pH
It is preferably used in the range of 2.0 to 11.0.

【0017】このような酸性あるいはアルカリ性水溶液
を通液しても、結合した金属イオンの脱離は全く認めら
れず、従って、クロマトグラフィック手法を用いたフッ
化物イオンを含む陰イオン類の測定において、該充填剤
から金属イオンを脱離すること無く、連続して再現性良
くフッ化物イオンを含む陰イオン類を分離分析すること
が可能である。
Even when such an acidic or alkaline aqueous solution is passed, desorption of the bound metal ions is not observed at all, and therefore, in the measurement of anions containing fluoride ions using a chromatographic method, Anions containing fluoride ions can be continuously separated and analyzed with good reproducibility without desorbing metal ions from the packing material.

【0018】[0018]

【実施例】次に実施例により本発明を更に詳細に説明す
るが、本発明はこれらによってなんら限定されるもので
はない。 実施例1 含水酸化ジルコニウムを担持したメチロール化ポリスチ
レン系充填剤テトラ−n−ブトキシジルコニウム10g
を30mlのイソプロピルアルコールに溶解し、この中
にあらかじめ洗浄、乾燥した多孔性のメチロール化ポリ
スチレン樹脂(平均粒子径12μm)10gを加えた。
混合物を室温で60分間減圧下に置き、その後イソプロ
ピルアルコールを減圧で留去した。得られた樹脂に50
mlのpH2.0の硫酸水溶液を加え、20時間還流さ
せた。水洗後、デカンテーションにより酸化ジルコニウ
ムが担持されていないあるいは低担持量の樹脂(酸化ジ
ルコニウムが担持されている樹脂に比べて比重が軽いこ
とを利用)を取り除き、乾燥を行った。このようにして
得られた充填剤のジルコニウム含量は1.4mol/g
であった。
The present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. Example 1 10 g of methylolated polystyrene-based filler tetra-n-butoxyzirconium loaded with hydrous zirconium oxide
Was dissolved in 30 ml of isopropyl alcohol, and 10 g of porous methylolated polystyrene resin (average particle diameter 12 μm) which had been washed and dried in advance was added thereto.
The mixture was placed under reduced pressure at room temperature for 60 minutes, after which the isopropyl alcohol was distilled off under reduced pressure. 50 for the resin obtained
ml of sulfuric acid aqueous solution of pH 2.0 was added and refluxed for 20 hours. After washing with water, the resin not supporting zirconium oxide or having a low supporting amount (utilizing the fact that the specific gravity is lighter than that of the resin supporting zirconium oxide) was removed by decantation and dried. The zirconium content of the filler thus obtained is 1.4 mol / g
Met.

【0019】実施例2 実施例1で得られた充填剤を内径6mm、長さ75mm
のカラムに充填し、イオンクロマトグラフに装着し、p
H3.0の硫酸水溶液で洗った後、3mMの炭酸ナトリ
ウムを移動相として通液し、陰イオン類の分離に使用し
た。フッ化物イオン及び塩化物イオンをそれぞれ10p
pm含有する試料溶液50μlを、上記カラムに注入し
分離を行ったところ、塩化物イオン、フッ化物イオンの
順に溶出し、かつ良好な分離を示した。図1に本実施例
のクロマトグラムを示す。
Example 2 The filler obtained in Example 1 was used with an inner diameter of 6 mm and a length of 75 mm.
Packed in a column, attached to an ion chromatograph, and
After washing with H3.0 sulfuric acid aqueous solution, 3 mM sodium carbonate was passed as a mobile phase and used for separation of anions. 10p each for fluoride ion and chloride ion
When 50 μl of the sample solution containing pm was injected into the column for separation, chloride ions and fluoride ions were eluted in this order and good separation was exhibited. FIG. 1 shows the chromatogram of this example.

【0020】実施例3 実施例2で使用したカラムと通常のイオンクロマトグラ
フィーに使用されるカラムとを直列に接続し、実施例2
と同様の条件で陰イオン混合液の分離を行った。フッ化
物イオンは塩化物イオンの後ろに溶出し、ウォーターデ
ィップの影響を受けずにフッ化物イオンを含む陰イオン
類を良好に分離することができた。図2に本実施例のク
ロマトグラムを示す。
Example 3 The column used in Example 2 and the column used in ordinary ion chromatography were connected in series, and Example 2 was used.
The anion mixed solution was separated under the same conditions as in. The fluoride ion was eluted after the chloride ion, and the anions including the fluoride ion could be well separated without being affected by the water dip. FIG. 2 shows a chromatogram of this example.

【0021】比較例1 実施例3で使用したイオンクロマトグラフィー用のカラ
ムのみを用いて、他は実施例3と同一の条件で、同一の
試料の分離を試みた。ここで用いたカラムでは、図3に
示すように陰イオン類を良好に分離することが可能であ
る。しかしながら、フッ化物イオンは被試料溶液中の溶
媒に起因するピーク(ウォーターディップという)と重
なって溶出しており、フッ化物イオン濃度が低い場合や
被試料溶液中の溶媒や共存物質の組成が変化する場合に
は、フッ化物イオンを正確に定量することが困難である
ことが解る。
Comparative Example 1 An attempt was made to separate the same sample under the same conditions as in Example 3 except that only the column for ion chromatography used in Example 3 was used. With the column used here, anions can be favorably separated as shown in FIG. However, fluoride ions are eluted by overlapping with the peak (called water dip) due to the solvent in the sample solution, and when the fluoride ion concentration is low or the composition of the solvent and coexisting substances in the sample solution changes. In that case, it is difficult to accurately quantify the fluoride ion.

【0022】実施例及び比較例における測定条件 実施例2 移動相:3mM Na2CO3 流速:1.0ml/min 試 料:F=10ppm、Cl=10ppm 注入量:50μl 検出器:導電率検出器 温 度:40℃ 実施例3及び比較例1 移動相:4mM Na2CO3/4mM NaHCO3 流 速:1.0ml/min 試 料:F=5ppm、Cl=10ppm、Br=10
ppm、NO3=30ppm、SO4=40ppm 注入量:50μl 検出器:導電率検出器 温 度:40℃
Measurement conditions in Examples and Comparative Examples Example 2 Mobile phase: 3 mM Na 2 CO 3 Flow rate: 1.0 ml / min Sample: F = 10 ppm, Cl = 10 ppm Injection amount: 50 μl Detector: Conductivity detector temperature: 40 ° C. example 3 and Comparative example 1 mobile phase: 4mM Na 2 CO 3 / 4mM NaHCO 3 flow rate: 1.0 ml / min specimen: F = 5ppm, Cl = 10ppm , Br = 10
ppm, NO 3 = 30 ppm, SO 4 = 40 ppm Injection amount: 50 μl Detector: Conductivity detector Temperature: 40 ° C.

【0023】[0023]

【発明の効果】本発明の陰イオン類の分離分析用充填剤
は、フッ化物イオンの選択的測定や多量のフッ化物イオ
ンを含む被測定試料溶液中の陰イオン類を良好に分離す
ることができる。しかも、結合した含水金属酸化物が脱
離することがないため、連続して再現性良く陰イオン類
を分離分析することが可能である。
INDUSTRIAL APPLICABILITY The packing material for separating and analyzing anions of the present invention is capable of selectively measuring fluoride ions and separating anions in a sample solution containing a large amount of fluoride ions. it can. Moreover, since the bound hydrous metal oxide is not desorbed, it is possible to continuously separate and analyze anions with good reproducibility.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例2で作成したカラムを用いて実施例2の
条件で測定したクロマトグラム。
FIG. 1 is a chromatogram measured under the conditions of Example 2 using the column prepared in Example 2.

【図2】実施例2で作成したカラムと通常のイオンクロ
マトグラフィー用カラムとを直列に接続して実施例3の
条件で測定したクロマトグラム。
FIG. 2 is a chromatogram measured under the conditions of Example 3 by connecting the column prepared in Example 2 and an ordinary column for ion chromatography in series.

【図3】実施例3で用いた通常のイオンクロマトグラフ
ィー用カラムのみを使用して比較例1の条件で測定した
クロマトグラム。
FIG. 3 is a chromatogram measured under the conditions of Comparative Example 1 using only the ordinary column for ion chromatography used in Example 3.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 敏重 宮城県仙台市宮城野区苦竹四丁目2番1号 工業技術院東北工業技術試験所内 (72)発明者 井上 嘉則 東京都武蔵野市中町二丁目9番32号 横河 電機株式会社内 (72)発明者 平井 修 茨城県日立市東町四丁目13番1号 日立化 成工業株式会社茨城研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshishige Suzuki 4-2-1, Gintake, Miyagino-ku, Sendai-shi, Miyagi Inside the Tohoku Institute of Industrial Research, Institute of Industrial Technology (72) Yoshinori Inoue 2-chome, Nakamachi, Musashino-shi, Tokyo 9-32 Yokogawa Electric Co., Ltd. (72) Inventor Osamu Hirai 4-13-1, Higashimachi, Hitachi-shi, Ibaraki Hitachi Chemical Co., Ltd. Ibaraki Research Institute

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一般式(I) MO2・nH2O (I) (式中のMは金属元素を示し、nは正の整数を示す) で表される含水金属酸化物を、一般式(II) M(OR)4 (II) (式中のMは金属元素を示し、Rはアルキル基を示す)
で表される金属アルコキシドの加水分解により多孔性基
材の表面に担持させた陰イオン類の分離分析用充填剤。
1. A hydrated metal oxide represented by the general formula (I): MO 2 .nH 2 O (I) (wherein M represents a metal element and n represents a positive integer). (II) M (OR) 4 (II) (wherein M represents a metal element and R represents an alkyl group)
A packing material for separation and analysis of anions, which is supported on the surface of a porous substrate by hydrolysis of a metal alkoxide represented by:
【請求項2】 前記一般式(I)中のMがジルコニウム
またはセリウムで、nが1〜6の整数である請求項1記
載の陰イオン類の分離分析用充填剤。
2. The packing material for separation and analysis of anions according to claim 1, wherein M in the general formula (I) is zirconium or cerium, and n is an integer of 1 to 6.
【請求項3】 前記一般式(I)で表される含水金属酸
化物の担持量が多孔性基材に対して5〜50重量%であ
る請求項1記載の陰イオン類の分離分析用充填剤。
3. The packing for separating and analyzing anions according to claim 1, wherein the amount of the hydrous metal oxide represented by the general formula (I) supported is 5 to 50% by weight with respect to the porous substrate. Agent.
JP4154910A 1992-06-15 1992-06-15 Loading material for separating/analyzing anion Pending JPH05346422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4154910A JPH05346422A (en) 1992-06-15 1992-06-15 Loading material for separating/analyzing anion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4154910A JPH05346422A (en) 1992-06-15 1992-06-15 Loading material for separating/analyzing anion

Publications (1)

Publication Number Publication Date
JPH05346422A true JPH05346422A (en) 1993-12-27

Family

ID=15594637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4154910A Pending JPH05346422A (en) 1992-06-15 1992-06-15 Loading material for separating/analyzing anion

Country Status (1)

Country Link
JP (1) JPH05346422A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002045848A1 (en) * 2000-12-07 2002-06-13 Sun Plastics Co., Ltd. Material for capturing chemical substance and method for producing the same, and chemical substance-capturing tube
JP2016203053A (en) * 2015-04-16 2016-12-08 オルガノ株式会社 Method and apparatus for regenerating ion exchange resin

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002045848A1 (en) * 2000-12-07 2002-06-13 Sun Plastics Co., Ltd. Material for capturing chemical substance and method for producing the same, and chemical substance-capturing tube
US6723157B2 (en) 2000-12-07 2004-04-20 Takao Tsuda Material for capturing chemical substance, method for producing the same, and chemical substance-capturing tube
JP2016203053A (en) * 2015-04-16 2016-12-08 オルガノ株式会社 Method and apparatus for regenerating ion exchange resin

Similar Documents

Publication Publication Date Title
Stock et al. Chromatographic methods
Corradini et al. Handbook of HPLC
Wheaton et al. Ion exclusion-A unit operation utilizing ion exchange materials
Kirkland Porous thin-layer modified glass bead supports for gas liquid chromatography.
US5326738A (en) Stable, covalently-bonded supports for chemical separation apparatus made through a hydride intermediate
Walton Ion exchange and liquid column chromatography
Larrivee et al. Solvation parameter model for the prediction of breakthrough volumes in solid-phase extraction with particle-loaded membranes
Jin et al. Analysis of steric hindrance effects on adsorption kinetics and equilibria
GB2125312A (en) Moving column chromatography
Hu et al. Synthesis and characterization of new zirconia-based polymeric cation-exchange stationary phases for high-performance liquid chromatography of proteins
Braun et al. Reversed-phase foam chromatography: Separation of palladium, bismuth and nickel in the tributyl phosphate-thiourea-perchloricacid system
CN108339535A (en) A kind of preparation method of lead ion trace adsorbent
Mayer et al. Retention characteristics of octadecylsiloxane-bonded silica and porous polymer particle-loaded membranes for solid-phase extraction
Poole et al. Influence of solvent effects on the breakthrough volume in solid-phase extraction using porous polymer particle-loaded membranes
Strain Qualitative separations by two-way and three-way electrochromatography
Duffield et al. Chemically Reactive Solids as Column Packings for Gas Chromatography.
JPH05346422A (en) Loading material for separating/analyzing anion
Mayer et al. Sampling characteristics of octadecylsiloxane-bonded silica particle-embedded glass fiber discs for solid-phase extraction
Zweig et al. Chromatography
Steinberg et al. Chromatography on columns packed with a non-polar material
Dave Synthetic sorbents in chromatography
Shibukawa et al. Model for partition chromatography of ionic solutes in the presence of eluent electrolytes
Boardman Ion-exchange chromatography
Naono et al. Surface Water Content of Metal Oxides. II. Measurement of Samples Containing Pores: Silica, Alumina and Silica-Alumina
Huang et al. Adsorption behavior of some proteins on the TSK-DEAE 5PW anion exchanger