JPH05345975A - Surface treating method for preventing hydrogen embrittlement - Google Patents

Surface treating method for preventing hydrogen embrittlement

Info

Publication number
JPH05345975A
JPH05345975A JP3065284A JP6528491A JPH05345975A JP H05345975 A JPH05345975 A JP H05345975A JP 3065284 A JP3065284 A JP 3065284A JP 6528491 A JP6528491 A JP 6528491A JP H05345975 A JPH05345975 A JP H05345975A
Authority
JP
Japan
Prior art keywords
chromium layer
steel
hydrogen embrittlement
ion
strength steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3065284A
Other languages
Japanese (ja)
Other versions
JPH083147B2 (en
Inventor
Ryuichi Hamano
隆一 浜野
Yoshikazu Sakai
義和 坂井
Kazuo Saito
一男 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Original Assignee
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals filed Critical National Research Institute for Metals
Priority to JP3065284A priority Critical patent/JPH083147B2/en
Publication of JPH05345975A publication Critical patent/JPH05345975A/en
Publication of JPH083147B2 publication Critical patent/JPH083147B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent hydrogen embrittlement by vapor-depositing a chromium layer having a specified thickness on the surface of high strength steel for structural use and furthermore subjecting it to treatment for improving adhesion between both. CONSTITUTION:The surface of high strength steel for structural use having 100 to 150MPa tensile strength is vapor-deposited with a chromium layer having <=0.050mum film thickness by ion magnetron sputtering. As for the ion sputtering vapor deposition conditions, e.g. heating temp. is held at <=400 deg.C in vacuum of >=10<-2>Torr. Next, for preventing peeling caused by thermal stress generated at this time, argon ions of 10<16> to 10<17> pieces/cm<2> are implanted therein, and the boundary between the chromium layer and steel is subjected to ion mixing treatment, by which they are closely contacted at each other. In this way, the deterioration in the fatigue service life caused by the hydrogen embrittlement of the high strength steel by hydrogen intruding from the external environment can conveniently and easily be suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】この発明は、水素脆化防止表面処
理法に関するものである。さらに詳しくは、この発明
は、外部環境から侵入する水素による高強度鋼の疲労寿
命の低下を抑止することのできる、水素脆化を防止する
ための表面処理法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen embrittlement prevention surface treatment method. More specifically, the present invention relates to a surface treatment method for preventing hydrogen embrittlement, which can prevent the fatigue life of high-strength steel from decreasing due to hydrogen invading from the external environment.

【従来の技術とその課題】従来より、構造物の軽量化を
図るとともに、安全性を確実にするために、優れた疲労
特性を有する高強度鋼が要求されてきており、すでにこ
れまでにもいくつかの強力鋼が開発されてきてもいる。
しかしながら、鋼の高強度化を図れば図るほど、水蒸気
や水溶液等の湿潤性環境で使用すると、早期に疲労破壊
が生じ、鋼本来の良好な性質が損なわれるという問題が
ある。構造用高強度鋼は、一般に、そのような外部環境
と接触すると腐食反応を起こし、その結果生じる水素に
よって脆化しやすいという欠点を有している。このた
め、従来では、鋼の組成、組織等を制御し、水素脆化の
感受性を軽減させている。また、これ以外にも高強度鋼
の耐食性を向上させるための種々の方策が提案されても
いる。たとえばその一つとして、鋼表面に有機系あるい
は無機系の塗料を塗装する方法が知られている。しかし
ながら、この場合には、保守点検を必要とするため、労
力とコストが膨大となるという欠点がある。また、高強
度鋼に電気的カソード分極を付与し、防食を行う方法が
知られてもいるが、この場合には、複雑な形状を有する
構造物では過防食を起こす危険性があり、その結果、水
素脆化により早期に破断するという問題がある。さらに
また、耐食性を付与する表面処理としての電気メッキ法
が提案されてもいるが、この場合には、メッキ処理にと
もない材料への水素吸蔵が生じ、水素脆化を誘発しやす
いという問題がある。このように、高強度鋼に耐食性を
付与しても、表面処理過程中に侵入する水素、または外
部環境から侵入する水素により疲労強度が大幅に低下す
るという問題があり、従来の高強度鋼の防食法には、改
善すべき課題が残されているのが実情であった。この発
明は、以上の通りの事情に鑑みてなされたものであり、
従来の高強度鋼の耐食性改善法の欠点を解消し、外部環
境から侵入する水素による高強度鋼の疲労寿命の低下を
抑止することのできる、新しい水素脆化防止表面処理法
を提供することを目的としている。
2. Description of the Related Art Conventionally, in order to reduce the weight of structures and ensure safety, high-strength steels having excellent fatigue properties have been demanded, and have already been developed. Some strong steels have also been developed.
However, the higher the strength of the steel, the more the steel is used in a wet environment such as water vapor or an aqueous solution, which causes fatigue fracture at an early stage, impairing the good properties inherent to the steel. Structural high-strength steels generally have the disadvantage that when they come into contact with such an external environment, they undergo a corrosive reaction and are easily embrittled by the resulting hydrogen. Therefore, conventionally, the composition, structure, etc. of steel are controlled to reduce the susceptibility to hydrogen embrittlement. In addition to these, various measures for improving the corrosion resistance of high-strength steel have been proposed. For example, as one of them, a method of coating an organic or inorganic paint on the steel surface is known. However, in this case, since maintenance and inspection are required, there is a drawback that labor and cost become enormous. There is also known a method of applying electrical cathodic polarization to high-strength steel to prevent corrosion, but in this case, there is a risk of over-corrosion in a structure having a complicated shape. However, there is a problem of early fracture due to hydrogen embrittlement. Furthermore, although an electroplating method has been proposed as a surface treatment for imparting corrosion resistance, in this case, there is a problem that hydrogen absorption into the material occurs due to the plating treatment and hydrogen embrittlement is easily induced. .. As described above, even if corrosion resistance is imparted to high-strength steel, there is a problem that the fatigue strength is significantly reduced due to hydrogen invading during the surface treatment process or hydrogen invading from the external environment. The actual situation is that the anticorrosion method still has issues to be improved. The present invention has been made in view of the above circumstances,
It is an object of the present invention to provide a new hydrogen embrittlement prevention surface treatment method that can solve the drawbacks of the conventional method for improving the corrosion resistance of high-strength steel and prevent the deterioration of the fatigue life of high-strength steel due to hydrogen invading from the external environment. Has a purpose.

【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、引張強さ100 〜150MPaの構造用
高強度鋼表面にンイオンマグネトロンスパッタリングに
より膜厚0.05μm以下のクロム層を蒸着し、次いで10
16〜1017個/cm2 のアルゴンイオンを注入してクロム
層と鋼との界面をイオンミキシングし、クロム層を密着
させることを特徴とする水素脆化防止表面処理法を提供
するこの発明においては、対象とする構造用の高強度鋼
の引張強さを100 〜150MPaとしているが、これは、引張
強さが100MPa未満の鋼の場合には、鋼自体の水素脆化感
受性が小さく、また、150MPaより大きい鋼の場合には、
製造工程中に侵入した内在水素により脆化しやすく、表
面処理効果が小さいからである。また、蒸着物質として
はクロムを用いる。これは、クロム層が腐食性環境下で
鋼材に侵入する水素を軽減させるからである。このクロ
ム源としては、たとえば3N程度の純クロム板を例示す
ることができる。もちろんこれ以外のものであってもよ
い。クロム層を鋼表面に蒸着する方法として、この発明
においては、マグネトロンスパッタリング法を用いる。
アルゴンイオン等によるマグネトロンスパッタリング法
は、物理的表面処理法であって、しかも乾式の表面処理
法である。このため、表面処理中に鋼材に水素が侵入す
るのを防止することができる。その蒸着条件としては、
たとえば10-2Torr以上の真空中で、加熱温度を400 ℃
以下に保持することができる。このときのクロム層の厚
さは、0.050 μm以下とする。膜厚を0.050 μmより大
きくすると、表面処理中に生ずる熱応力により蒸着後に
剥離しやすく、しかも蒸着後のイオンミキシング処理に
よる密着性の改善が困難となる。さらにまたこの発明に
おいては、マグネトロンスパッタリング法によるクロム
層蒸着の後に、1016〜1017個/cm2 のアルゴンイオ
ンを用いてクロム層と鋼との界面をイオンミキシングす
る。上記したマグネトロンスパッタリング法単独でもク
ロム被膜の作製は可能であるが、鋼材の疲労寿命を改善
し、応力負荷中でも安定な被膜とするためには、イオン
ミキシング法の併用が欠かせない。このイオンミキシン
グ処理によって、クロム層の密着性が良好となり、構造
用高強度鋼の耐食性が改善され、外部環境からの水素の
侵入を抑制することができ、水素脆化による疲労寿命の
低下を抑止することが可能となる。イオンミキシング処
理は、たとえば室温で行うことができる。このように、
この発明においては、クロム層蒸着時およびイオンミキ
シング処理時の処理温度を充分低くすることができるこ
とから、鋼材の特性を損なうことなく安定に表面処理を
行うことができる。
In order to solve the above problems, the present invention provides a chromium high-strength steel surface having a tensile strength of 100 to 150 MPa with a chromium layer having a thickness of 0.05 μm or less by N ion magnetron sputtering. Evaporated, then 10
In the present invention, there is provided a hydrogen embrittlement prevention surface treatment method, characterized in that 16 to 10 17 ions / cm 2 of argon ions are injected to ion-mix the interface between a chromium layer and steel to bring the chromium layer into close contact. The tensile strength of the high-strength steel for the target structure is 100 to 150 MPa, which means that when the tensile strength is less than 100 MPa, the hydrogen embrittlement susceptibility of the steel itself is small, and , For steels greater than 150 MPa,
This is because the internal hydrogen that has entered during the manufacturing process is likely to cause embrittlement and has a small surface treatment effect. Also, chromium is used as the vapor deposition material. This is because the chromium layer reduces the amount of hydrogen that enters the steel material in a corrosive environment. As this chromium source, for example, a pure chromium plate of about 3N can be exemplified. Of course, it may be something other than this. In the present invention, the magnetron sputtering method is used as a method for depositing the chromium layer on the steel surface.
The magnetron sputtering method using argon ions or the like is a physical surface treatment method and a dry surface treatment method. Therefore, hydrogen can be prevented from entering the steel during the surface treatment. As the vapor deposition conditions,
For example, in a vacuum of 10 -2 Torr or more, heating temperature is 400 ℃
You can keep: The thickness of the chromium layer at this time is 0.050 μm or less. When the film thickness is larger than 0.050 μm, the thermal stress generated during the surface treatment tends to cause peeling after the vapor deposition, and it is difficult to improve the adhesion by the ion mixing treatment after the vapor deposition. Furthermore, in the present invention, after the chromium layer is deposited by the magnetron sputtering method, the interface between the chromium layer and the steel is ion-mixed with 10 16 to 10 17 ions / cm 2 of argon ions. Although the chromium coating can be prepared by the magnetron sputtering method alone, the combined use of the ion mixing method is indispensable for improving the fatigue life of the steel material and making the coating stable under stress. This ion mixing treatment improves the adhesion of the chromium layer, improves the corrosion resistance of structural high-strength steel, suppresses the intrusion of hydrogen from the external environment, and suppresses the reduction in fatigue life due to hydrogen embrittlement. It becomes possible to do. The ion mixing process can be performed at room temperature, for example. in this way,
In the present invention, the treatment temperature during the vapor deposition of the chromium layer and the ion mixing treatment can be sufficiently lowered, so that the surface treatment can be stably performed without impairing the characteristics of the steel material.

【実施例】以下実施例を示し、この発明の水素脆化防止
表面処理法についてさらに詳しく説明する。SNCM4
39鋼を840 ℃で油焼入れした後に、480 ℃で焼戻し、
引張強さ120MPaに調整した。この鋼材を機械研磨し、ア
セトンにより脱脂した後、10-2Torrの真空下で加熱温
度を150 ℃に保持し、クロム基板を用いてアルゴンイオ
ンによるマグネトロンスパッタリングを行った。この鋼
材に膜厚0.808 μmおよび0.037 μmのクロム層を蒸着
し、次いで10 16〜1017個/cm2 のアルゴンイオンを
照射した。比較のために、同一条件でマグネトロンスパ
ッタリングにより同一厚みのクロム層を蒸着し、イオン
ミキシング処理を施さない鋼材も作製した。以上の試料
について、疲労荷重下での蒸着クロム層の剥離の有無を
調べたところ、膜厚0.808 μmのクロム層を蒸着した試
料については、スパッタリングのまま、およびスパッタ
リング後イオンミキシングを施した場合にも、クロム層
の剥離が生じた。一方、膜厚0.037 μmのクロム層を蒸
着した後に、イオンミキシング処理した試料について
は、クロム層の剥離は生じなかった。次に、この膜厚0.
037 μmのクロム層を蒸着した後に、イオンミキシング
処理した試料に、−1.2 Vのカソード電位を付与し、水
素をチャージしながら、3.5%NaCl水溶液中で疲労
試験を行った。また、比較のために、クロム層を蒸着し
ない無処理材についても同一の疲労試験を行った。その
結果を示したものが表1である。この表1からも明らか
なように、表面処理を施した鋼材の疲労寿命は、無処理
材の5倍弱にまで向上した。疲労寿命が改善されること
が確認された。もちろんこの発明は、以上の例によって
限定されるものではない。鋼材の種類および熱処理等の
細部については様々な態様が可能であることはいうまで
もない。
EXAMPLES Examples are shown below to prevent hydrogen embrittlement of the present invention.
The surface treatment method will be described in more detail. SNCM4
39 steel was oil-quenched at 840 ℃, then tempered at 480 ℃,
The tensile strength was adjusted to 120 MPa. Mechanically polish this steel and
After degreasing with Seton, 10-2Heating temperature under Torr vacuum
The temperature is maintained at 150 ° C, and a chromium substrate is used to
Magnetron sputtering was performed. This steel
Deposited 0.808 μm and 0.037 μm chrome layers on the material
Then 10 16-1017Pieces / cm2Of argon ions
Irradiated. For comparison, the magnetron spa under the same conditions
Ion deposit a chrome layer of the same thickness by
A steel material not subjected to the mixing treatment was also produced. Above samples
About the presence or absence of peeling of the deposited chromium layer under fatigue loading.
As a result of examination, it was found that a 0.808 μm thick chromium layer was vapor-deposited.
As for the material, as-is and as-sputtering
Even if ion mixing is applied after the ring, the chromium layer
Peeling occurred. On the other hand, a chrome layer with a thickness of 0.037 μm was vaporized.
About the sample that has been ion-mixed after it is put on
No peeling of the chromium layer occurred. Next, this film thickness of 0.
Ion mixing after depositing 037 μm chromium layer
A cathode potential of -1.2 V was applied to the treated sample and water was applied.
Fatigue in 3.5% NaCl solution while charging the element
The test was conducted. Also, for comparison, a chrome layer was deposited.
The same fatigue test was performed on the untreated material. That
Table 1 shows the results. Clear from Table 1
Thus, the fatigue life of surface-treated steel is untreated.
It has improved to a little less than 5 times the material. Improving fatigue life
Was confirmed. Of course, this invention is
It is not limited. Such as the type of steel and heat treatment
It goes without saying that various details are possible.
Nor.

【表1】 [Table 1]

【発明の効果】以上詳しく説明した通り、この発明によ
って、外部環境から侵入する水素による脆化を抑止し、
高強度鋼の疲労寿命を簡便かつ容易に向上させることが
できる。
As described in detail above, according to the present invention, embrittlement due to hydrogen invading from the external environment is suppressed,
The fatigue life of high strength steel can be easily and easily improved.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 引張強さ100 〜150MPaの構造用高強度鋼
表面にイオンマグネトロンスパッタリングにより膜厚0.
050 μm以下のクロム層を蒸着し、次いで1016〜10
17個/cm2 のアルゴンイオンを注入してクロム層と鋼と
の界面をイオンミキシングし、クロム層を密着させるこ
とを特徴とする水素脆化防止表面処理法。
1. A film thickness of 0.1.000 by ion magnetron sputtering on the surface of a structural high strength steel having a tensile strength of 100 to 150 MPa.
Deposit a chromium layer of 050 μm or less, then 10 16 -10
A surface treatment method for preventing hydrogen embrittlement, which comprises injecting 17 ions / cm 2 of argon ions to ion-mix the interface between a chromium layer and steel to bring the chromium layer into close contact.
【請求項2】 10-2Torr以上の真空中で、400 ℃以下
に加熱温度を保持し、マグネトロンスパッタリングによ
りクロム層を蒸着する請求項1の水素脆化防止表面処理
法。
2. The surface treatment method for preventing hydrogen embrittlement according to claim 1, wherein the chromium layer is deposited by magnetron sputtering while maintaining the heating temperature at 400 ° C. or less in a vacuum of 10 −2 Torr or more.
JP3065284A 1991-03-07 1991-03-07 Hydrogen embrittlement prevention surface treatment method Expired - Lifetime JPH083147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3065284A JPH083147B2 (en) 1991-03-07 1991-03-07 Hydrogen embrittlement prevention surface treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3065284A JPH083147B2 (en) 1991-03-07 1991-03-07 Hydrogen embrittlement prevention surface treatment method

Publications (2)

Publication Number Publication Date
JPH05345975A true JPH05345975A (en) 1993-12-27
JPH083147B2 JPH083147B2 (en) 1996-01-17

Family

ID=13282482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3065284A Expired - Lifetime JPH083147B2 (en) 1991-03-07 1991-03-07 Hydrogen embrittlement prevention surface treatment method

Country Status (1)

Country Link
JP (1) JPH083147B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02163366A (en) * 1988-12-17 1990-06-22 Nissin Electric Co Ltd Formation of chromium layer onto iron or steel product surface

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02163366A (en) * 1988-12-17 1990-06-22 Nissin Electric Co Ltd Formation of chromium layer onto iron or steel product surface

Also Published As

Publication number Publication date
JPH083147B2 (en) 1996-01-17

Similar Documents

Publication Publication Date Title
Li et al. Wear and corrosion properties of AISI 420 martensitic stainless steel treated by active screen plasma nitriding
JP2551745B2 (en) Chromium layer with high hardness that can withstand wear, deformation, surface fatigue and corrosion
JPH06507210A (en) Surface treatment and deposition method for forming titanium nitride on carbonaceous materials
US3438754A (en) Zinc-coated steel with vapor-deposited aluminum overlay and method of producing same
Dahm et al. S phase coatings produced by unbalanced magnetron sputtering
Kelesoglu et al. Corrosion characteristics of plain carbon steel coated with TiN and ZrN under high-flux ion bombardment
Tarek et al. Physical vapour deposition of Zr-based nano films on various substrates: a review
US6723177B2 (en) Life extension of chromium coating and chromium alloys
Olia et al. Comparative study of corrosion and corrosion-wear behavior of TiN and CrN coatings on UNS S17400 stainless steel
US3762883A (en) Coated steel article
Dini Properties of coatings: Comparisons of electroplated, physical vapor deposited, chemical vapor deposited, and plasma sprayed coatings
He et al. Cavitation-resistant TiNi films deposited by using cathodic arc plasma ion plating
JPH05345975A (en) Surface treating method for preventing hydrogen embrittlement
Dahm et al. Characterisation of nitrogen-bearing surface layers on Ni-base superalloys
Yasumaru et al. Mechanical properties of type 304 austenitic stainless steel coated with titanium nitride after ion-nitriding
GB2031955A (en) Inhibiting fretting corrosion of titanium
CN109735796B (en) Carburizing method for inhibiting net carbide structure of high-chromium and high-cobalt carburizing steel and improving carburizing speed
US5217748A (en) Method of hardening metal surfaces
Nyman et al. Substrate bias effects on cathodic arc deposited Cr coatings
JPS5919199B2 (en) Method for plating pre-treatment of steel articles subjected to surface hardening treatment
Solodukhin et al. The use of preliminary ion implantation and heating on the substrate for modifying TiN coating properties and TiN/substrate interface
CN111133132A (en) Coated laminate and method for producing same
Radjabov et al. Titanium coatings on steel for improved adhesion and quality of paints
Priyantoro et al. Effect of Nitrogen Ion Implantation on the Surface Hardness, Corrosion Rate, and Crystal Structure of Pure Aluminium
JPH06207259A (en) Manufacture of galvanized high tensile strength steel sheet

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term