JPH0534591A - Image forming lens for compensating temperature variation - Google Patents

Image forming lens for compensating temperature variation

Info

Publication number
JPH0534591A
JPH0534591A JP21032091A JP21032091A JPH0534591A JP H0534591 A JPH0534591 A JP H0534591A JP 21032091 A JP21032091 A JP 21032091A JP 21032091 A JP21032091 A JP 21032091A JP H0534591 A JPH0534591 A JP H0534591A
Authority
JP
Japan
Prior art keywords
lens
positive
image
temperature change
plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21032091A
Other languages
Japanese (ja)
Other versions
JPH0760213B2 (en
Inventor
Iwatatsu Fujioka
嚴達 藤陵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MARK KK
Mark KK
Original Assignee
MARK KK
Mark KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MARK KK, Mark KK filed Critical MARK KK
Priority to JP21032091A priority Critical patent/JPH0760213B2/en
Publication of JPH0534591A publication Critical patent/JPH0534591A/en
Publication of JPH0760213B2 publication Critical patent/JPH0760213B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the cost and also to decrease an image point movement caused by a temperature variation and moreover to improve the image forming performance by using plastic for a material of a specific lens and allowing it to satisfy a specific condition. CONSTITUTION:In this triplet system lens, a first lens consisting of a positive lens, a second lens consisting of a biconcave negative lens, and a third lens consisting of a biconvex positive lens are placed with a cavity in order from an object side. Materials of a second lens and a third lens are both plastic. Also, this image forming lens satisfies expressions I-IV. In the expression I-IV, n1 and n3, nu3, f2 and f3, d2, and d4 denote refractive indexes to a (d) line of the material of a first and a third lenses, respectively, the Abbe number of the material of a third lens, focal distances of a second and a third lenses, respectively, an interval on an optical axis of a first lens and a second lens, and an interval on an optical axis of a second lens and a third lens. Also, at least the concave surface of the object side of a second lens and the convex surface of the object side of a third lens are aspherical surfaces.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は温度変化による屈折率変
化と線膨脹とに対し、像点移動の少ない温度変化補償の
結像レンズに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image-forming lens which compensates for a temperature change with a small image point movement against a refractive index change and a linear expansion due to a temperature change.

【0002】[0002]

【従来の技術】近時、軽量化と低コスト化を図るために
レンズ系にプラスチックレンズの導入が行われている。
しかしプラスチックは光学ガラスに比べ屈折率の温度係
数が30倍〜40倍と大きく、しかも逆符号であり、ま
た線膨脹係数も光学ガラスの約10倍と大きい。そのた
め、ファクシミリやイメージスキャナ等環境温度の変化
が大きく、しかも像点位置の調節機能をもたない装置へ
の使用に対しては結像性能の劣化が大きいので、プラス
チックレンズの導入は困難とされていた。
2. Description of the Related Art Recently, a plastic lens has been introduced into a lens system in order to reduce weight and cost.
However, the temperature coefficient of the refractive index of plastic is 30 to 40 times larger than that of optical glass, and the sign is opposite, and the coefficient of linear expansion is about 10 times larger than that of optical glass. Therefore, it is difficult to introduce a plastic lens because the environmental performance is greatly changed, such as a facsimile or an image scanner, and the image forming performance is greatly deteriorated when used in a device having no image point position adjusting function. Was there.

【0003】[0003]

【発明が解決しようとする課題】本発明はプラスチック
レンズを導入することによりコスト低減を可能とし、さ
らに温度変化による像点移動が少なく、しかも結像性能
の良好な結像レンズを提供するものである。
DISCLOSURE OF THE INVENTION The present invention provides an imaging lens which can reduce the cost by introducing a plastic lens, has less image point movement due to temperature change, and has good imaging performance. is there.

【0004】[0004]

【課題を解決するための手段】本発明による温度変化補
償の結像レンズは、図1に示す構成図のように3枚構成
のトリプレット系レンズであり、物体側より順に正レン
ズからなる第1レンズと、両凹負レンズからなる第2レ
ンズと、両凸正レンズからなる第3レンズが空隙をもっ
て配置されており、正の第1レンズの材質は光学ガラ
ス、負の第2レンズと正の第3レンズの材質は共にプラ
スチックで構成される。前述のようにプラスチックは、
屈折率の温度係数および線膨脹係数が、光学ガラスに比
べ著しく大きいので、温度変化による像点移動量も大き
い。正の第1レンズの材質をプラスチックとするとき
は、温度変化による像点移動がまず発生し、これを後続
の負の第2レンズ,正の第3レンズで打ち消そうとして
も、像点移動量を減少させることが困難である。これは
あたかも火災が大きくなってから消火活動を行ったり、
問題の種を放置しておき、後で問題解析と対策を行うの
にも似ており不得策である。本発明レンズのレンズ材質
の配置の特色は、温度変化による像点移動の原因を、像
点から遠い第1レンズで発生させないために、正の第1
レンズの材質は光学ガラスとし、負の第2レンズと正の
第3レンズの材質をプラスチックとするものである。以
上のことは、トリプレット系レンズの結像性能向上に
は、正の第3レンズの材質に高屈折率の光学ガラスの使
用が有利であるとの通例に反するため、設計上の困難を
伴うものであるが、温度変化による像点移動の減少を効
果的に行える利点がある。本発明の温度変化補償の結像
レンズは次の各条件を満足させることにより、結像性能
が優れ、温度変化の補償を行なうことができるものであ
る。すなわち、 n1 −n3 >0.1 ・・・・・・・・・(1) 35<ν3 <50・・・・・・・・・・・・(2) 1.15<f3 /|f2 |<1.5・・・・(3) 0.8<d4 /d2 <1.2・・・・・・・(4) ただし、 n1 :第1レンズの材質のd線に対する屈折率 n3 :第3レンズの材質のd線に対する屈折率 ν3 :第3レンズの材質のアッベ数 f2 :第2レンズの焦点距離 f3 :第3レンズの焦点距離 d2 :第1レンズと第2レンズの光軸上の間隔 d4 :第2レンズと第3レンズの光軸上の間隔 とするものである。条件(1)は正の第1レンズと正の
第3レンズの材質の屈折率に関するものである。第3レ
ンズの材質をプラスチックにするときはあまり高屈折率
は望めず1.49<n3 <1.7にとどまるため合成レ
ンズの大口径比化や、像面の平坦性を求める上では不利
である。条件(1)は正の第1レンズの材質の屈折率n
1 を、正の第3レンズの材質の屈折率n3 より0.1以
上大きくし、第3レンズの材質の屈折率不足を補うもの
で、この条件を外れるときは大口径比化と像面の平坦化
が行なえなくなる。条件(2)は正の第3レンズの材質
のアッベ数に関するもので、軸上の色収差と倍率の色収
差を共に良好に保つためのものである。条件(2)の下
限を越える時は軸上の色収差が補正不足となり、倍率の
色収差も補正不足となる。この場合軸上の色収差を正の
第1レンズにアッベ数の大きな硝材を用いて補正すると
きは、倍率の色収差の補正不足はさらに大きくなる。条
件(2)の上限を越えるときは軸上の色収差が補正過剰
となり、倍率の色収差も補正過剰となる。この場合、軸
上の色収差を正の第1レンズにアッベ数の小さな硝材を
用いて補正するときは、倍率の色収差の補正過剰はさら
に大きくなる。
An image forming lens for temperature change compensation according to the present invention is a triplet type lens having a three-lens structure as shown in the configuration diagram of FIG. A lens, a second lens composed of a biconcave negative lens, and a third lens composed of a biconvex positive lens are arranged with an air gap. The material of the positive first lens is optical glass, the material of the negative second lens and the positive lens. The material of the third lens is plastic. As mentioned above, plastic is
Since the temperature coefficient and linear expansion coefficient of the refractive index are remarkably larger than those of optical glass, the amount of image point movement due to temperature change is also large. When the positive first lens is made of plastic, the image point movement due to the temperature change occurs first, and even if the negative second lens and the positive third lens are used to cancel this, the image point movement will occur. It is difficult to reduce the amount. This is as if fire fighting activities took place after the fire became big.
It is also a bad idea because it is similar to leaving the seed of the problem unattended and performing problem analysis and countermeasures later. The feature of the arrangement of the lens material of the lens of the present invention is that the first first lens which is far from the image point does not cause the movement of the image point due to temperature change.
The material of the lens is optical glass, and the material of the negative second lens and the positive third lens is plastic. The above is contrary to the rule that it is advantageous to use an optical glass having a high refractive index as the material of the positive third lens in order to improve the image forming performance of the triplet type lens, so that it is difficult to design. However, there is an advantage that the movement of the image point due to the temperature change can be effectively reduced. The imaging lens for temperature change compensation of the present invention has excellent imaging performance and can compensate for temperature change by satisfying the following conditions. That is, n 1 −n 3 > 0.1 (1) 35 <ν 3 <50 (2) 1.15 <f 3 / | F 2 | <1.5 ··· (3) 0.8 <d 4 / d 2 <1.2 ··· (4) where n 1 is the material of the first lens Refractive index for d-line n 3 : Refractive index of third lens material for d-line ν 3 : Abbe number of third lens material f 2 : Focal length of second lens f 3 : Focal length of third lens d 2 : The distance d 4 between the first lens and the second lens on the optical axis: The distance d 4 between the second lens and the third lens on the optical axis. The condition (1) relates to the refractive indices of the materials of the positive first lens and the positive third lens. When the material of the third lens is made of plastic, a high refractive index cannot be expected so much, and it remains at 1.49 <n 3 <1.7, which is disadvantageous in increasing the aperture ratio of the synthetic lens and obtaining the flatness of the image plane. Is. The condition (1) is a positive refractive index n of the material of the first lens.
1 is made to be 0.1 or more larger than the refractive index n 3 of the material of the positive third lens to compensate for the lack of the refractive index of the material of the third lens. If this condition is not satisfied, a large aperture ratio and an image surface Cannot be flattened. The condition (2) relates to the Abbe number of the material of the positive third lens, and is for keeping both the axial chromatic aberration and the lateral chromatic aberration favorable. If the lower limit of the condition (2) is exceeded, axial chromatic aberration will be undercorrected, and lateral chromatic aberration will also be undercorrected. In this case, when the axial chromatic aberration is corrected by using a glass material having a large Abbe number for the positive first lens, the undercorrection of the chromatic aberration of magnification is further increased. If the upper limit of the condition (2) is exceeded, axial chromatic aberration will be overcorrected, and lateral chromatic aberration will also be overcorrected. In this case, when the axial chromatic aberration is corrected by using a glass material having a small Abbe number for the positive first lens, the overcorrection of the chromatic aberration of magnification is further increased.

【0005】条件(3)は温度変化による像点移動量を
少なくするためのものである。負の第2のレンズの焦点
距離f2 と、正の第3レンズの焦点距離f3 が等しく、
かつ屈折率の温度係数および線膨脹係数が等しければ、
温度変化による像点移動も打ち消し合って増大しない
が、トリプレット系レンズの場合、正レンズ2枚に対し
負レンズは1枚であり、像面を平坦化するためには負の
第2レンズの屈折力(1/f2 )を強くする必要があ
る。一方正の第3レンズに屈折率の低いプラスチックを
用いる場合は、第3レンズの屈折力(1/f3 )を弱く
し、光学ガラスで作られる正の第1レンズに不足分の屈
折力を補わせた方が、結像性能を向上させることができ
る。条件(3)の下限を越える場合は温度変化による像
点移動量は小さく良好となるが、像面の平坦性が悪化す
る。条件(3)の上限を越える場合は像面の平坦性は良
くなるが、温度変化による像点移動量が増大する。
The condition (3) is for reducing the amount of movement of the image point due to temperature change. The focal length f 2 of the negative second lens is equal to the focal length f 3 of the positive third lens,
And if the temperature coefficient and the linear expansion coefficient of the refractive index are equal,
Image point movements due to temperature changes also cancel each other out and do not increase, but in the case of a triplet system lens, there is one negative lens for two positive lenses, and in order to flatten the image plane, the negative second lens refraction It is necessary to increase the force (1 / f 2 ). On the other hand, when plastic with a low refractive index is used for the positive third lens, the refractive power (1 / f 3 ) of the third lens is weakened, and the positive first lens made of optical glass has a shortage of refractive power. If supplemented, the imaging performance can be improved. When the value goes below the lower limit of the condition (3), the amount of movement of the image point due to temperature change is small and good, but the flatness of the image surface deteriorates. When the value exceeds the upper limit of the condition (3), the flatness of the image surface is improved, but the amount of movement of the image point due to temperature change increases.

【0006】条件(4)は条件(3)と密接な関係をも
ち、温度変化による像点移動量を少なくするためのもの
である。負の第2レンズと正の第3レンズとの軸上間隔
4 を、正の第1レンズと負の第2レンズとの軸上間隔
2 に比べ小さくするときは、正の第3レンズの屈折力
を強くしなければ等価の合成焦点距離を得ることができ
ない。この場合、条件(3)のf3 /|f2 |の値が小
さくなる方向で温度変化による像点移動量は小さくな
る。条件(4)の下限を越えるときは条件(3)の下限
をも越える結果を招き像面の平坦性が悪化する。d4
2 に比し大きくするときは正の第3レンズの屈折力を
弱くしても等価の合成焦点距離を得ることができる。こ
の場合条件(3)のf3 /|f2 |の値が大きくなる方
向で、像面の平坦性は良好となる。条件(4)の上限を
越えるときは条件(3)の上限をも越える結果を招き、
温度変化による像点移動量が増大する。本発明は以上の
4条件を満足することにより、温度変化による像点移動
量の少ない、良好な結像レンズを得るものである。
The condition (4) has a close relationship with the condition (3) and is for reducing the amount of movement of the image point due to temperature change. When the axial distance d 4 between the negative second lens and the positive third lens is made smaller than the axial distance d 2 between the positive first lens and the negative second lens, the positive third lens An equivalent synthetic focal length cannot be obtained unless the refractive power of is increased. In this case, the amount of movement of the image point due to the temperature change decreases in the direction of decreasing the value of f 3 / | f 2 | of the condition (3). When the lower limit of the condition (4) is exceeded, the lower limit of the condition (3) is also exceeded, and the flatness of the image surface deteriorates. When d 4 is made larger than d 2 , an equivalent combined focal length can be obtained even if the refractive power of the positive third lens is weakened. In this case, the flatness of the image surface becomes good in the direction in which the value of f 3 / | f 2 | of the condition (3) increases. When the upper limit of condition (4) is exceeded, the result exceeds the upper limit of condition (3),
The amount of image point movement increases due to temperature changes. By satisfying the above four conditions, the present invention provides a good imaging lens with a small amount of image point movement due to temperature change.

【0007】さらに条件(5)を加えることにより、口
径比を増大し、収差も少ない優れた性能の結像レンズを
得ることができる。条件(5)は少なくとも負の第2レ
ンズの物体側の凹面および、正の第3レンズの物体側の
凸面を非球面とするもので、負の第2レンズの物体側の
凹面に非球面を導入するときは、像面の平坦性と、前玉
の周縁部を通過する光束のコマ収差の補正を良好とする
ことができる。正の第3レンズの物体側の凸面に非球面
を導入するときは、球面収差と、後玉の周縁部を通過す
る光束に対するコマ収差の補正を良好とすることができ
る。以上の2面の非球面化に加え、負の第2のレンズの
像面側の凹面および正の第3レンズの像面側の凸面に対
しても非球面を導入することにより、さらに収差を良好
となし得ることはもちろんで、これは本発明の主旨を逸
脱するものではない。
By further adding the condition (5), it is possible to obtain an image forming lens having an excellent aperture ratio and a small aberration. The condition (5) is such that at least the object-side concave surface of the negative second lens and the object-side convex surface of the positive third lens are aspherical surfaces, and an aspherical surface is formed on the object-side concave surface of the negative second lens. When introduced, the flatness of the image plane and the correction of the coma aberration of the light flux passing through the peripheral portion of the front lens can be made satisfactory. When an aspherical surface is introduced to the object-side convex surface of the positive third lens, it is possible to favorably correct the spherical aberration and the coma aberration of the light flux passing through the peripheral portion of the rear lens. In addition to the above two aspherical surfaces, by introducing aspherical surfaces into the image-side concave surface of the negative second lens and the image-side convex surface of the positive third lens, further aberration is introduced. This can of course be considered good, and this does not depart from the gist of the present invention.

【0008】[0008]

【実施例】次に本発明の温度変化補償の結像レンズの第
1実施例から第7実施例までを第1表から第7表までに
示す。物体側の原稿押さえ用の板ガラスは光学性能への
影響もほとんどないので省略する。この説明に用いる記
号は次のとおりである。 f:全系の焦点距離 m:結像倍率 f2 :負の第2レンズの焦点距離 f3 :正の第3レンズの焦点距離 ri :順次に球面の曲率半径または非球面の頂点曲率半
径 di :順次にレンズの光軸上の厚みまたは空気間隔 ni :順次にレンズの材質のd線に対する屈折率 νi :順次にレンズの材質のアッベ数 dc :像側カバーガラスの光軸上の厚み nc :像側カバーガラスの材質のd線に対する屈折率 次に非球面の形状の式は X:非球面上の点のレンズ面頂点における接平面からの
距離 h:光軸からの高さ C:非球面頂点の曲率(C=1/r) K:円錐定数 A2i:非球面係数 とするとき
Next, Tables 1 to 7 show Examples 1 to 7 of the imaging lens for temperature change compensation according to the present invention. Since the plate glass for pressing the document on the object side has almost no effect on the optical performance, it is omitted. The symbols used in this explanation are as follows. f: focal length of the whole system m: imaging magnification f 2 : negative focal length of the second lens f 3 : positive focal length of the third lens r i : sequential radius of curvature of spherical surface or apex curvature radius of aspherical surface d i: sequentially lens thickness or air distance n along the optical axis i: refractive index sequentially for the material of the d line of the lens [nu i: sequentially lens material Abbe number d c: the optical axis of the image-side cover glass Upper thickness n c : Refractive index of the material of the image side cover glass with respect to the d-line Next, the expression of the shape of the aspherical surface is X: distance from the tangent plane at the vertex of the lens surface on the aspherical surface h: from the optical axis Height C: Curvature of apex of aspherical surface (C = 1 / r) K: Conical constant A 2i : Aspherical coefficient

【数1】 で表される。また、 Δn/ΔT:材質の屈折率の温度係数 α:材質の線膨脹係数 Δf20:基準温度より20℃上昇した場合の全系の焦点
距離の変化量 Δs’20:基準温度,結像倍率mにおける物体〜レンズ
間の距離を固定し、それより温度が20℃上昇した場合
の像点距離の変化量 とする。
[Equation 1] It is represented by. Δn / ΔT: temperature coefficient of refractive index of material α: coefficient of linear expansion of material Δf 20 : amount of change in focal length of the entire system when the temperature rises by 20 ° C. from the reference temperature Δs ′ 20 : reference temperature, imaging magnification The distance between the object and the lens at m is fixed, and the amount of change in the image point distance when the temperature rises by 20 ° C. is set.

【表1】実施例1 F8 f=24.77 m=−0.112 物体高108 画角47.5° (Δn/ΔT)×10-6 α×10-6 r1= 6.150 d1=1.90 n1=1.80420 ν1=46.5 4 6.3 r2= 9.116 d2=0.50 r3=-21.072 d3=0.70 n2=1.58983 ν2=31.0 -108 60 r4= 5.858 d4=0.50 r5= 9.058 d5=1.50 n3=1.53285 ν3=41.6 -109 66.9 r6=-10.784 dc=0.7 nc=1.523 f3 /|f2 |=1.233 d4 /d2 =1.0 Δf20=0.014 Δs’20=0.001[Table 1] Example 1 F8 f = 24.77 m = -0.112 Object height 108 Angle of view 47.5 ° (Δn / ΔT) × 10 −6 α × 10 −6 r 1 = 6.150 d 1 = 1.90 n 1 = 1.80420 ν 1 = 46.5 4 6.3 r 2 = 9.116 d 2 = 0.50 r 3 = -21.072 d 3 = 0.70 n 2 = 1.58983 ν 2 = 31.0 -108 60 r 4 = 5.858 d 4 = 0.50 r 5 = 9.058 d 5 = 1.50 n 3 = 1.53285 ν 3 = 41.6 -109 66.9 r 6 = -10.784 dc = 0.7 nc = 1.523 f 3 / | f 2 | = 1.233 d 4 / d 2 = 1.0 Δf 20 = 0 .014 Δs' 20 = 0.001

【表2】実施例2 F5.6 f=24.76 m=−0.112 物体高108 画角47.5° (Δn/ΔT)×10-6 α×10-6 r1= 6.854 d1=2.19 n1=1.80420 ν1=46.5 4 6.3 r2= 12.252 d2=0.61 r3=-13.944 d3=0.80 n2=1.58983 ν2=31.0 -108 60 r4= 6.485 d4=0.60 r5= 8.753 d5=1.55 n3=1.53285 ν3=41.6 -109 66.9 r6=-12.103 dc=0.7 nc=1.523 Table 2 Example 2 F5.6 f = 24.76 m = -0.112 Object height 108 Angle of view 47.5 ° (Δn / ΔT) × 10 −6 α × 10 −6 r 1 = 6.854 d 1 = 2.19 n 1 = 1.80420 ν 1 = 46.5 4 6.3 r 2 = 12.252 d 2 = 0.61 r 3 = -13.944 d 3 = 0.80 n 2 = 1.58983 ν 2 = 31.0 -108 60 r 4 = 6.485 d 4 = 0.60 r 5 = 8.753 d 5 = 1.55 n 3 = 1.53285 ν 3 = 41.6 -109 66.9 r 6 = -12.103 dc = 0.7 nc = 1.523

【表3】実施例3 F5.6 f=24.76 m=−0.112 物体高 108 画角47.5° (Δn/ΔT)×10-6 α×10-6 r1= 7.036 d1=2.19 n1=1.80420 ν1=46.5 4 6.3 r2= 14.131 d2=0.614 r3=-14.334 d3=0.91 n2=1.58983 ν2=31.0 -108 60 r4= 6.457 d4=0.686 r5= 9.107 d5=1.55 n3=1.53285 ν3=41.6 -109 66.9 r6=-13.085 dc=0.7 nc=1.523 [Table 3] Example 3 F5.6 f = 24.76 m = −0.112 Object height 108 Field angle 47.5 ° (Δn / ΔT) × 10 −6 α × 10 −6 r 1 = 7.036 d 1 = 2.19 n 1 = 1.80420 ν 1 = 46.5 4 6.3 r 2 = 14.131 d 2 = 0.614 r 3 = -14.334 d 3 = 0.91 n 2 = 1.58983 ν 2 = 31.0 -108 60 r 4 = 6.457 d 4 = 0.686 r 5 = 9.107 d 5 = 1.55 n 3 = 1.53285 ν 3 = 41.6 -109 66.9 r 6 = -13.085 dc = 0.7 nc = 1.523

【表4】実施例4 F5.6 f=20.35 m=−0.088 物体高 108 画角46.6° (Δn/ΔT)×10-6 α×10-6 r1= 5.715 d1=1.80 n1=1.80420 ν1=46.5 4 6.3 r2= 10.540 d2=0.52 r3=-10.937 d3=0.75 n2=1.58983 ν2=31.0 -108 60 r4= 5.298 d4=0.48 r5= 6.859 d5=1.26 n3=1.53285 ν3=41.6 -109 66.9 r6=-10.234 dc=0.7 nc=1.523 [Table 4] Example 4 F5.6 f = 20.35 m = −0.088 Object height 108 Angle of view 46.6 ° (Δn / ΔT) × 10 −6 α × 10 −6 r 1 = 5.715 d 1 = 1.80 n 1 = 1.80420 ν 1 = 46.5 4 6.3 r 2 = 10.540 d 2 = 0.52 r 3 = -10.937 d 3 = 0.75 n 2 = 1.58983 ν 2 = 31.0 -108 60 r 4 = 5.298 d 4 = 0.48 r 5 = 6.859 d 5 = 1.26 n 3 = 1.53285 ν 3 = 41.6 -109 66.9 r 6 = -10.234 dc = 0.7 nc = 1.523

【表5】実施例5 F5.6 f=20.35 m=−0.088 物体高 108 画角46.6° (Δn/ΔT)×10-6 α×10-6 r1= 5.813 d1=1.81 n1=1.80420 ν1=46.5 4 6.3 r2= 12.036 d2=0.52 r3=-12.101 d3=0.75 n2=1.58983 ν2=31.0 -108 60 r4= 5.200 d4=0.586 r5= 7.550 d5=1.26 n3=1.53285 ν3=41.6 -109 66.9 r6=-10.820 dc=0.7 nc=1.523 [Table 5] Example 5 F5.6 f = 20.35 m = -0.088 Object height 108 Angle of view 46.6 ° (Δn / ΔT) × 10 −6 α × 10 −6 r 1 = 5.81 3 d 1 = 1.81 n 1 = 1.80420 ν 1 = 46.5 4 6.3 r 2 = 12.036 d 2 = 0.52 r 3 = -12.101 d 3 = 0.75 n 2 = 1.58983 ν 2 = 31.0 -108 60 r 4 = 5.200 d 4 = 0.586 r 5 = 7.550 d 5 = 1.26 n 3 = 1.53285 ν 3 = 41.6 -109 66.9 r 6 = -10.820 dc = 0.7 nc = 1.523

【表6】実施例6 F6.3 f=30.63 m=−0.112 物体高 128 画角45.7° (Δn/ΔT)×10-6 α×10-6 r1= 8.407 d1=2.70 n1=1.80420 ν1=46.5 4 6.3 r2= 14.934 d2=0.79 r3=-14.615 d3=1.00 n2=1.58983 ν2=31.0 -108 60 r4= 8.000 d4=0.68 r5= 9.730 d5=1.90 n3=1.53285 ν3=41.6 -109 66.9 r6=-14.876 dc=0.7 nc=1.523 [Table 6] Example 6 F6.3 f = 30.63 m = -0.112 Object height 128 Angle of view 45.7 ° (Δn / ΔT) × 10 -6 α × 10 -6 r 1 = 8.407 d 1 = 2.70 n 1 = 1.80420 ν 1 = 46.5 4 6.3 r 2 = 14.934 d 2 = 0.79 r 3 = -14.615 d 3 = 1.00 n 2 = 1.58983 ν 2 = 31.0 -108 60 r 4 = 8.000 d 4 = 0.68 r 5 = 9.730 d 5 = 1.90 n 3 = 1.53285 ν 3 = 41.6 -109 66.9 r 6 = -14.876 dc = 0.7 nc = 1.523

【表7】実施例7 F6.3 f=29.11 m=−0.112 物体高 128 画角47.8° (Δn/ΔT)×10-6 α×10-6 r1= 8.171 d1=2.57 n1=1.80420 ν1=46.5 4 6.3 r2= 15.231 d2=0.75 r3=-14.263 d3=1.00 n2=1.58983 ν2=31.0 -108 60 r4= 7.809 d4=0.68 r5= 9.731 d5=1.82 n3=1.53285 ν3=41.6 -109 66.9 r6=-14.549 dc=0.7 nc=1.523 本発明の各実施例中に記したように、温度変化による焦
点距離および像点距離の変化量は、プラスチックレンズ
2枚を含むトリプレット系レンズにおいて、温度変化に
対し特別に考慮しなかった場合に比べ1/3〜1/5と
小さい。また、温度変化時の収差は基準温度におけるも
のに近い。本発明の実施例1の収差曲線を図2に、以下
順次に実施例2〜実施例7の収差曲線をそれぞれ図3〜
図8に示す。いずれの実施例においても3枚構成のトリ
プレット系レンズの中、2枚がプラスチックレンズであ
るにもら拘わらずコマ収差,軸上の色収差,倍率の色収
差がともに良好であり、コントラストのよい画像が得ら
れる。また収差曲線からも判るように、サジタル像面が
高画角になっても(+)側に戻らず、平坦であることも
本発明の利点である。
[Table 7] Example 7 F6.3 f = 29.11 m = -0.112 Object height 128 Angle of view 47.8 ° (Δn / ΔT) × 10 -6 α × 10 -6 r 1 = 8.171 d 1 = 2.57 n 1 = 1.80420 ν 1 = 46.5 4 6.3 r 2 = 15.231 d 2 = 0.75 r 3 = -14.263 d 3 = 1.00 n 2 = 1.58983 ν 2 = 31.0 -108 60 r 4 = 7.809 d 4 = 0.68 r 5 = 9.731 d 5 = 1.82 n 3 = 1.53285 ν 3 = 41.6 -109 66.9 r 6 = -14.549 dc = 0.7 nc = 1.523 As described in each of the embodiments of the present invention, the change amounts of the focal length and the image point distance due to the temperature change are not particularly taken into consideration in the temperature change in the triplet type lens including two plastic lenses. Compared to 1/3 to 1/5, it is small. Further, the aberration when the temperature changes is close to that at the reference temperature. The aberration curves of Example 1 of the present invention are shown in FIG. 2, and the aberration curves of Examples 2 to 7 are sequentially shown in FIGS.
It shows in FIG. In any of the examples, among the triplet lenses having the three-lens structure, although two lenses are plastic lenses, coma, axial chromatic aberration, and lateral chromatic aberration are all favorable, and an image with good contrast is obtained. To be Further, as can be seen from the aberration curve, it is also an advantage of the present invention that the sagittal image plane is flat without returning to the (+) side even if the angle of view becomes high.

【0009】[0009]

【発明の効果】以上、説明したように本発明による温度
変化補償の結像レンズは、3枚構成のトリプレット系レ
ンズの中、2枚にプラスチックレンズを使用しているに
も拘わらず、温度変化による屈折率変化と、線膨脹に基
づく像点移動量を小さくすることができる。したがっ
て、ファクシミリやイメージスキャナ等,環境温度の変
化が大きく、像点位置の調節機能をもたない装置に対し
ても、結像性能を維持し、充分適用することができる。
すなわち本発明によりレンズ系の低コスト化,ひいては
装置のコストダウンも図ることができる。
As described above, the temperature change compensating imaging lens according to the present invention uses the plastic lens for two of the triplet lenses of the three-lens structure, but the temperature change does not occur. It is possible to reduce the amount of movement of the image point due to the change in the refractive index and the linear expansion. Therefore, the image forming performance can be maintained and can be sufficiently applied to a device such as a facsimile or an image scanner, which has a large change in environmental temperature and does not have a function of adjusting the image point position.
That is, according to the present invention, the cost of the lens system can be reduced and the cost of the device can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の温度変化補償の結像レンズの実施例2
の断面図である。
FIG. 1 is a second embodiment of an imaging lens for temperature change compensation according to the present invention.
FIG.

【図2】実施例1の収差曲線図である。FIG. 2 is an aberration curve diagram for Example 1.

【図3】実施例2の収差曲線図である。FIG. 3 is an aberration curve diagram for Example 2.

【図4】実施例3の収差曲線図である。FIG. 4 is an aberration curve diagram for Example 3.

【図5】実施例4の収差曲線図である。5 is an aberration curve diagram for Example 4. FIG.

【図6】実施例5の収差曲線図である。FIG. 6 is an aberration curve diagram for Example 5.

【図7】実施例6の収差曲線図である。FIG. 7 is an aberration curve diagram for Example 6.

【図8】実施例7の収差曲線図である。8 is an aberration curve diagram for Example 7. FIG.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 物体側より順に,正レンズからなる第1
レンズと,両凹負レンズからなる第2レンズと,両凸正
レンズからなる第3レンズが空隙をもって配置されるト
リプレット系レンズにおいて、負の第2レンズと正の第
3レンズの材質が共にプラスチックであり,次の条件を
満足することを特徴とする温度変化補償の結像レンズ。 n1 −n3 >0.1 ・・・・・・・・・(1) 35<ν3 <50・・・・・・・・・・・・(2) 1.15<f3 /|f2 |<1.5・・・・(3) 0.8<d4 /d2 <1.2・・・・・・・(4) ただし n1 :第1レンズの材質のd線に対する屈折率 n3 :第3レンズの材質のd線に対する屈折率 ν3 :第3レンズの材質のアッベ数 f2 :第2レンズの焦点距離 f3 :第3レンズの焦点距離 d2 :第1レンズと第2レンズの光軸上の間隔 d4 :第2レンズと第3レンズの光軸上の間隔
1. A first lens comprising a positive lens in order from the object side.
In a triplet type lens in which a lens, a second lens composed of a biconcave negative lens, and a third lens composed of a biconvex positive lens are arranged with an air gap, both materials of the negative second lens and the positive third lens are plastic. And a temperature change compensation imaging lens characterized by satisfying the following conditions. n 1 -n 3> 0.1 ········· ( 1) 35 <ν 3 <50 ············ (2) 1.15 <f 3 / | f 2 | <1.5 ... (3) 0.8 <d 4 / d 2 <1.2 ... (4) where n 1 is for the d-line of the material of the first lens Refractive index n 3 : Refractive index of third lens material with respect to d-line ν 3 : Abbe number of third lens material f 2 : Focal length of second lens f 3 : Focal length of third lens d 2 : First Distance between optical axis of lens and second lens d 4 : Distance between optical axis of second lens and third lens
【請求項2】 請求項1記載の温度変化補償の結像レン
ズにおいて、少なくとも負の第2レンズの物体側の凹面
および正の第3レンズの物体側の凸面は非球面であるこ
とを特徴とする温度変化補償の結像レンズ。・・・
(5)
2. The temperature-compensation imaging lens according to claim 1, wherein at least the object-side concave surface of the negative second lens and the object-side convex surface of the positive third lens are aspherical surfaces. Imaging lens for temperature change compensation. ...
(5)
JP21032091A 1991-07-26 1991-07-26 Imaging lens with temperature change compensation Expired - Fee Related JPH0760213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21032091A JPH0760213B2 (en) 1991-07-26 1991-07-26 Imaging lens with temperature change compensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21032091A JPH0760213B2 (en) 1991-07-26 1991-07-26 Imaging lens with temperature change compensation

Publications (2)

Publication Number Publication Date
JPH0534591A true JPH0534591A (en) 1993-02-12
JPH0760213B2 JPH0760213B2 (en) 1995-06-28

Family

ID=16587478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21032091A Expired - Fee Related JPH0760213B2 (en) 1991-07-26 1991-07-26 Imaging lens with temperature change compensation

Country Status (1)

Country Link
JP (1) JPH0760213B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5606461A (en) * 1995-01-23 1997-02-25 Nikon Corporation Behind stop triplet lens
US5612826A (en) * 1994-07-25 1997-03-18 Nikon Corporation Lens holding device for holding a lens system and method for making
CN109709655A (en) * 2017-10-26 2019-05-03 佳能株式会社 Lens devices and photographic device including the lens devices
KR20220115035A (en) * 2021-02-09 2022-08-17 엘지이노텍 주식회사 Optical system and camera module including the same
WO2022173223A1 (en) * 2021-02-09 2022-08-18 엘지이노텍 주식회사 Optical system and camera module comprising same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5612826A (en) * 1994-07-25 1997-03-18 Nikon Corporation Lens holding device for holding a lens system and method for making
US5606461A (en) * 1995-01-23 1997-02-25 Nikon Corporation Behind stop triplet lens
CN109709655A (en) * 2017-10-26 2019-05-03 佳能株式会社 Lens devices and photographic device including the lens devices
KR20220115035A (en) * 2021-02-09 2022-08-17 엘지이노텍 주식회사 Optical system and camera module including the same
WO2022173223A1 (en) * 2021-02-09 2022-08-18 엘지이노텍 주식회사 Optical system and camera module comprising same

Also Published As

Publication number Publication date
JPH0760213B2 (en) 1995-06-28

Similar Documents

Publication Publication Date Title
KR100754340B1 (en) Image pick-up lens
JP2830418B2 (en) Zoom lens with simple configuration
US6519092B2 (en) Immersion microscope objective lens
JP5277324B2 (en) Microscope objective lens
JP2679017B2 (en) 2 focus switching lens system
JPH07230038A (en) Microscope objective
US6580568B2 (en) Telephoto lens system
US5691850A (en) Eyepiece
US6839186B2 (en) Large numerical aperture objective lens and night vision optical device using the same
US5048940A (en) Projection lens for projector
US6317275B1 (en) Internal focusing telephoto lens
JPH0943508A (en) Hybrid lens
JPH0534591A (en) Image forming lens for compensating temperature variation
JPH09222558A (en) Wide-angle lens
JPH0876033A (en) Aspherical eyepiece
JPH08201686A (en) Triplet lens with behind diaphragm
JPH0735991A (en) Eyepiece
JP4747600B2 (en) Eyepiece attachment
JP2004258234A (en) Eyepiece
JPH063598A (en) Microscope objective lens
JP2683895B2 (en) Copying lens
JPS648805B2 (en)
JPH07174968A (en) Attachment lens
JP4673027B2 (en) Eyepiece
JP3081261B2 (en) Document reading lens

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20080628

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090628

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100628

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20100628

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20110628

LAPS Cancellation because of no payment of annual fees