JPH0534425A - Magnetic field focusing machine - Google Patents

Magnetic field focusing machine

Info

Publication number
JPH0534425A
JPH0534425A JP18775491A JP18775491A JPH0534425A JP H0534425 A JPH0534425 A JP H0534425A JP 18775491 A JP18775491 A JP 18775491A JP 18775491 A JP18775491 A JP 18775491A JP H0534425 A JPH0534425 A JP H0534425A
Authority
JP
Japan
Prior art keywords
magnetic field
per unit
unit length
plates
center portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18775491A
Other languages
Japanese (ja)
Inventor
Osamu Ishii
修 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP18775491A priority Critical patent/JPH0534425A/en
Publication of JPH0534425A publication Critical patent/JPH0534425A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To focus a magnetic field at the center portion of a magnetic field focusing machine so as to enhance the detection sensitivity of the focusing machine by disposing two diamagnetic bodies opposite each other, and making the open area per unit length of the machine larger at its outer peripheral portion than at its center portion. CONSTITUTION:In a magnetic field focusing machine 3 in which plates 1,2 each made of superconducting material are opposite each other and whose open area per unit length is larger at its outer peripheral portion than at its center portion while the inverval between the plates is narrower at the center portion than at the outer peripheral portion, the material in a superconducting state has the effect of driving magnetic fields out of the material (minus effect) and so when applied to the focusing machine 3 a magnetic field in Z direction is concentrated on the center portion of the focusing machine 3 where the face interval between the plates is narrowed. The magnetic field to be measured is intensified by the ratio S1/S2 of the open area S1 per unit length of an entrance to the open area S2 per unit length of the narrow interval portion. A magnetic field detector such as a Hall element and a flux gate type magnetic flux meter is disposed in the portion where the inverval between the plates 1, 2 is narrowed, so that sensitivity at which the magnetic field is detected is increased by an amount obtained through multiplication by S1/S2, thus enhancing practical detection sensitivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高感度磁場検出器の性能
を向上する磁場集束器に関するものである。
FIELD OF THE INVENTION The present invention relates to a magnetic field concentrator for improving the performance of a high-sensitivity magnetic field detector.

【0002】[0002]

【従来の技術】従来用いられてきた磁場検出装置は被測
定磁場に対する影響の観点から大きく以下の2つに分類
される。第1のタイプは磁性体等を用い測定対象の磁場
の道筋(磁路)を変化させ磁場検出素子に磁束を導く構
成のものであり、第2のタイプは磁路を変化させず測定
磁場に対し直接検出素子を挿入する構成のものである。
磁路を任意に変える方式の代表例は磁気ヘッドである。
磁気ヘッドは記録媒体から発生する磁場を軟磁性体のコ
アを用いてコイルまで導き、磁気誘導によってコイルに
発生する電圧として磁場を検出している。即ち、磁路を
変化させる構造の磁場検出器は被測定磁場が空間的に不
均一な場合に用いられる。一方、磁路を変化させない磁
場検出器はホール素子、フラックスゲート形磁束計、ス
クィッド磁束計等が主な例である。これらの磁場測定器
は測定する磁場が元来小さく、また、均一であることが
特徴である。被測定磁場が小さいので軟磁性体のコアを
用いて磁場を任意の方向に集束しようとしても、コアに
不可避的に含まれる不可逆な磁化過程のために被測定磁
場に比例した応答が得られない。例えば、軟磁性体であ
るパーマロイ合金等でも形状によっては0.1 Oe程
度の保磁力があり、被測定磁場がこの値以下では磁場を
集束させる効果は安定して得られない。従って、第2の
タイプの磁場検出装置には磁路を作為的に変更するよう
な構成は適用されていなかった。
2. Description of the Related Art Conventionally used magnetic field detection devices are roughly classified into the following two types from the viewpoint of influence on a magnetic field to be measured. The first type uses a magnetic material or the like to change the path (magnetic path) of the magnetic field to be measured and guide the magnetic flux to the magnetic field detection element, while the second type changes the magnetic field without changing the magnetic path. On the other hand, the detection element is directly inserted.
A typical example of a method of arbitrarily changing the magnetic path is a magnetic head.
A magnetic head guides a magnetic field generated from a recording medium to a coil by using a soft magnetic core, and detects the magnetic field as a voltage generated in the coil by magnetic induction. That is, the magnetic field detector having a structure that changes the magnetic path is used when the magnetic field to be measured is spatially non-uniform. On the other hand, Hall elements, fluxgate type magnetometers, squid magnetometers, etc. are the main examples of magnetic field detectors that do not change the magnetic path. These magnetic field measuring devices are characterized in that the magnetic field to be measured is originally small and uniform. Since the magnetic field to be measured is small, even if you try to focus the magnetic field in any direction using a soft magnetic core, a response proportional to the magnetic field to be measured cannot be obtained due to the irreversible magnetization process inevitably included in the core. . For example, even a soft magnetic material such as permalloy alloy has a coercive force of about 0.1 Oe depending on the shape, and if the measured magnetic field is less than this value, the effect of focusing the magnetic field cannot be stably obtained. Therefore, the structure for artificially changing the magnetic path has not been applied to the second type magnetic field detection device.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記の事情に
鑑みてなされたもので、微弱な磁場の検出に際して、磁
場を集束して感度を高める磁場集束器を提供することを
目的する。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a magnetic field concentrator that focuses a magnetic field to enhance sensitivity when a weak magnetic field is detected.

【0004】[0004]

【課題を解決するための手段】本発明は上記課題を解決
するために、反磁性体で形成された2枚の板が向かい合
った構造で、外周部の単位長さ当りの開口面積が中央部
の単位長さ当りの開口面積より大きくなるように中央部
の間隔が外周部よりも狭くなっていることを特徴とする
ものである。
In order to solve the above-mentioned problems, the present invention has a structure in which two plates made of a diamagnetic material face each other, and the opening area per unit length of the outer peripheral portion is the central portion. The distance between the central portions is smaller than that of the outer peripheral portion so as to be larger than the opening area per unit length.

【0005】[0005]

【作用】上記手段により、微弱な磁場の検出に際して、
中央の面間隔が狭まった部分に磁場を集束して感度を高
めるようにしたものである。
By the above means, when detecting a weak magnetic field,
This is to enhance the sensitivity by focusing the magnetic field on the part where the surface spacing in the center is narrow.

【0006】[0006]

【実施例】以下図面を参照して本発明の実施例を詳細に
説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0007】本発明は上記の第2のタイプの磁場検出装
置において、被測定磁場を空間的に集束し磁場を強めて
から検出素子に導き、実効的な検出感度を向上させる。
磁場を集束させるために、図1に示すような超伝導材料
で作製した2枚の板1,2を互いに対向した構造で、外
周部の単位長さ当りの開口面積が中央部の単位長さ当り
の開口面積より大きくなるように中央部の間隔が外周部
よりも狭くなっている磁場集束器3を用いる。超伝導状
態にある物質は磁場を物質の外に押し出す効果(マイス
ナー効果)を示す。従って、図1に示す磁場集束器3に
対してZ方向の磁場が印加されると、中央の面間隔が狭
まった部分に磁場が集中する。被測定磁場は入り口の単
位長さ当りの開口面積(S1)と間隔が狭まった部分の
単位長さ当りの開口面積(S2)の比(S1/S2)だ
け強化される。板1,2の間隔が狭まった部分にホール
素子、フラックスゲート形磁束計、スクィッド磁束計等
の磁場検出器を配置すれば、磁場検出感度がS1/S2
倍だけ増大する。以上の効果の本質は超伝導状態では完
全反磁性現象が起こることを利用しており、超伝導状態
を壊してしまう様な強い外部磁場(臨界磁場:Hcl)
が印加されればこの効果は期待できない。一般に、臨界
磁場Hclは小さくても十Oe以上はあるので、被測定
磁場がミリOeのオーダーの場合に、その磁場を数桁強
めたとしても十分使用できる。従って、本発明の磁場集
束器3は微弱磁場を対象としたものと言える。また、X
方向からの磁場は本磁場集束器3によって遮蔽されるの
でノイズを低減する効果も期待できる。以下具体的な実
施例を挙げて説明する。
According to the second aspect of the magnetic field detecting device of the present invention, the magnetic field to be measured is spatially focused and the magnetic field is strengthened before being guided to the detection element to improve the effective detection sensitivity.
In order to focus the magnetic field, two plates 1 and 2 made of a superconducting material as shown in FIG. 1 are opposed to each other, and the opening area per unit length of the outer peripheral portion is the unit length of the central portion. The magnetic field concentrator 3 is used in which the interval in the central part is narrower than that in the outer peripheral part so as to be larger than the opening area per hit. A substance in the superconducting state exhibits an effect of pushing a magnetic field out of the substance (Meissner effect). Therefore, when a magnetic field in the Z direction is applied to the magnetic field concentrator 3 shown in FIG. 1, the magnetic field concentrates on the portion where the center surface spacing is narrowed. The magnetic field to be measured is strengthened by the ratio (S1 / S2) of the opening area per unit length (S1) of the entrance to the opening area per unit length (S2) of the narrowed portion. If a magnetic field detector such as a Hall element, a fluxgate type magnetometer, or a squid magnetometer is arranged in a portion where the distance between the plates 1 and 2 is narrow, the magnetic field detection sensitivity is S1 / S2.
Increase by a factor of two. The essence of the above effect is that the phenomenon of complete diamagnetism occurs in the superconducting state, and a strong external magnetic field (critical magnetic field: Hcl) that destroys the superconducting state is used.
If this is applied, this effect cannot be expected. In general, the critical magnetic field Hcl is 10 Oe or more even if it is small, so that when the magnetic field to be measured is on the order of milliOe, it can be sufficiently used even if the magnetic field is increased by several digits. Therefore, it can be said that the magnetic field concentrator 3 of the present invention is intended for a weak magnetic field. Also, X
Since the magnetic field from the direction is shielded by the magnetic field concentrator 3, an effect of reducing noise can be expected. Specific examples will be described below.

【0008】図2に本発明の具体的実施例の構成図を示
す。3は図1に説明したものと同様の磁場集束器であ
る。磁場集束器3を構成する板1の上辺(a−a′)の
中央部1cm当りの開口面積S1は4cm2 、板1,2
の間隔が狭まった部分である板1の辺(b−b′)の中
央部の1cm当りの開口面積S2は2cm2 である。板
1,2はY-Ba-Cu 系酸化物超伝導材料で形成されてい
る。この材料の超伝導転移温度は91Kであり、液体窒
素温度における臨界磁場(Hcl)は12 Oeであ
る。4は磁場検出素子である。具体的にはホール素子を
用いた磁束計である。5は冷却装置である。6は被測定
磁場発生用コイルである。7は磁場発生用電源である。
図2と同一の構造で磁場集束器3を省いた構成でも外部
磁場の検出は可能なので、磁場集束器3の効果を確認す
るためには両者を比較することが必要である。
FIG. 2 shows a block diagram of a concrete embodiment of the present invention. 3 is a magnetic field concentrator similar to that described in FIG. The opening area S1 per 1 cm of the central portion of the upper side (aa ') of the magnetic field concentrator 3 is 4 cm 2 , and the plates 1 and 2 are
The opening area S2 per 1 cm of the central portion of the side (bb ') of the plate 1 which is the portion where the distance between the two is narrowed is 2 cm 2 . The plates 1 and 2 are made of a Y-Ba-Cu-based oxide superconducting material. The superconducting transition temperature of this material is 91 K and the critical magnetic field (Hcl) at liquid nitrogen temperature is 12 Oe. 4 is a magnetic field detection element. Specifically, it is a magnetometer using a Hall element. 5 is a cooling device. Reference numeral 6 is a coil for generating a magnetic field to be measured. Reference numeral 7 is a magnetic field generating power source.
Since the external magnetic field can be detected even with the structure having the same structure as in FIG. 2 and omitting the magnetic field concentrator 3, it is necessary to compare the two in order to confirm the effect of the magnetic field concentrator 3.

【0009】図3は規格化出力(磁場集束器3を用いた
場合と用いない場合の出力の比)の外部磁場依存性を示
す。外部磁場(被測定磁場)が1 Oe以下では規格化
出力はほぼ2とS1/S2に等しく、磁場集束器3の効
果が確認された。外部磁場が1 Oe以上で規格化出力
が減少する理由は、超伝導体の結晶粒界等が臨界磁場H
clが低いため磁気シールド効果が低下したものと考え
られる。
FIG. 3 shows the external magnetic field dependence of the normalized output (the ratio of the output with and without the magnetic field concentrator 3). When the external magnetic field (measured magnetic field) is 1 Oe or less, the normalized output is approximately 2, which is equal to S1 / S2, and the effect of the magnetic field concentrator 3 was confirmed. The reason why the normalized output decreases when the external magnetic field is 1 Oe or more is that the crystal grain boundaries of the superconductor have a critical magnetic field H
It is considered that the magnetic shield effect was lowered because cl was low.

【0010】尚、磁場集束器はホール素子のみではなく
在来の磁場センサーの高感度化にも有効である。
The magnetic field concentrator is effective not only for Hall elements but also for increasing the sensitivity of conventional magnetic field sensors.

【0011】[0011]

【発明の効果】以上述べたように本発明によれば、中央
の面間隔が狭まった部分に磁場を集束して感度を高める
ことにより、被測定磁場を空間的に集束し磁場を強めて
から検出素子に導き、実効的な検出感度を向上させるこ
とができる。
As described above, according to the present invention, the magnetic field to be measured is spatially focused and the magnetic field is strengthened by focusing the magnetic field on the portion where the surface spacing in the center is narrowed to enhance the sensitivity. It is possible to improve the effective detection sensitivity by leading to the detection element.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明磁場集束器の一実施例を示す斜視図であ
る。
FIG. 1 is a perspective view showing an embodiment of a magnetic field concentrator of the present invention.

【図2】本発明に係る磁場検出器の一例を示す構成図で
ある。
FIG. 2 is a configuration diagram showing an example of a magnetic field detector according to the present invention.

【図3】本発明に係る規格化出力(磁場集束器を用いた
場合と用いない場合の出力の比)の外部磁場依存性の一
例を示す特性図である。
FIG. 3 is a characteristic diagram showing an example of an external magnetic field dependency of a normalized output (ratio of output with and without a magnetic field concentrator) according to the present invention.

【符号の説明】[Explanation of symbols]

3…磁場集束器、4…磁場検出素子、5…冷却装置、6
…被測定磁場発生用コイル、7…磁場発生用電源。
3 ... Magnetic field concentrator, 4 ... Magnetic field detection element, 5 ... Cooling device, 6
... measured magnetic field generating coil, 7 ... magnetic field generating power supply.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 反磁性体で形成された2枚の板が向かい
合った構造で、外周部の単位長さ当りの開口面積が中央
部の単位長さ当りの開口面積より大きくなるように中央
部の間隔が外周部よりも狭くなっていることを特徴とす
る磁場集束器。
1. A structure in which two plates made of a diamagnetic material are opposed to each other, and a central portion is formed so that an opening area per unit length of an outer peripheral portion is larger than an opening area per unit length of a central portion. The magnetic field concentrator is characterized in that the distance between the two is narrower than that of the outer peripheral portion.
【請求項2】 反磁性体として超伝導体を用いることを
特徴とする請求項1記載の磁場集束器。
2. The magnetic field concentrator according to claim 1, wherein a superconductor is used as the diamagnetic substance.
JP18775491A 1991-07-26 1991-07-26 Magnetic field focusing machine Pending JPH0534425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18775491A JPH0534425A (en) 1991-07-26 1991-07-26 Magnetic field focusing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18775491A JPH0534425A (en) 1991-07-26 1991-07-26 Magnetic field focusing machine

Publications (1)

Publication Number Publication Date
JPH0534425A true JPH0534425A (en) 1993-02-09

Family

ID=16211619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18775491A Pending JPH0534425A (en) 1991-07-26 1991-07-26 Magnetic field focusing machine

Country Status (1)

Country Link
JP (1) JPH0534425A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001188003A (en) * 1999-06-28 2001-07-10 Denso Corp Rotational angle detecting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001188003A (en) * 1999-06-28 2001-07-10 Denso Corp Rotational angle detecting device

Similar Documents

Publication Publication Date Title
CA1207838A (en) Specification for a magnetic vector potential field detector
Goree et al. Magnetometers using RF‐driven squids and their applications in rock magnetism and paleomagnetism
Ketchen et al. Design, fabrication, and performance of integrated miniature SQUID susceptometers
US5757183A (en) Device to shield a magnetic field in a given plane
US7394246B2 (en) Superconductive quantum interference device (SQUID) system for measuring magnetic susceptibility of materials
US7342396B2 (en) Device for sensing a magnetic field
Bergmann The anomalous Hall effect
Seitz Fluxgate sensor in planar microtechnology
Dimitropoulos et al. Boosting the performance of miniature fluxgates with novel signal extraction techniques
JPH0534425A (en) Magnetic field focusing machine
Ogawa et al. A low temperature phase transition in yttrium iron garnet (YIG)
US3735369A (en) Magnetic memory employing force detecting element
JP2615732B2 (en) Magnetic field detector
JP2003021670A (en) Noncontact type ion beam current intensity measuring device
JPH03180786A (en) Magnetic field detector
JPH0763833A (en) Superconductor-loop type magnetic-field measuring apparatus
Hristoforou New monolithic three dimensional field sensors with high sensitivity
JPH0460477A (en) Measurement of magnetic characteristic for superconductor
JPH07135099A (en) Ion beam current measuring device and method
JPH0682150B2 (en) Magnetic field measuring device
Kneer The anisotropy field H k of thin ferromagnetic films, measured by magnetoresistive methods
JPH0250421B2 (en)
ITOZAKI et al. Detection of Fine lron Particles in High Speed Scrolled Wire by High-T c SQUID
Sumiyoshi et al. Using magnetic field pulses with a slow sweep rate to produce uniform current distribution in multifilamentary superconducting wire
Schaffer New dc magnetic sensor