JPH0534418B2 - - Google Patents

Info

Publication number
JPH0534418B2
JPH0534418B2 JP63171178A JP17117888A JPH0534418B2 JP H0534418 B2 JPH0534418 B2 JP H0534418B2 JP 63171178 A JP63171178 A JP 63171178A JP 17117888 A JP17117888 A JP 17117888A JP H0534418 B2 JPH0534418 B2 JP H0534418B2
Authority
JP
Japan
Prior art keywords
hardness
carbides
steel
resistance
rust resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63171178A
Other languages
Japanese (ja)
Other versions
JPH0222444A (en
Inventor
Nobuhiro Tsujii
Yasushi Haruna
Genryu Abe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP17117888A priority Critical patent/JPH0222444A/en
Publication of JPH0222444A publication Critical patent/JPH0222444A/en
Publication of JPH0534418B2 publication Critical patent/JPH0534418B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、優れた耐銹性と高い焼入焼もどし硬
さに加え、良好な加工性を兼ね備えた、特に直線
運動軸受用およびミニチユアベアリング用途や、
プラスチツク射出成形機のスクリユー、シリンダ
ー、金型、エジエクターピン、また耐食性を要す
るプランジヤーポンプのシリンダーなど、さら
に、耐食性を要する刃物類等用途に適する新規な
鋼に関するものである。 [従来の技術] 直線運動軸は、レールとベアリングで構成され
ており、従来の滑りによる直線案内に対しベアリ
ング内に組み込まれたボールによる転がり案内で
あり、摩耗ロスが少なく高精度の直進性と位置決
めが得られる直線案内部品である。 その用途は、NC旋盤、マシーニングセンター
を始めとする工作機械さらにロボツト、OA機
器、コンピユーターなどの幅広い分野にわたつて
いる。 材料鋼種としてS55C、AISI4150、SCM415、
SCM420、SUJ2、SUS420J2等が使用されてい
る。 最近では、無潤滑でメンテナンスフリーな用途
が多くなり、高精度で且つ、耐銹性に優れた材料
が要求され、このような用途に対したとえば
S55CにCrメツキしたものやマルテンサイト系ス
テンレス鋼であるSUS440C等が使用される。 一方、ミニチユアベアリングのなかで耐銹性や
高い硬さが要求される医療機器、精密計器等の用
途には従来からSUS440Cまたはこれに近い特性
のマルテンサイト系スレンレス鋼が使用されてい
る。 同様に、SUS420J2やSUS440C等が使われてい
る用途としては、プラスチツク射出成形機のスク
リユー、シリンダー、金型、エジエクターピン、
また耐食性を要するプランジヤーポンプのシリン
ダーなど、さらに、耐食性を要する刃物類等があ
げられる。 [発明が解決しようとする課題] しかしながら、近年の製品の高品質化に伴い、
上記のような各種機械部品や工具類は、一段と厳
しい使用環境に曝されるようになつてきた。 例えば、メンテナンスフリー化により直線運動
軸あるいはミニチユアベアリング用鋼に必要な特
性として、より高硬度で耐銹性良好であり、且つ
加工性を阻害する巨大一次炭化物が極めて少ない
ことなどが要求されるようになつた。 その目安としては、硬さHRC約57以上、耐銹
性はSUS440C並で5μm以上の巨大炭化物が極め
て少ないことがあげられる。即ち、SUS420J2ク
ラスでは、硬さ不足(約HRC55程度)であり、
一方、SUS440Cは硬さ(約HRC60程度)、耐銹
性の点で要求を十分満足するものの、10数μmの
巨大炭化物が多数存在しており引き抜き、切削、
研削等の加工性の点で問題である。 特に精密機器等のミニチユアベアリングにおい
て往々にして高速回転時の振動やノイズが大きい
のは、これは巨大炭化物の存在により研削時の表
面粗度に限界があることに起因している。 このような要求特性は、プラスチツク射出成形
機のスクリユー、シリンダー、金型、エジエクタ
ーピン、また耐食性を要するプランジヤーポンプ
のシリンダーなど、さらに、耐食性を要する刃物
類等にもあてはまる。例えば、プラスチツク樹脂
の高性能化により、射出成形機のスクリユーは
SUS420J2を用いた場合、硬さが低いため使用中
の摩耗が著しく寿命が短い。そこで、耐摩耗性を
向上させるために焼入れ硬さが高くかつ、多数の
硬質炭化物を有したSUS440Cを用いることが考
えられるが、この鋼種は加工性が悪くコスト高に
なるとともに、巨大炭化物による靭性の低下のた
め使用中に割れかけ等が発生しやすくなる。 以上述べたような各種用途に対し、0.7%C−
13%Cr系のマルテンサイト系ステンレス鋼がす
でに開発されているが、この鋼でも耐銹性に若干
の問題があり十分要求を満たしているとはいえな
いのが現状である。 [課題を解決するための手段] 本発明者は、これらの問題点を解決するために
従来の高マルテンサイト系ステンレス鋼の主要元
素であるC、Crの成分バランスを検討する中で
耐銹性や炭化物の粗大化に対し特にMoの影響が
大きいことを見いだした。この際、Cは炭化物の
粗大化、耐銹性を考慮して焼入れ硬さが確保可能
な範囲でできるだけ低めに抑えて0.4〜0.6%とし
Crは耐銹性を向上するが炭化物を粗大化して加
工性を悪くしまたマトリツクスの硬さを下げるの
で、Moの添加による耐銹性向上効果も併せ考
え、従来のステンレス鋼レベル(12〜14%)より
低い11%以下とした。 そして、これらC−Crの成分の範囲において
目的とする硬さ、耐銹性、炭化物粒径などを得る
ためには、Moを下記(1)〜(3)式の範囲で添加する
と良いことを見いだした。即ち、 (a) 硬さ約HRC57以上を得るための成分条件は Cr%+0.3Mo%−16.3C%≦5.0 ……(1) (b) 耐銹性を得るための成分条件は Cr%+1.2Mo%−11.5C%≧4.5 ……(2) (c) 研削性、加工性および靭性の改善を目的とし
て含有する長径5μm以上の巨大炭化物をでき
るだけ抑えるための成分条件は Cr%+2.7Mo%+21.5C%≦26.0 ……(3) である。尚、これらの式は、実験データーを回帰
分析して導出したものである。 すなわち、本願発明は、 重量パーセントで C:0.4%以上0.6%未満 Si:1.0%未満 Mn:1.0%以下 Cr:6.0%以上11.0%未満 Mo:0.5%以上4.0%以下 を含有し、かつ主要成分のCとCrおよびMoが上
記(1)〜(3)式を満足し、残部Feおよび不可避の不
純物からなる耐銹耐摩耗用鋼である。 [作用] まず(1)〜(3)式を見出だすに至つた実験過程につ
いて述べる。 C:0.35〜1.0%、Cr:10〜16%Mo:0.05〜2.0
%を主成分とし各成分をこの範囲で種々変動させ
た多数の供試鋼を100Kg真空誘導溶解炉にて出鋼
し、平均径190mmの鋳塊に鋳込み、これを径25mm
に鍛伸して供試材とした。各試験片は1050℃に15
分間保持後油焼き入れし、焼もどしは180℃に1
時間保持後空冷により実施し各試験に用いた。 耐銹性は、温度70℃、相対湿度95%の環境下に
96時間暴露したのち、10倍の拡大鏡で発銹の有無
を調べ評価した。一方、耐銹性を定量化する方法
として0.5%NaCl中での孔食電位を採用したが、
あとで述べるように本暴露試験とはかなりの相関
性が見られた。 長径が5μm以上の炭化物の個数は画像解析装
置を用いて測定した。尚、測定面積は1.125×
106μm2(50視野)とした。 以上の実験を全供試材について行ない、熱処理
硬さ、孔食電位および暴露試験成績さらに長径
5μm以上の炭化物量についてC、Cr、Moで整理
した結果、次のような知見を得た。 第1図に示すとおり熱処理硬さは式(Cr%+
0.3Mo%−16.3C%)にて整理でき、硬さHRC57
程度を得るためにはバラツキを考慮して、この式
の値が少なくとも5.0以下である必要がある。 第2図に示す通り孔食電位Vcは式(Cr%+
1.2Mo%−11.5C%)にて整理でき、この値が4.5
以上の場合、暴露試験での発耐は認められなかつ
た。 第3図に示すとおり、長径5μm以上の炭化物
量は、式(Cr+2.7Mo%+21.5C%)にて整理で
きこの値が26〜27を超えると急激に増大する。バ
ラツキも考慮して本発明用途を満足するための目
安を26.0以下とした。 次に本発明の化学成分の限定理由について述べ
る。 Cは、焼入れ焼戻しにより十分なマトリツクス
硬さを得るために不可欠な元素であり、HRC56
〜57程度以上の硬さを得るためには、少なくとも
0.4%必要である。一方、0.6%以上添加すると巨
大な炭化物が発生して研削性や靭性を損なうと共
にマトリツクスの有効Cr量が減少して耐銹性が
低下するので、上限を0.6%未満とした。 Siは、主に脱酸材として添加し焼入性を向上さ
せるが、1.0%以上添加すると靭性の劣化が生ず
るので上限を1.0%未満とした。 Mnは、Siと同様に、脱酸材として添加し焼入
性を向上させるが、1.0%を超えて添加すると靭
性や焼き戻し軟化抵抗を低下させるので上限を
1.0%とした。 Crは、Cと結合して硬質炭化物を形成し耐摩
耗性を向上させるとともに、マトリツクス中に固
溶し耐銹性を向上させる元素である。このために
は6.0%以上必要である。しかし、11.0%以上に
なると巨大炭化物が生じ易くなると共に硬さが低
下してHRC56〜57程度の硬さが得れなくなるの
で上限を11.0%未満とした。 Moは、Crと同様に耐摩耗性や耐銹性性を向上
させるのに有効な元素でありその効果を得るため
には0.5%以上必要である。しかしながら4.0%を
超えて添加すると炭化物の粗大化を助長するので
上限を4.0%とした。 [実施例] 次に本発明の実施例について述べる。 先に得られた知見をもとに、新たに第1表に示
す成分のA〜Jの10鋼種を上述の実験過程と同じ
工程で作製した。 第1表に本発明鋼と比較鋼および従来鋼の成分
と(1)〜(3)式の値を示した。 また第2表に各供試材の1050℃焼入れ、180℃
焼戻し後の硬さ、長径5μm以上の巨大炭化物量、
さらに温度70℃、相対湿度95%、保持時間96時間
の暴露試験での、発銹の有無を示す。 これから明らかなように、本発明鋼は、従来鋼
に比べ硬さ、耐銹性および巨大炭化物量の全てに
おいて優れていることがわかる。 [効果] 従来SUS440Cクラスを使用していた直線運動
軸やミニチユアベアリングなどの部品に対し本発
明鋼を採用することにより、特に研削性の向
[Industrial Field of Application] The present invention has excellent rust resistance and high hardness after quenching and tempering, as well as good workability, and is particularly applicable to linear motion bearings and miniature bearings.
The present invention relates to a new steel suitable for use in screws, cylinders, molds, ejector pins for plastic injection molding machines, cylinders for plunger pumps that require corrosion resistance, and cutlery that requires corrosion resistance. [Conventional technology] A linear motion axis is composed of a rail and a bearing.In contrast to the conventional sliding linear guide, this system uses rolling guidance using balls built into the bearing, resulting in highly accurate straightness with less wear loss. It is a linear guide component that provides positioning. Its applications span a wide range of fields, including machine tools such as NC lathes and machining centers, as well as robots, OA equipment, and computers. Material steel types include S55C, AISI4150, SCM415,
SCM420, SUJ2, SUS420J2, etc. are used. Recently, there are many applications that require no lubrication and are maintenance-free, and materials with high precision and excellent rust resistance are required.
S55C plated with Cr or martensitic stainless steel SUS440C are used. On the other hand, among miniature bearings, SUS440C or martensitic stainless steel with properties similar to this has traditionally been used for applications such as medical equipment and precision instruments that require rust resistance and high hardness. Similarly, SUS420J2 and SUS440C are used for plastic injection molding machine screws, cylinders, molds, ejector pins, etc.
Other examples include plunger pump cylinders that require corrosion resistance, and cutlery that requires corrosion resistance. [Problems to be solved by the invention] However, as the quality of products has improved in recent years,
The various mechanical parts and tools mentioned above have come to be exposed to increasingly harsh operating environments. For example, due to maintenance-free steel, the characteristics required for steel for linear motion shafts or miniature bearings include higher hardness, good rust resistance, and extremely low content of giant primary carbides that impede workability. It became like that. As a guideline, the hardness should be about 57 or higher, the rust resistance should be on par with SUS440C, and there should be very few large carbides larger than 5 μm. In other words, the SUS420J2 class lacks hardness (approximately HRC55),
On the other hand, although SUS440C fully satisfies the requirements in terms of hardness (approximately HRC60) and rust resistance, it contains many gigantic carbides with a diameter of more than 10 μm, making it difficult to pull out, cut, or cut.
This is a problem in terms of workability such as grinding. In particular, miniature bearings used in precision equipment often produce large vibrations and noise during high-speed rotation because the existence of giant carbides limits the surface roughness during grinding. These required characteristics also apply to screws, cylinders, molds, ejector pins of plastic injection molding machines, cylinders of plunger pumps that require corrosion resistance, and cutlery that requires corrosion resistance. For example, due to the improved performance of plastic resin, the screws in injection molding machines have become
When using SUS420J2, its low hardness causes significant wear during use and short life. Therefore, in order to improve wear resistance, it is possible to use SUS440C, which has high quenching hardness and a large number of hard carbides, but this steel type has poor workability and is expensive, as well as toughness due to giant carbides. Due to the decrease in the temperature, cracks are more likely to occur during use. For the various uses mentioned above, 0.7%C-
Although 13% Cr-based martensitic stainless steel has already been developed, even this steel has some problems with rust resistance, so it cannot be said that it fully satisfies the requirements. [Means for Solving the Problems] In order to solve these problems, the present inventor investigated the composition balance of C and Cr, which are the main elements of conventional high martensitic stainless steel, and found that the rust resistance It was found that Mo has a particularly large influence on the coarsening of carbides and carbides. At this time, in consideration of coarsening of carbides and rust resistance, C should be kept as low as possible within the range of 0.4 to 0.6% to ensure quenched hardness.
Although Cr improves rust resistance, it coarsens carbides, impairs workability, and lowers the hardness of the matrix. Therefore, considering the effect of adding Mo to improve rust resistance, %) lower than 11%. In order to obtain the desired hardness, rust resistance, carbide particle size, etc. within these C-Cr component ranges, it is recommended that Mo be added within the range of formulas (1) to (3) below. I found it. That is, (a) The compositional conditions to obtain a hardness of approximately HRC57 or higher are Cr% + 0.3Mo% - 16.3C% ≦5.0 ... (1) (b) The compositional conditions to obtain rust resistance are Cr% + 1 .2Mo%−11.5C%≧4.5 …(2) (c) The composition condition for suppressing as much as possible giant carbides with a major axis of 5 μm or more, which are included for the purpose of improving grindability, workability, and toughness, is Cr% + 2.7Mo. %+21.5C%≦26.0…(3). Note that these formulas were derived by regression analysis of experimental data. That is, the present invention contains C: 0.4% or more and less than 0.6% Si: Less than 1.0% Mn: 1.0% or less Cr: 6.0% or more and less than 11.0% Mo: 0.5% or more and less than 4.0%, and the main components This is a rust-resistant and wear-resistant steel in which C, Cr, and Mo satisfy the above formulas (1) to (3), and the balance is Fe and unavoidable impurities. [Effect] First, the experimental process that led to the discovery of equations (1) to (3) will be described. C: 0.35-1.0%, Cr: 10-16% Mo: 0.05-2.0
A large number of test steels with % as the main component and each component varied within this range were tapped in a 100Kg vacuum induction melting furnace, cast into an ingot with an average diameter of 190mm, and this was poured into an ingot with an average diameter of 25mm.
It was forged and stretched to make a sample material. Each specimen was heated to 1050℃ for 15
After holding for a minute, quench in oil and temper at 180℃.
After holding for a time, it was air cooled and used for each test. Rust resistance is determined under an environment of temperature 70℃ and relative humidity 95%.
After 96 hours of exposure, the presence or absence of rust was evaluated using a 10x magnifying glass. On the other hand, pitting potential in 0.5% NaCl was used as a method to quantify rust resistance;
As will be discussed later, there was a significant correlation with this exposure test. The number of carbides with a major axis of 5 μm or more was measured using an image analysis device. In addition, the measurement area is 1.125×
The field size was 10 6 μm 2 (50 fields of view). The above experiments were conducted on all sample materials, and the heat treatment hardness, pitting potential, exposure test results, and major axis
As a result of organizing the amount of carbides of 5 μm or more by C, Cr, and Mo, the following findings were obtained. As shown in Figure 1, heat treatment hardness is determined by the formula (Cr% +
0.3Mo%-16.3C%), hardness HRC57
In order to obtain the desired degree, the value of this formula must be at least 5.0 or less, taking into account variations. As shown in Figure 2, the pitting corrosion potential Vc is determined by the formula (Cr%+
1.2Mo%−11.5C%), and this value is 4.5
In the above cases, no resistance to development was observed in the exposure test. As shown in FIG. 3, the amount of carbides with a major diameter of 5 μm or more can be summarized by the formula (Cr + 2.7 Mo% + 21.5 C%), and when this value exceeds 26 to 27, it increases rapidly. Taking into account variations, the standard for satisfying the application of the present invention was set at 26.0 or less. Next, the reasons for limiting the chemical components of the present invention will be described. C is an essential element to obtain sufficient matrix hardness through quenching and tempering, and HRC56
To obtain a hardness of ~57 or higher, at least
0.4% is required. On the other hand, if more than 0.6% is added, huge carbides are generated, impairing grindability and toughness, and the effective amount of Cr in the matrix is reduced, resulting in a decrease in rust resistance, so the upper limit was set to less than 0.6%. Si is mainly added as a deoxidizing agent to improve hardenability, but if it is added in an amount of 1.0% or more, toughness deteriorates, so the upper limit was set to less than 1.0%. Like Si, Mn is added as a deoxidizer to improve hardenability, but adding more than 1.0% reduces toughness and temper softening resistance, so the upper limit should be set.
It was set at 1.0%. Cr is an element that combines with C to form a hard carbide and improves wear resistance, and also dissolves in the matrix to improve rust resistance. For this purpose, 6.0% or more is required. However, if it exceeds 11.0%, giant carbides tend to form and the hardness decreases, making it impossible to obtain a hardness of about HRC 56 to 57, so the upper limit was set to less than 11.0%. Like Cr, Mo is an effective element for improving wear resistance and rust resistance, and 0.5% or more is required to obtain this effect. However, adding more than 4.0% promotes coarsening of carbides, so the upper limit was set at 4.0%. [Example] Next, an example of the present invention will be described. Based on the previously obtained knowledge, 10 steel types A to J having the components shown in Table 1 were newly produced in the same process as the above-mentioned experimental process. Table 1 shows the components and values of equations (1) to (3) of the steel of the present invention, comparative steel, and conventional steel. Table 2 also shows the 1050℃ quenching and 180℃ quenching of each sample material.
Hardness after tempering, amount of giant carbides with major diameter of 5μm or more,
Furthermore, the presence or absence of rusting is shown in an exposure test at a temperature of 70°C, relative humidity of 95%, and a holding time of 96 hours. As is clear from this, the steel of the present invention is superior to the conventional steel in all aspects of hardness, rust resistance, and macrocarbide content. [Effects] By using the steel of the present invention for parts such as linear motion axes and miniature bearings that conventionally used SUS440C class, grindability has been improved.

【表】【table】

【表】 もの。
上による部品加工コストの削減と、表面粗度が向
上したことによる製品の精密さや振動音響特性の
向上などを、他の機能特性を同等以上に維持しつ
つ得ることができた。同様に、SUS420J2や
SUS440C等が使われていたプラスチツク射出成
形機のスクリユー、シリンダー、金型、エジエク
ターピン、また耐食性を要するプランジヤーポン
プのシリンダーなど、さらに、耐食性を要する刃
物類等に対し本発明鋼を採用することにより、加
工コストの削減と共に寿命の向上が得られた。
[Table] Things.
We were able to reduce part processing costs due to the above, and improve product precision and vibro-acoustic characteristics due to improved surface roughness, while maintaining other functional characteristics at the same level or higher. Similarly, SUS420J2 and
The steel of the present invention will be used for the screws, cylinders, molds, and ejector pins of plastic injection molding machines that used SUS440C, as well as the cylinders of plunger pumps that require corrosion resistance, as well as cutlery that requires corrosion resistance. This resulted in a reduction in processing costs and an improvement in service life.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は硬さとC、Cr、Moの量の関係を示す
図、第2図は孔食電位および暴露試験結果とC、
Cr、Moの関係を示す図、さらに第3図は、長径
5μm以上の炭化物量とC、Cr、Moの量の関係を
示す図である。
Figure 1 shows the relationship between hardness and the amounts of C, Cr, and Mo. Figure 2 shows pitting potential and exposure test results and C,
A diagram showing the relationship between Cr and Mo, and Figure 3 shows the major axis
It is a figure showing the relationship between the amount of carbides of 5 μm or more and the amounts of C, Cr, and Mo.

Claims (1)

【特許請求の範囲】 1 重量%で C:0.4%以上0.6%未満 Si:1.0%未満 Mn:1.0%以下 Cr:6.0%以上11.0%未満 Mo:0.5%以上4.0%未満 を含有し、かつCとCrおよびMoの関係が Cr%+0.3Mo%−16.3C%≦5.0 ……(1) Cr%+1.2Mo%−11.5C%≧4.5 ……(2) Cr%+2.7Mo%−21.5C%≦26.0 ……(3) を満たし残部Feおよび不可避の不純物からなる
耐銹耐摩耗用鋼。
[Claims] 1 Contains C: 0.4% or more and less than 0.6% Si: Less than 1.0% Mn: 1.0% or less Cr: 6.0% or more and less than 11.0% Mo: 0.5% or more and less than 4.0%, and C The relationship between Cr and Mo is Cr%+0.3Mo%-16.3C%≦5.0...(1) Cr%+1.2Mo%-11.5C%≧4.5...(2) Cr%+2.7Mo%-21.5C %≦26.0……(3) A rust-resistant and wear-resistant steel that satisfies (3) and consists of the remainder Fe and unavoidable impurities.
JP17117888A 1988-07-08 1988-07-08 Rust-resistant and wear-resistant steel Granted JPH0222444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17117888A JPH0222444A (en) 1988-07-08 1988-07-08 Rust-resistant and wear-resistant steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17117888A JPH0222444A (en) 1988-07-08 1988-07-08 Rust-resistant and wear-resistant steel

Publications (2)

Publication Number Publication Date
JPH0222444A JPH0222444A (en) 1990-01-25
JPH0534418B2 true JPH0534418B2 (en) 1993-05-24

Family

ID=15918448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17117888A Granted JPH0222444A (en) 1988-07-08 1988-07-08 Rust-resistant and wear-resistant steel

Country Status (1)

Country Link
JP (1) JPH0222444A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0492545U (en) * 1990-12-28 1992-08-12
DE59909522D1 (en) * 1999-01-19 2004-06-24 Sulzer Metco Ag Wohlen Plasma spraying layer for cylinder surfaces of engine blocks and method of making same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53103917A (en) * 1977-02-23 1978-09-09 Daido Steel Co Ltd Martensitic stainless steel having good resistance to rolling load
JPS54121218A (en) * 1978-03-14 1979-09-20 Hitachi Metals Ltd Steel for stainless razor with excellent corrosion resistance and cutting property
JPS60243249A (en) * 1984-05-16 1985-12-03 Hitachi Metals Ltd Steel for bearing having high resistance to temper softening
JPS61163244A (en) * 1985-01-11 1986-07-23 Hitachi Metals Ltd Rolling bearing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53103917A (en) * 1977-02-23 1978-09-09 Daido Steel Co Ltd Martensitic stainless steel having good resistance to rolling load
JPS54121218A (en) * 1978-03-14 1979-09-20 Hitachi Metals Ltd Steel for stainless razor with excellent corrosion resistance and cutting property
JPS60243249A (en) * 1984-05-16 1985-12-03 Hitachi Metals Ltd Steel for bearing having high resistance to temper softening
JPS61163244A (en) * 1985-01-11 1986-07-23 Hitachi Metals Ltd Rolling bearing

Also Published As

Publication number Publication date
JPH0222444A (en) 1990-01-25

Similar Documents

Publication Publication Date Title
US6095692A (en) Rolling bearing
US5936169A (en) Corrosion resistant, high vanadium, powder metallurgy tool steel articles with improved metal to metal wear resistance and a method for producing the same
EP0411931A1 (en) Case hardening corrosion resistant steel alloy and article made therefrom
CN103540726A (en) Method for heat treatment of ultrahigh-carbon bearing steel
US3713905A (en) Deep air-hardened alloy steel article
KR0123560B1 (en) Steel for corrosion-resistant rolling part and rolling part
JPH0534418B2 (en)
JP2004183016A (en) Steel bar for induction hardening
US6576186B1 (en) Enhanced machinability precipitation-hardenable stainless steel for critical applications
JPS60224754A (en) Alloy tool steel
JP2007002333A (en) Press die with excellent self-lubricating property
JP4317521B2 (en) ROLLING BEARING, ROLLING BEARING MATERIAL, AND EQUIPMENT HAVING ROTARY UNIT USING THE ROLLING BEARING
EP0704546B1 (en) An improved steel composition for bearings and method of producing the same
JP2937735B2 (en) Rust and wear resistant steel for induction hardening
US2585372A (en) Method of making low-alloy steel
JP2020045557A (en) Slide member
JPS60243249A (en) Steel for bearing having high resistance to temper softening
JPS59159971A (en) Steel for cold forging with superior hardenability
JPH11335773A (en) Bearing steel excellent in cold workability
JPH04210451A (en) High strength and high corrosion resistant stainless steel excellent in cold workability
JPH06128700A (en) Bar steel of martensitic stainless steel of irregular shape for induction hardening
JP2759401B2 (en) Free-cutting stainless steel for cold heading
KR920010526B1 (en) Making process for bushing for track
JP3501946B2 (en) High strength and high corrosion resistance stainless steel with excellent cold workability
JP2004092742A (en) Anti-friction bearing and anti-friction bearing material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080524

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 16