JPH05343923A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH05343923A
JPH05343923A JP4147170A JP14717092A JPH05343923A JP H05343923 A JPH05343923 A JP H05343923A JP 4147170 A JP4147170 A JP 4147170A JP 14717092 A JP14717092 A JP 14717092A JP H05343923 A JPH05343923 A JP H05343923A
Authority
JP
Japan
Prior art keywords
fet
signal
source
gate
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4147170A
Other languages
Japanese (ja)
Inventor
Taketo Kunihisa
武人 國久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4147170A priority Critical patent/JPH05343923A/en
Publication of JPH05343923A publication Critical patent/JPH05343923A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form an impedance variable element having a large impedance change difficult of being realized by a bipolar transistor(TR) in the same process by employing a FET for the impedance variable element. CONSTITUTION:When a high frequency signal is fed to terminals 103, 104, 105, 106, a large current flows to FETs 1-4 and a small current flows to FETs 5-8. The difference current flows to a constant current source comprising an FET 11 through an FET 9. Thus, for example, in a pair of the FETs 1, 2, the FET 2 is turned on by a large signal input and the FET1 is turned off. Similarly, in a pair of the FETs 5, 6, the FET 6 is turned off by a large signal input and the FET5 is turned on. Thus, an input level of a local signal is decreased equivalently by the bypass of the FET 9 and the conversion gain is reduced. Then, the conversion gain is changed by changing the impedance of the bypass and the gain control variable is increased by a large impedance change. Thus, no special variable impedance element is required.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はGaAsMESFETを
用いた半導体装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device using GaAs MESFET.

【0002】[0002]

【従来の技術】近年低電力駆動化のために、低電圧で動
作する半導体装置が求められている。従来の変換利得可
変ミキサとしては例えば図3に示すような二重平衡差動
増幅器に可変インピーダンス素子を加えたものがあった
(例えば特願平3−118710号公報)。
2. Description of the Related Art In recent years, a semiconductor device which operates at a low voltage has been demanded for low power driving. As a conventional variable conversion gain mixer, there is, for example, one in which a variable impedance element is added to a double balanced differential amplifier as shown in FIG. 3 (for example, Japanese Patent Application No. 3-118710).

【0003】図3において、31〜34はスイッチング
素子としてして用いられるFETであり35、36はソ
ース結合ペアとして動作するFETであり、37、38
は定電流源であり、39は可変インピーダンス素子とし
て用いられるFETであり、40は利得制御端子307
に印加される電圧によりFET39のゲートに大電流が
流れないように挿入された抵抗である。ここで端子30
3と304間にローカル信号を入力し端子305、30
6間にRF信号を入力することにより端子301、30
2間にローカル信号周波数とRF信号周波数の和もしく
は差の周波数を有するIF信号が得られる。ここで端子
301および302と電源間に挿入される負荷は図面上
省略してある。
In FIG. 3, 31 to 34 are FETs used as switching elements, 35 and 36 are FETs operating as a source coupling pair, and 37 and 38.
Is a constant current source, 39 is an FET used as a variable impedance element, and 40 is a gain control terminal 307.
The resistor is inserted so that a large current does not flow to the gate of the FET 39 due to the voltage applied to the gate of the FET 39. Terminal 30 here
A local signal is input between terminals 3 and 304 and terminals 305, 30
By inputting an RF signal between 6 terminals 301, 30
An IF signal having a frequency that is the sum or difference of the local signal frequency and the RF signal frequency is obtained between the two. Here, the load inserted between the terminals 301 and 302 and the power supply is omitted in the drawing.

【0004】周波数のミキシングはFET31〜34の
スイッチング素子により行われ、ローカル信号でFET
31、34とFET32、33のON、OFFを繰り返
すことによりRF信号とローカル信号の掛算が行われ
る。
The frequency mixing is performed by the switching elements of the FETs 31 to 34, and the FETs are fed by the local signal.
The RF signal and the local signal are multiplied by repeating ON and OFF of 31, 34 and FETs 32, 33.

【0005】また、この回路の変換利得はFET35、
36のソース結合ペアの利得により決まり、このソース
結合ペアの利得はFET39による抵抗によって決ま
る。これは、FET39による抵抗が不帰還抵抗として
働くためであり、抵抗が大きい場合は低利得、小さい場
合は高利得になる。
The conversion gain of this circuit is FET35,
It is determined by the gain of the source-coupled pair of 36, which is determined by the resistance of the FET 39. This is because the resistance of the FET 39 acts as a non-feedback resistance, and when the resistance is large, the gain is low, and when the resistance is small, the gain is high.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
ような二重平衡差動増幅器では定電流源を含むと3段積
みになっているため低電圧動作が困難であるという問題
点を有していた。
However, the conventional double-balanced differential amplifier has a problem that it is difficult to operate at a low voltage because the double-balanced differential amplifier includes three stages when a constant current source is included. It was

【0007】本発明は上記問題点に鑑み、変換利得可変
ミキサの機能を有する、低電圧動作が可能な半導体装置
を提供することを目的とする。
In view of the above problems, it is an object of the present invention to provide a semiconductor device having the function of a conversion gain variable mixer and capable of low voltage operation.

【0008】[0008]

【課題を解決するための手段】上記問題点を解決するた
めに本発明の半導体装置は、9個のFETと2個の定電
流源とを具備し、第1のFETのドレーンと第2のFE
Tのドレーンと第7のFETのドレーンと第8のFET
のドレーンを第1の信号端子とし、第3のFETのドレ
ーンと第4のFETのドレーンと第5のFETのドレー
ンと第6のFETのドレーンを第2の信号端子とし、第
2のFETのゲートと第3のFETのゲートを第3の信
号端子とし、第6のFETのゲートと第7のFETのゲ
ートを第4の信号端子とし、第1のFETのゲートと第
5のFETのゲートを第5の信号端子とし、第4のFE
Tのゲートと第8のFETのゲートを第6の信号端子と
し、第1のFETのソースと第2のFETのソースと第
3のFETのソースと第4のFETのソースと第9のF
ETのドレーンを第1の定電流源に接続し、第5のFE
Tのソースと第6のFETのソースと第7のFETのソ
ースと第8のFETのソースと第9のFETのソースを
第2の定電流源に接続し、第3の信号端子と第4の信号
端子間に第1の周波数の信号を入力し、第5の信号端子
と第6の信号端子間に第2の周波数の信号を入力し、第
1の信号端子と第2の信号端子間に前記第1の周波数と
第2の周波数との混合周波数である第3の信号周波数を
出力し、第9のFETのゲート電圧によって変換利得を
変化させ9個のFETと2個の定電流源とを具備し、第
1のFETのドレーンと第2のFETのドレーンと第7
のFETのドレーンと第8のFETのドレーンを第1の
信号端子とし、第3のFETのドレーンと第4のFET
のドレーンと第5のFETのドレーンと第6のFETの
ドレーンを第2の信号端子とし、第2のFETのゲート
と第3のFETのゲートを第3の信号端子とし、第6の
FETのゲートと第7のFETのゲートを第4の信号端
子とし、第1のFETのゲートと第5のFETのゲート
を第5の信号端子とし、第4のFETのゲートと第8の
FETのゲートを第6の信号端子とし、第1のFETの
ソースと第2のFETのソースと第3のFETのソース
と第4のFETのソースと第9のFETのドレーンを第
1の定電流源に接続し、第5のFETのソースと第6の
FETのソースと第7のFETのソースと第8のFET
のソースと第9のFETのソースを第2の定電流源に接
続し、第3の信号端子と第4の信号端子間に第1の周波
数の信号を入力し、第5の信号端子と第6の信号端子間
に第2の周波数の信号を入力し、第1の信号端子と第2
の信号端子間に前記第1の周波数と第2の周波数との混
合周波数である第3の信号周波数を出力し、第9のFE
Tのゲート電圧によって変換利得を変化させるという構
成を備えたものである。
In order to solve the above problems, a semiconductor device of the present invention comprises nine FETs and two constant current sources, and a drain of the first FET and a second FET. FE
Drain of T and drain of 7th FET and 8th FET
Of the third FET as the first signal terminal, the drain of the third FET, the drain of the fourth FET, the drain of the fifth FET and the drain of the sixth FET as the second signal terminal, and the drain of the second FET of The gate and the gate of the third FET are used as the third signal terminal, the gate of the sixth FET and the gate of the seventh FET are used as the fourth signal terminal, and the gate of the first FET and the gate of the fifth FET are used. As a fifth signal terminal, and a fourth FE
The gate of T and the gate of the eighth FET are used as the sixth signal terminal, the source of the first FET, the source of the second FET, the source of the third FET, the source of the fourth FET, and the ninth F.
The drain of ET is connected to the first constant current source, and the fifth FE is connected.
The source of T, the source of the sixth FET, the source of the seventh FET, the source of the eighth FET and the source of the ninth FET are connected to the second constant current source, and the third signal terminal and the fourth signal terminal are connected. Between the first signal terminal and the second signal terminal, the first frequency signal between the first and second signal terminals, and the second frequency signal between the fifth and sixth signal terminals. A third signal frequency, which is a mixed frequency of the first frequency and the second frequency, is output to, and the conversion gain is changed by the gate voltage of the ninth FET, so that nine FETs and two constant current sources are provided. And a drain of the first FET, a drain of the second FET, and a drain of the second FET.
The drain of the FET and the drain of the eighth FET are used as the first signal terminal, and the drain of the third FET and the fourth FET
Drain, the drain of the fifth FET, and the drain of the sixth FET as the second signal terminal, the gate of the second FET and the gate of the third FET as the third signal terminal, and the drain of the sixth FET The gate and the gate of the seventh FET are used as the fourth signal terminal, the gate of the first FET and the gate of the fifth FET are used as the fifth signal terminal, and the gate of the fourth FET and the gate of the eighth FET are used. Is the sixth signal terminal, and the source of the first FET, the source of the second FET, the source of the third FET, the source of the fourth FET and the drain of the ninth FET are the first constant current source. Connect, the source of the 5th FET, the source of the 6th FET, the source of the 7th FET, and the 8th FET
And the source of the ninth FET are connected to the second constant current source, the signal of the first frequency is input between the third signal terminal and the fourth signal terminal, and the fifth signal terminal and the The signal of the second frequency is input between the signal terminals of 6 and the first signal terminal and the second signal terminal.
A third signal frequency, which is a mixed frequency of the first frequency and the second frequency, is output between the signal terminals of
It has a configuration in which the conversion gain is changed by the gate voltage of T.

【0009】[0009]

【作用】本発明は上記した構成によって、二重平衡差動
増幅器に比べ、FETの縦積み段数を1段減らすことが
出来るので低電圧動作が可能であり、インピーダンス可
変素子としてFETを用いているため、バイポーラトラ
ンジスタでは困難なインピーダンス変化量の大きなイン
ピーダンス可変素子を同じプロセスで形成することが出
来る。
According to the present invention, the number of vertically stacked FETs can be reduced by one as compared with the double-balanced differential amplifier by the above-mentioned configuration, so that low voltage operation is possible and the FET is used as the impedance variable element. Therefore, it is possible to form an impedance variable element having a large amount of impedance change, which is difficult with a bipolar transistor, in the same process.

【0010】[0010]

【実施例】以下本発明の実施例の半導体装置について、
図面を参照しながら説明する。
EXAMPLE A semiconductor device according to an example of the present invention will be described below.
A description will be given with reference to the drawings.

【0011】図1は本発明の実施例における半導体装置
の回路図である。図1において、1〜11はしきい値−
0.4VのGaAsMESFET、12は5kΩの抵抗
であり107に加えられる利得制御電圧によって11の
FETのゲートに大電流が流れないように挿入した。ま
た、端子101と102からIF信号を出力し、端子1
03と104にローカル信号を入力し、端子105と1
06はRF信号を入力した。また107は利得制御端子
である。1〜8のFETはミキサを構成するFETであ
りゲート幅は200μm、9はインピーダンス可変素子
として作用するFETであり、ゲート幅は800μm、
10、11は定電流源として作用するFETでありゲー
ト幅は800μmである。
FIG. 1 is a circuit diagram of a semiconductor device according to an embodiment of the present invention. In FIG. 1, 1 to 11 are threshold values −
0.4V GaAs MESFET, 12 is a resistor of 5 kΩ, and is inserted so that a large current does not flow to the gate of the FET of 11 by the gain control voltage applied to 107. Further, the IF signal is output from the terminals 101 and 102, and the terminal 1
Input local signals to 03 and 104, and connect to terminals 105 and 1
06 input the RF signal. 107 is a gain control terminal. The FETs 1 to 8 are FETs that form a mixer and have a gate width of 200 μm, and 9 is a FET that acts as an impedance variable element, and the gate width is 800 μm.
FETs 10 and 11 function as a constant current source and have a gate width of 800 μm.

【0012】以上のように構成された半導体装置につい
て、以下図1及び図2を用いてその動作を説明する。
The operation of the semiconductor device configured as described above will be described below with reference to FIGS. 1 and 2.

【0013】図1において、周波数のミキシングは1〜
8のFETのスイッチングにより行われる。いま端子1
03にvl、端子104に−vlの高周波信号が印加さ
れ、端子105にvr、端子106に−vrの高周波信
号が印加されているとする。ここで、簡単のためFET
9によるバイパスがない場合についてまず説明する。こ
の場合比較的大きなローカル信号vlによりFET2と
FET3はON、FET6とFET7はOFFになって
いる。従って、例えばFET1とFET2の対ではFE
T2にほとんどの電流が流れFET1はOFFとなる。
同様にFET4はOFF、FET5はON、FET8は
ONになっている。従ってRF信号はFET5とFET
8を介して101、102端子に出力される。次に端子
103に−vl、端子104にvlの高周波信号が印加
された場合、FET2とFET3はOFF、FET6と
FET7はON、FET1はON、FET4はOFF、
FET5はOFF、FET8はOFFになっている。従
ってRF信号はFET1とFET4を介して101、1
02端子に出力される。このようにローカル信号によっ
てRF信号がスイッチングされる事によりRF信号とロ
ーカル信号の掛算が行われる。
In FIG. 1, the frequency mixing is from 1 to
8 FET switching is performed. Now terminal 1
03 is applied to the terminal 104, a terminal 104 is applied to the high-frequency signal of −vl, the terminal 105 is applied to vr, and the terminal 106 is applied to the high-frequency signal of −vr. Here, for simplicity, FET
The case where there is no bypass by 9 will be described first. In this case, the FET2 and FET3 are turned on and the FET6 and FET7 are turned off by the relatively large local signal vl. Therefore, for example, in the pair of FET1 and FET2, FE
Most of the current flows through T2, and FET1 is turned off.
Similarly, FET4 is OFF, FET5 is ON, and FET8 is ON. Therefore, the RF signal is FET5 and FET
It is output to the terminals 101 and 102 via the terminal 8. Next, when a high frequency signal of -vl is applied to the terminal 103 and a high frequency signal of vl is applied to the terminal 104, FET2 and FET3 are OFF, FET6 and FET7 are ON, FET1 is ON, FET4 is OFF,
FET5 is OFF and FET8 is OFF. Therefore, the RF signal is 101,1 via FET1 and FET4.
It is output to the 02 terminal. In this way, the RF signal is switched by the local signal, so that the RF signal and the local signal are multiplied.

【0014】次にFET9による利得制御効果について
説明する。FET9によるバイパスがない場合FET1
とFET2、FET3とFET4、FET5とFET
6、FET7とFET8の各対には定電流源であるFE
T10、FET11の1/2の電流がバイアス電流とし
て流れている。このため例えばFET2のゲートに大き
な信号が印加される事によりその対であるFET1のO
N、OFFが生じる。ところがFET9によるバイパス
があると各対のON、OFFが困難になる。例えば端子
103にvl、端子104に−vlの高周波信号が印加
され、端子105にvr、端子106に−vrの高周波
信号が印加されている場合、FET1〜FET4側に大
きな電流が流れ、FET5〜FET8側に小さな電流が
流れる。この差の電流はFET9を介してFET11の
定電流源に流れる。このため例えばFET1、FET2
の対では、FET9によるバイパスがない場合と比較し
てFET2をより大きな信号でON状態にしないとFE
T1がOFFにならない。同様にFET5、FET6の
対ではFET6をより大きな信号でOFF状態にしない
とFET5がON状態にならない。この様にFET9の
バイパスにより等価的にローカル信号の入力レベルが小
さくなり、変換利得が減少する。そこでこのバイパスの
インピーダンスを変化させる事によって変換利得を変化
させる事ができ、バイパスのインピーダンスが大きい場
合変換利得大、バイパスのインピーダンスが小さい場合
変換利得小となる。このインピーダンス変化量が大きい
と利得制御量が大きくなるが、本発明ではFETを可変
インピーダンス素子として用いているため、特別に可変
インピーダンス素子を用いる事なく大きなインピーダン
ス変化量を得る事ができる。
Next, the gain control effect of the FET 9 will be described. If there is no bypass by FET9, FET1
And FET2, FET3 and FET4, FET5 and FET
6, FE which is a constant current source for each pair of FET7 and FET8
Half the current of T10 and FET11 flows as a bias current. For this reason, for example, when a large signal is applied to the gate of the FET2, the O of the pair of FET1
N, OFF occurs. However, if there is a bypass by the FET 9, it becomes difficult to turn on and off each pair. For example, when vl is applied to the terminal 103, a high-frequency signal of -vl is applied to the terminal 104, vr is applied to the terminal 105, and a high-frequency signal of -vr is applied to the terminal 106, a large current flows through the FET1 to FET4 side, and the FET5 to FET5. A small current flows on the FET8 side. The current of this difference flows through the FET 9 to the constant current source of the FET 11. Therefore, for example, FET1 and FET2
In the pair, FE must be turned on with a larger signal than FET2 as compared with the case where there is no bypass by FET9.
T1 does not turn off. Similarly, in the pair of FET5 and FET6, the FET5 cannot be turned on unless the FET6 is turned off by a larger signal. Thus, the bypass of the FET 9 equivalently lowers the input level of the local signal and reduces the conversion gain. Therefore, the conversion gain can be changed by changing the bypass impedance, and the conversion gain is large when the bypass impedance is large and small when the bypass impedance is small. If this amount of impedance change is large, the amount of gain control is large, but since the FET is used as a variable impedance element in the present invention, a large amount of impedance change can be obtained without using a variable impedance element.

【0015】なお、RF信号入力端子とローカル信号入
力端子を入れ換えた場合にも掛算は行われ、バイパスイ
ンピーダンスにより変換利得が変化するが、この場合は
等価的にRF信号の入力レベルが変化すると考えればよ
い。
It should be noted that when the RF signal input terminal and the local signal input terminal are interchanged, multiplication is performed and the conversion gain changes due to the bypass impedance. In this case, it is considered that the input level of the RF signal equivalently changes. Good.

【0016】次に図2に半導体装置をダウンコンバータ
として用いた場合の変換利得制御特性を示す。端子10
1と102にコイルバランを接続しDCバイアスを3V
とし、50Ω系で400MHzのIF信号強度を測定し
た。また端子103と104にコイルバランを接続しD
Cバイアスを1.5Vとし、50Ω系で強度0dBm、
周波数1750MHzのローカル信号を入力した。さら
に端子105と106にコイルバランを接続しDCバイ
アスを1.5Vとし、50Ω系で強度−20dBm、周
波数1350MHzのRF信号を入力した。この時の利
得制御端子107に加えた電圧を横軸とし、変換利得を
縦軸に示した。図2から変換利得が約10dB変化して
いる事が分かる。
Next, FIG. 2 shows conversion gain control characteristics when the semiconductor device is used as a down converter. Terminal 10
Connect a coil balun to 1 and 102 and set DC bias to 3V
Then, the IF signal intensity of 400 MHz was measured in a 50Ω system. Also, connect a coil balun to terminals 103 and 104
C bias is 1.5V, strength is 0dBm in 50Ω system,
A local signal having a frequency of 1750 MHz was input. Further, a coil balun was connected to the terminals 105 and 106, the DC bias was set to 1.5 V, and an RF signal having a strength of -20 dBm and a frequency of 1350 MHz was input in a 50Ω system. The voltage applied to the gain control terminal 107 at this time is shown on the horizontal axis, and the conversion gain is shown on the vertical axis. It can be seen from FIG. 2 that the conversion gain changes by about 10 dB.

【0017】以上のように本実施例によれば、定電流源
を構成するFETと、ミキサを構成するFETのVds
が1.5Vとなって飽和領域で動作しており、二重平衡
差動増幅器に比べ縦積み段数が1段少なくなり、低電圧
で動作する事ができる。
As described above, according to this embodiment, Vds of the FET that constitutes the constant current source and the Vds of the FET that constitutes the mixer.
Is 1.5 V and operates in the saturation region, the number of vertically stacked stages is one less than that of the double balanced differential amplifier, and it is possible to operate at a low voltage.

【0018】またFETのドレーン・ソース間のインピ
ーダンスが約1.5Vで10Ω程度から500Ω程度ま
で変わる事により、電源電圧と接地間の電位で変換利得
を制御する事ができる。
Further, since the impedance between the drain and source of the FET changes from about 10Ω to about 500Ω at about 1.5V, the conversion gain can be controlled by the potential between the power supply voltage and the ground.

【0019】なおDCバイアス、FETのゲート幅、信
号周波数は各回路構成によりさまざまであり、本実施例
に限定するものではない。また定電流源にはさまざまの
ものがあり本実施例に限定するものではない。また12
の抵抗は利得制御電源からFET9に大電流が流れる事
によりバイアスの変動、FET9の破壊等の不都合が生
じないよう挿入したが、そのような電圧印加がなければ
特に必要ではない。
The DC bias, the gate width of the FET, and the signal frequency vary depending on each circuit configuration, and are not limited to this embodiment. There are various constant current sources, and the present invention is not limited to this embodiment. Again 12
The resistor was inserted so that a large current flows from the gain control power source to the FET 9 so as not to cause inconveniences such as fluctuations in bias and destruction of the FET 9, but it is not necessary unless such a voltage is applied.

【0020】[0020]

【発明の効果】以上のように、本発明は二重平衡差動増
幅器に比べ、FETの縦積み段数を1段減らすことが出
来るので低電圧動作が可能であり、インピーダンス可変
素子としてFETを用いているため、バイポーラトラン
ジスタでは困難なインピーダンス変化量の大きなインピ
ーダンス可変素子を同じプロセスで形成することが出来
る。
As described above, according to the present invention, the number of vertically stacked FETs can be reduced by one as compared with the double balanced differential amplifier, so that low voltage operation is possible, and FETs are used as variable impedance elements. Therefore, it is possible to form an impedance variable element having a large amount of impedance change, which is difficult with a bipolar transistor, in the same process.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における半導体装置の回路図FIG. 1 is a circuit diagram of a semiconductor device according to an embodiment of the present invention.

【図2】同実施例における動作説明のための変換利得制
御特性図
FIG. 2 is a conversion gain control characteristic diagram for explaining the operation in the embodiment.

【図3】従来の半導体装置の回路図FIG. 3 is a circuit diagram of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

1〜11 FET 12 抵抗 101〜102 IF信号出力端子 103〜104 ローカル信号入力端子 105〜106 RF信号入力端子 107 利得制御端子 1-11 FET 12 resistance 101-102 IF signal output terminal 103-104 local signal input terminal 105-106 RF signal input terminal 107 gain control terminal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】9個のFETと2個の定電流源とを具備
し、第1のFETのドレーンと第2のFETのドレーン
と第7のFETのドレーンと第8のFETのドレーンを
第1の信号端子とし、第3のFETのドレーンと第4の
FETのドレーンと第5のFETのドレーンと第6のF
ETのドレーンを第2の信号端子とし、第2のFETの
ゲートと第3のFETのゲートを第3の信号端子とし、
第6のFETのゲートと第7のFETのゲートを第4の
信号端子とし、第1のFETのゲートと第5のFETの
ゲートを第5の信号端子とし、第4のFETのゲートと
第8のFETのゲートを第6の信号端子とし、第1のF
ETのソースと第2のFETのソースと第3のFETの
ソースと第4のFETのソースと第9のFETのドレー
ンを第1の定電流源に接続し、第5のFETのソースと
第6のFETのソースと第7のFETのソースと第8の
FETのソースと第9のFETのソースを第2の定電流
源に接続し、第3の信号端子と第4の信号端子間に第1
の周波数の信号を入力し、第5の信号端子と第6の信号
端子間に第2の周波数の信号を入力し、第1の信号端子
と第2の信号端子間に前記第1の周波数と第2の周波数
との混合周波数である第3の信号周波数を出力し、第9
のFETのゲート電圧によって変換利得を変化させ9個
のFETと2個の定電流源とを具備し、第1のFETの
ドレーンと第2のFETのドレーンと第7のFETのド
レーンと第8のFETのドレーンを第1の信号端子と
し、第3のFETのドレーンと第4のFETのドレーン
と第5のFETのドレーンと第6のFETのドレーンを
第2の信号端子とし、第2のFETのゲートと第3のF
ETのゲートを第3の信号端子とし、第6のFETのゲ
ートと第7のFETのゲートを第4の信号端子とし、第
1のFETのゲートと第5のFETのゲートを第5の信
号端子とし、第4のFETのゲートと第8のFETのゲ
ートを第6の信号端子とし、第1のFETのソースと第
2のFETのソースと第3のFETのソースと第4のF
ETのソースと第9のFETのドレーンを第1の定電流
源に接続し、第5のFETのソースと第6のFETのソ
ースと第7のFETのソースと第8のFETのソースと
第9のFETのソースを第2の定電流源に接続し、第3
の信号端子と第4の信号端子間に第1の周波数の信号を
入力し、第5の信号端子と第6の信号端子間に第2の周
波数の信号を入力し、第1の信号端子と第2の信号端子
間に前記第1の周波数と第2の周波数との混合周波数で
ある第3の信号周波数を出力し、第9のFETのゲート
電圧によって変換利得を変化させることを特徴とする半
導体装置。
1. A FET comprising nine FETs and two constant current sources, the drain of the first FET, the drain of the second FET, the drain of the seventh FET, and the drain of the eighth FET. The signal terminal of 1, the drain of the third FET, the drain of the fourth FET, the drain of the fifth FET and the sixth F
The drain of ET serves as the second signal terminal, the gate of the second FET and the gate of the third FET serve as the third signal terminal,
The gate of the sixth FET and the gate of the seventh FET are used as the fourth signal terminal, the gate of the first FET and the gate of the fifth FET are used as the fifth signal terminal, and the gate of the fourth FET and the gate of the fourth FET are used. The gate of the 8th FET is used as the 6th signal terminal, and the 1st F
The source of ET, the source of the second FET, the source of the third FET, the source of the fourth FET, and the drain of the ninth FET are connected to the first constant current source, and the source of the fifth FET and the source of the fifth FET are connected. The source of the 6th FET, the source of the 7th FET, the source of the 8th FET, and the source of the 9th FET are connected to the 2nd constant current source, and between the 3rd signal terminal and the 4th signal terminal. First
A signal of the frequency is input, a signal of the second frequency is input between the fifth signal terminal and the sixth signal terminal, and the first frequency is input between the first signal terminal and the second signal terminal. Outputting a third signal frequency, which is a mixed frequency with the second frequency,
9 FETs and 2 constant current sources are provided to change the conversion gain according to the gate voltage of the FETs of the first FET, the drain of the first FET, the drain of the second FET, the drain of the seventh FET, and the eighth FET. Drain of the third FET, the drain of the fourth FET, the drain of the fifth FET, the drain of the sixth FET as the second signal terminal, and the drain of the second signal terminal of the second FET FET gate and third F
The gate of ET serves as the third signal terminal, the gate of the sixth FET and the gate of the seventh FET serve as the fourth signal terminal, and the gate of the first FET and the gate of the fifth FET serve as the fifth signal. As a terminal, the gate of the fourth FET and the gate of the eighth FET as a sixth signal terminal, the source of the first FET, the source of the second FET, the source of the third FET, and the fourth F
The source of ET and the drain of the ninth FET are connected to the first constant current source, the source of the fifth FET, the source of the sixth FET, the source of the seventh FET, the source of the eighth FET, and the source of the eighth FET. The source of FET 9 is connected to the second constant current source, and the third
The signal of the first frequency is input between the signal terminal and the fourth signal terminal, and the signal of the second frequency is input between the fifth signal terminal and the sixth signal terminal. A third signal frequency, which is a mixed frequency of the first frequency and the second frequency, is output between the second signal terminals, and the conversion gain is changed by the gate voltage of the ninth FET. Semiconductor device.
JP4147170A 1992-06-08 1992-06-08 Semiconductor device Pending JPH05343923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4147170A JPH05343923A (en) 1992-06-08 1992-06-08 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4147170A JPH05343923A (en) 1992-06-08 1992-06-08 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH05343923A true JPH05343923A (en) 1993-12-24

Family

ID=15424170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4147170A Pending JPH05343923A (en) 1992-06-08 1992-06-08 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH05343923A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013255255A (en) * 2008-03-20 2013-12-19 Qualcomm Inc Reduced power-consumption receivers
JP2020515156A (en) * 2017-03-20 2020-05-21 ブルー ダニューブ システムズ, インク.Blue Danube Systems, Inc. High precision high frequency phase adder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013255255A (en) * 2008-03-20 2013-12-19 Qualcomm Inc Reduced power-consumption receivers
JP2020515156A (en) * 2017-03-20 2020-05-21 ブルー ダニューブ システムズ, インク.Blue Danube Systems, Inc. High precision high frequency phase adder
US11962273B2 (en) 2017-03-20 2024-04-16 Nec Advanced Networks, Inc. Precision high frequency phase adders

Similar Documents

Publication Publication Date Title
US5884154A (en) Low noise mixer circuit having passive inductor elements
EP0557032A2 (en) Class D amplifier
US7308244B2 (en) Low voltage mixer
US7589579B2 (en) Mixer circuit
US5920810A (en) Multiplier and method for mixing signals
US20030155980A1 (en) Semiconductor device including semiconductor element of high breakdown voltage
EP0221632B1 (en) Multifunction floating fet circuit
US4727597A (en) Mixer arrangement
EP1119100B1 (en) Amplifiers
US5175885A (en) CRT update wideband double balanced mixer
JP3339892B2 (en) Integrated circuit and method of using same
US5963858A (en) Method and apparatus for mixing signals
US5889432A (en) Two-stage differential microwave amplifier with bias current sharing and automatic gain control
US6531920B1 (en) Differential amplifier circuit
US6744308B1 (en) System and method for establishing the input impedance of an amplifier in a stacked configuration
US7109795B2 (en) Amplifier-mixer device
JPH07254821A (en) Frequency converter
JPH05343923A (en) Semiconductor device
JPH06204751A (en) Frequency converter
US7746151B2 (en) Variable gain mixer
EP1067677B1 (en) Radio frequency amplifier
JPH0586684B2 (en)
KR100554569B1 (en) Mixer Circuit having Improved Linearity and Noise Figure
JPH03120902A (en) Semiconductor device and mixer circuit
CA2323023A1 (en) Double balanced mixer