JPH0534349A - Detecting method of food-poisoning bacteria and sensor using the same - Google Patents

Detecting method of food-poisoning bacteria and sensor using the same

Info

Publication number
JPH0534349A
JPH0534349A JP18910591A JP18910591A JPH0534349A JP H0534349 A JPH0534349 A JP H0534349A JP 18910591 A JP18910591 A JP 18910591A JP 18910591 A JP18910591 A JP 18910591A JP H0534349 A JPH0534349 A JP H0534349A
Authority
JP
Japan
Prior art keywords
food
acoustic wave
surface acoustic
sensor
food poisoning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP18910591A
Other languages
Japanese (ja)
Inventor
Takeshi Koyano
武 小谷野
Minoru Saito
稔 斎藤
Hiroo Miyamoto
裕生 宮本
Katsuaki Umibe
勝晶 海部
Masakazu Kato
雅一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP18910591A priority Critical patent/JPH0534349A/en
Publication of JPH0534349A publication Critical patent/JPH0534349A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To detect a food-poisoning bacteria in a food constituent simply and quickly by bringing the food constituent into contact with a surface acoustic wave element on which an anti-food-poisoning bacteria antibody is stuck and by measuring a change in a frequency before and after the contact. CONSTITUTION:A surface acoustic wave oscillator 17 having transducers 13 and 15 provided on a crystal plate 11 of ST cut is covered with polystyrene and an anti-food-poisoning-bacteria antibody 19 is stuck between the two transducers 13 and 15, whereby a sensor 21 is prepared. This sensor 21 is connected with amplifiers 23 and 25 and a frequency counter provided between them. A food constituent is brought into contact with the sensor 21, and based on a change in a frequency before and after the contact, a food-poisoning bacteria in the food constituent is detected. The sensor 21 is subjected to washing in three times by a phosphoric acid buffer and protection of a nonspecific adsorption site by calf serum albumin, so as to prevent fluctuation in the frequency due to a cause other than combination of the food-poisoning bacteria.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、食中毒性細菌の検出
方法及びこれに用いて好適なセンサに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting food poisoning bacteria and a sensor suitable for use in this method.

【0002】[0002]

【従来の技術】食中毒には、細菌性食中毒と化学性食中
毒とがある。細菌性食中毒はさらに感染型(例えば腸炎
ビブリオ症、サルモネラ症など)と毒素型(例えばブド
ウ球菌の産生毒による中毒、ボツリヌス症など)とに分
類される。汚染食物中に毒素がすでに多量に産生されて
いる毒素型の細菌性食中毒は、発病に要する時間が短い
という性質をもっている。
2. Description of the Related Art Food poisoning includes bacterial food poisoning and chemical food poisoning. Bacterial food poisoning is further classified into an infectious type (for example, Vibrio parahaemolyticus, Salmonella, etc.) and a toxin type (for example, poisoning due to staphylococcal venom, botulism, etc.). Toxin-type bacterial food poisoning, in which toxins are already produced in large amounts in contaminated foods, has the property that the time required for onset of disease is short.

【0003】細菌性食中毒は、感染型、毒素型にかかわ
らず、特に生活環境が悪く衛生観念が低い地域で多くの
犠牲者を出している。このような地域では、食物が細菌
で汚染される機会が極めて高く、さらに、慢性的な食料
不足から細菌で汚染された食物や腐敗している食物を口
にすることが日常茶飯事であるためである。
[0003] Bacterial food poisoning, regardless of infection type or toxin type, causes a large number of victims, especially in areas where the living environment is poor and the idea of hygiene is low. In such areas, the chances of food being contaminated with bacteria are extremely high, and it is common practice to eat food that is contaminated with bacteria or is spoiled due to chronic food shortage. is there.

【0004】細菌性食中毒の発生を防止するには、食物
中に食中毒の原因となる食中毒性細菌が存在するか否か
を簡便かつ迅速に検出することが有効である。
In order to prevent the occurrence of bacterial food poisoning, it is effective to simply and quickly detect whether food poisoning bacteria causing food poisoning are present in food.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、現在の
ところ食中毒性細菌を簡便かつ迅速に検出できる好適な
方法は、この出願に係る発明者の知る限りなかった。
However, at the present time, the inventors of the present application did not know of any suitable method for easily and quickly detecting food-toxic bacteria.

【0006】この発明はこのような点に鑑みなされたも
のであり、したがってこの発明の目的は食中毒性細菌を
簡便かつ迅速に検出できる方法とこれに用いて好適なセ
ンサとを提供することにある。
The present invention has been made in view of the above points, and therefore an object of the present invention is to provide a method capable of simply and rapidly detecting food poisoning bacteria and a sensor suitable for use in the method. .

【0007】[0007]

【課題を解決するための手段】この目的の達成を図るた
め、この出願に係る発明者は種々の検討を重ねた。その
結果、表面弾性波発振器、表面弾性波フィルタ等の表面
弾性波素子の発振周波数、共振周波数がこの表面弾性波
素子に付着する物質量に比例して減少することに着目し
た。そして、この技術にさらに抗原−抗体反応を導入す
ることにより上記目的の達成が可能であることを見出し
この発明を完成するに至った。
In order to achieve this object, the inventor of this application has made various studies. As a result, we paid attention to the fact that the oscillation frequency and resonance frequency of surface acoustic wave elements such as surface acoustic wave oscillators and surface acoustic wave filters decrease in proportion to the amount of substances adhering to the surface acoustic wave elements. Then, they have found that the above object can be achieved by further introducing an antigen-antibody reaction into this technique, and completed the present invention.

【0008】したがって、この出願の第一発明によれ
ば、食中毒性細菌の有無を検出するに当り、表面弾性波
素子に抗食中毒性細菌抗体を付着させ、該抗体付着済み
の表面弾性波素子に食物成分を接触させ、該接触の前後
での前記表面弾性波素子の周波数変化から前記食物成分
中の食中毒性細菌を検出することを特徴とする。
Therefore, according to the first invention of this application, in detecting the presence or absence of food poisoning bacteria, an anti-food poisoning bacterial antibody is attached to the surface acoustic wave element, and the surface acoustic wave element to which the antibody has been attached is attached. It is characterized in that a food component is contacted, and food poisoning bacteria in the food component are detected from the frequency change of the surface acoustic wave device before and after the contact.

【0009】ここで、表面弾性波素子に抗食中毒性細菌
抗体を付着させの付着とは、当該抗体付着済みの表面弾
性波素子を食物成分に接触させた際に当該抗体が表面弾
性波素子から離脱することがない程度のものであること
を前提として、形態は問わない。物理的に付着する場合
化学的に付着する場合のいずれであっても良いと考え
る。後述の実施例では、当該抗体を含有する液体に表面
弾性波素子を数時間接触させることにより当該抗体を表
面弾性波素子に吸着させている。
Here, the attachment of the anti-food poisoning bacterial antibody attached to the surface acoustic wave element means that the antibody is removed from the surface acoustic wave element when the surface acoustic wave element with the antibody attached thereto is brought into contact with a food component. The form does not matter as long as it does not come off. It may be either physically attached or chemically attached. In Examples described later, the surface acoustic wave device is brought into contact with a liquid containing the antibody for several hours to adsorb the antibody to the surface acoustic wave device.

【0010】また、抗食中毒性細菌抗体付着済みの表面
弾性波素子に食物成分を接触させの接触とは、表面弾性
波素子に付着させた抗食中毒性細菌抗体に食物成分(具
体的には食物成分中の細菌)を有効に接触させることが
できれば手段は問わない。後述の実施例では、抗食中毒
性細菌抗体付着済みの表面弾性波素子を、細菌培養液に
数分間接触させることにより行っている。
Further, the contact of contacting the food component with the surface acoustic wave element to which the anti-food poisoning bacterial antibody has been adhered means that the anti-food poisoning bacterial antibody adhered to the surface acoustic wave element has a food component (specifically, a food ingredient). Any means can be used as long as it can effectively contact the bacteria in the components. In the examples described later, the surface acoustic wave device to which the anti-food poisoning bacterial antibody has been attached is brought into contact with the bacterial culture for several minutes.

【0011】また、食物成分とは、抗原としての食中毒
性細菌を抗食中毒性細菌抗体と反応し易い状態としてあ
るものを意味する。具体的には、例えば食物を食中毒性
細菌の培養液やバッファに溶解させた溶液などを挙げる
ことができる。
The term "food component" means that food poisoning bacteria as an antigen are in a state of easily reacting with an anti-food poisoning bacterial antibody. Specifically, for example, a solution obtained by dissolving food in a culture solution or buffer of food-toxic bacteria can be mentioned.

【0012】なお、この第一発明の実施に当たり、前述
の表面弾性波素子をポリスチレンによって被覆しその後
に該ポリスチレン被覆済みの表面弾性波素子に抗食中毒
性細菌抗体を付着させるのが好適である。ポリスチレン
はタンパク質が付着し易いため、抗食中毒性細菌抗体の
表面弾性波素子への付着を容易とするからである。
In carrying out the first invention, it is preferable that the surface acoustic wave element is coated with polystyrene and then the anti-food poisoning bacterial antibody is attached to the polystyrene-coated surface acoustic wave element. This is because the protein is easily attached to polystyrene, which facilitates the attachment of the anti-food poisoning bacterial antibody to the surface acoustic wave device.

【0013】また、この出願の第二発明の食中毒性細菌
検出用センサは、表面弾性波素子をポリスチレンによっ
て被覆し該ポリスチレンに抗食中毒性細菌抗体を付着さ
せて成ることを特徴とする。
The sensor for detecting food poisoning bacteria of the second invention of this application is characterized in that the surface acoustic wave element is coated with polystyrene and anti-food poisoning bacterial antibody is attached to the polystyrene.

【0014】[0014]

【作用】この出願の第一発明の食中毒性細菌の検出方法
によれば、抗食中毒性細菌抗体付着済みの表面弾性波素
子に食物成分を付着させた際に、該食物成分中に食中毒
性細菌が含まれている場合はこの細菌が表面弾性波素子
の抗体に特異的に結合し表面弾性波素子の発振周波数ま
たは共振周波数が低下する。食物成分中に食中毒性細菌
が含まれていない場合は上記周波数低下は起こらない。
このような周波数変化の違いを利用して食物成分中の食
中毒性細菌の有無の検出ができる。
According to the method for detecting food poisoning bacteria of the first invention of the present application, when a food component is attached to the surface acoustic wave device to which the anti-food poisoning bacterial antibody has been attached, the food poisoning bacteria are contained in the food component. If the bacterium is included, the bacterium specifically binds to the antibody of the surface acoustic wave element, and the oscillation frequency or resonance frequency of the surface acoustic wave element decreases. The above frequency reduction does not occur when food poisoning bacteria are not contained in the food ingredients.
It is possible to detect the presence or absence of food poisoning bacteria in food components by utilizing such a difference in frequency change.

【0015】また、この出願の第二発明の食中毒性細菌
の検出用センサ(以下、単に「センサ」と称することも
ある。)によれば第一発明の実施を容易にする。
Further, the sensor for detecting food poisoning bacteria of the second invention of the present application (hereinafter sometimes simply referred to as "sensor") facilitates the implementation of the first invention.

【0016】[0016]

【実施例】以下、図面を参照してこの出願の食中毒性細
菌の検出方法及びこれに用いるセンサの実施例について
併せて説明する。ここで、図1は実施例のセンサの構成
及び測定系の説明に供する図、図2は実施例のセンサの
作製方法の説明に供する図、図3及び図4は実施例のセ
ンサの特性説明に供する図である。
EXAMPLES Examples of the food poisoning bacteria detection method of the present application and sensors used therefor will be described below with reference to the drawings. Here, FIG. 1 is a diagram for explaining the configuration of the sensor of the example and the measurement system, FIG. 2 is a diagram for explaining a method of manufacturing the sensor of the example, and FIGS. 3 and 4 are characteristics of the sensor of the example. FIG.

【0017】1.抗体の作製 抗食中毒性細菌抗体をこの実施例では次のような免役法
により作製した。なお、この免役法については、文献
(「バイオテクノロジー実験マニュアル」(198
7)、三共出版)に詳しい。
1. Preparation of Antibodies Anti-food poisoning bacterial antibodies were prepared in this example by the following immunization method. Regarding the immunization law, refer to the literature ("Biotechnology Experiment Manual" (198
7), Sankyo Publishing).

【0018】抗体の作製に用いた抗原は、この実施例の
場合、感染型食中毒性細菌抗原の一種であるサルモネラ
抗原(フナコシ薬品社製。型番49−0634−02)
及び毒素性食中毒性細菌抗原の一種であるブドウ球菌抗
原(フナコシ薬品社製。型番49−0636−41)で
ある。
In the case of this example, the antigen used for preparing the antibody was Salmonella antigen (manufactured by Funakoshi Pharmaceutical Co., Ltd., model number 49-0634-02), which is a kind of infectious food poisoning bacterial antigen.
And a staphylococcal antigen (manufactured by Funakoshi Pharmaceutical Co., Ltd., model number 49-0636-41), which is a kind of toxic food poisoning bacterial antigen.

【0019】抗原(例えばサルモネラ抗原)5mgと仔
牛血清アルブミン(sigma社製)1.7mgとをp
H7.3のリン酸バッファ1mlに溶解させる。なお、
このリン酸バッファは、Na2 HPO4 を0.29%、
NaClを0.08%、KH2 PO4 を0.02%及び
KClを0.02%含むものとしている。なお、含有率
の表示は重量%である(以下、この実施例において同
じ。)。
5 mg of the antigen (for example, Salmonella antigen) and 1.7 mg of fetal bovine serum albumin (manufactured by Sigma) were added.
Dissolve in 1 ml of H7.3 phosphate buffer. In addition,
This phosphate buffer contains 0.29% Na 2 HPO 4 ,
0.08% NaCl, 0.02% KH 2 PO 4 and 0.02% KCl. The indication of the content is% by weight (hereinafter the same in this example).

【0020】次に、抗原及び仔牛血清アルブミンを溶解
させた上記リン酸バッファに20%のグルタールアルデ
ヒド水溶液を10μl添加し抗原とグルタールアルデヒ
ドとを24時間反応させる。グルタールアルデヒドは関
東化学社製を用いた。
Next, 10 μl of a 20% glutaraldehyde aqueous solution is added to the phosphate buffer in which the antigen and bovine serum albumin are dissolved, and the antigen and glutaraldehyde are reacted for 24 hours. Glutaraldehyde used was manufactured by Kanto Chemical Co., Inc.

【0021】次に、このリン酸バッファーから未反応の
グルタールアルデヒドを除くためにリン酸バッファによ
り4℃の温度で一晩透析する。さらに、pH8.0のト
リス緩衝液(0.3%−Trismabase,0.0
5%−HCl)により4℃の温度で一晩透析する。この
ようにして、接種用抗原を得た。
Then, in order to remove unreacted glutaraldehyde from the phosphate buffer, it is dialyzed against the phosphate buffer at a temperature of 4 ° C. overnight. Furthermore, pH 8.0 Tris buffer (0.3% -Trismbase, 0.0
Dialyze against 5% -HCl) at a temperature of 4 ° C overnight. In this way, the antigen for inoculation was obtained.

【0022】得られた接種用抗原をマウスに接種する。
このマウスからサルモネラ菌抗体を得た。
Mice are inoculated with the obtained inoculating antigen.
Salmonella antibody was obtained from this mouse.

【0023】抗原をブドウ球菌抗原として上述の手順と
同様な手順でマウスからブドウ球菌抗体を得た。
Staphylococcal antibodies were obtained from mice by the same procedure as above using the antigen as the staphylococcal antigen.

【0024】2.実施例のセンサの作製 表面弾性波素子として、この実施例では、図1に示すよ
うに、STカットの水晶板11上に第一のトランスデュ
ーサ13と第二のトランスデューサ15とを具えた公知
の表面弾性波発振器17であって発振周波数が10.3
MHzのものを用意した。なお、この場合の表面弾性波
発振器17は、大きさが1インチ×0.5インチ(1イ
ンチは約2.54cm。以下、同様。)で厚さが0.0
4インチのものである。
2. Preparation of Sensor of Example As a surface acoustic wave device, in this example, as shown in FIG. 1, a known surface having a first transducer 13 and a second transducer 15 on an ST-cut quartz plate 11 was used. The acoustic wave oscillator 17 has an oscillation frequency of 10.3
The thing of MHz was prepared. The surface acoustic wave oscillator 17 in this case has a size of 1 inch × 0.5 inch (1 inch is about 2.54 cm. The same applies hereinafter) and has a thickness of 0.0.
It is a 4-inch one.

【0025】次に、ポリスチレンを溶解させたアセトン
中に、上述の表面弾性波発振器17を浸漬する。次に、
この表面弾性波発振器17をポリスチレンのアセトン溶
液から引き出した後放置することにより溶媒であるアセ
トンを揮発させる。これにより、表面弾性波発振器17
表面はポリスチレン(図示せず)により被覆される。な
お、ポリスチレンの被覆量は、表面弾性波発振器17を
覆うことができかつ表面弾性波発振器17の特性を極端
に悪化させることがない程度の量とする。ポリスチレン
の被覆量は、ポリスチレンのアセトン溶液でのポリスチ
レン濃度や、この溶液から表面弾性波発振器17を引き
上げる速度等により調整可能である。
Next, the above-described surface acoustic wave oscillator 17 is immersed in acetone in which polystyrene is dissolved. next,
The surface acoustic wave oscillator 17 is pulled out from the acetone solution of polystyrene and then left to stand to volatilize the solvent acetone. As a result, the surface acoustic wave oscillator 17
The surface is coated with polystyrene (not shown). The polystyrene coating amount is such that the surface acoustic wave oscillator 17 can be covered and the characteristics of the surface acoustic wave oscillator 17 are not significantly deteriorated. The coating amount of polystyrene can be adjusted by the polystyrene concentration in an acetone solution of polystyrene, the speed of pulling up the surface acoustic wave oscillator 17 from this solution, and the like.

【0026】次に、ポリスチレンで被覆した表面弾性波
発振器17を図2に示す装置の台座31の凹部31aに
セットする。
Next, the surface acoustic wave oscillator 17 coated with polystyrene is set in the recess 31a of the pedestal 31 of the apparatus shown in FIG.

【0027】ここで、図2は、表面弾性波発振器17に
抗食中毒性細菌抗体を付着させるため及び抗食中毒性細
菌抗体を付着させた表面弾性波発振器17に食物成分を
接触させるために、この実施例で用意した装置の断面図
である。図2において、31は上述の台座、31aは上
述の凹部、33はO(オー)リング、35は台座31に
重ねて使用する上側ブロック、35aは上側ブロックに
設けられた試料液だめ用の開口部である。台座の所定位
置にはボルト37を通すための穴部31bが設けてあ
る。上側ブロック35の、前記穴部31bと対向する部
分にはボルト37のための雌ねじ部39を形成してあ
る。
Here, FIG. 2 shows that in order to attach the anti-food poisoning bacterial antibody to the surface acoustic wave oscillator 17 and to bring the food component into contact with the surface acoustic wave oscillator 17 having the anti-food poisoning bacterial antibody attached thereto. It is sectional drawing of the apparatus prepared in the Example. In FIG. 2, 31 is the above-mentioned pedestal, 31a is the above-mentioned recessed portion, 33 is an O (o-ring), 35 is an upper block that is used by being stacked on the pedestal 31, and 35a is an opening for storing a sample solution provided in the upper block It is a department. A hole 31b for inserting the bolt 37 is provided at a predetermined position of the pedestal. A female screw portion 39 for the bolt 37 is formed in a portion of the upper block 35 facing the hole portion 31b.

【0028】表面弾性波発振器17を台座31の凹部3
1aにセットした後Oリング33を介し上側ブロック3
5を台座31に重ね上側ブロック35及び台座31をボ
ルトにより固定する。このようにすると、表面弾性波発
振器17の、第一のトランスデューサ13と第二のトラ
ンスデューサ15との間の部分が、Oリング33の内側
に位置しかつ上側ブロック35の開口部35aと対向す
るようになる(図2の状態)。
The surface acoustic wave oscillator 17 is installed in the recess 3 of the pedestal 31.
After setting to 1a, the upper block 3 via the O-ring 33
5 is placed on the pedestal 31, and the upper block 35 and the pedestal 31 are fixed by bolts. With this configuration, the portion of the surface acoustic wave oscillator 17 between the first transducer 13 and the second transducer 15 is located inside the O-ring 33 and faces the opening 35 a of the upper block 35. (State of FIG. 2).

【0029】次に、表面弾性波発振器17がセットされ
ている状態の図2に示した装置の上側ブロック35の試
料液だめ用開口部35aに、上述の如く作製したサルモ
ネラ菌抗体とブドウ球菌抗体とを例えば等モルづつ溶解
させたリン酸バッファを、入れる。抗体を溶解させたリ
ン酸バッファは、Oリング33及び開口部35aで規定
される空間に溜るので、表面弾性波発振器17の、両ト
ランスデューサ13,15間の部分と接触する状態にな
る。そして、この状態の装置全体を4℃の温度に設定し
た冷蔵庫に一晩入れ、インキュベートを行なう。この処
理において、表面弾性波発振器17の、両トランスデュ
ーサ13,15間の部分に抗食中毒性細菌抗体を付着さ
せることができる。
Next, the salmonella antibody and staphylococcal antibody prepared as described above are placed in the sample solution reservoir opening 35a of the upper block 35 of the apparatus shown in FIG. 2 in the state where the surface acoustic wave oscillator 17 is set. Is added, for example, in a phosphate buffer in which equimolar amounts are dissolved. Since the phosphate buffer in which the antibody has been dissolved collects in the space defined by the O-ring 33 and the opening 35a, it comes into contact with the portion of the surface acoustic wave oscillator 17 between the transducers 13 and 15. Then, the entire apparatus in this state is placed in a refrigerator set at a temperature of 4 ° C. overnight and incubated. In this process, the anti-food poisoning bacterial antibody can be attached to the portion of the surface acoustic wave oscillator 17 between the transducers 13 and 15.

【0030】次に、表面弾性波発振器17をセットして
ある装置のボルト37をゆるめて台座31と上側ブロッ
ク35とを離し抗体を溶解させたリン酸バッファをこの
装置から流し出し除去する。その後、装置の試料液だめ
用の開口部35a及び表面弾性波発振器17をリン酸バ
ッファにより3回洗浄する。表面弾性波発振器17に不
安定に付着している抗食中毒性細菌抗体を除去するため
である。
Next, the bolt 37 of the device in which the surface acoustic wave oscillator 17 is set is loosened, the pedestal 31 and the upper block 35 are separated, and the phosphate buffer in which the antibody is dissolved is poured out from the device and removed. Then, the sample liquid reservoir opening 35a and the surface acoustic wave oscillator 17 of the apparatus are washed three times with a phosphate buffer. This is to remove the anti-food poisoning bacterial antibody that is unstablely attached to the surface acoustic wave oscillator 17.

【0031】次に、表面弾性波発振器17をセットして
ある装置のボルト37を再び締めて台座31と上側ブロ
ック35とをOリングを介し再び重ねる。そして、試料
液だめ用の開口部35aに、今度は、1%仔牛血清アル
ブミン−リン酸バッファ溶液を入れこの状態で室温で2
時間放置する。表面弾性波発振器17の抗食中毒性細菌
抗体が吸着しなかった領域(非特異吸着サイト)を仔牛
血清アルブミンで保護するためである。
Next, the bolts 37 of the device in which the surface acoustic wave oscillator 17 is set are tightened again, and the pedestal 31 and the upper block 35 are re-laid on each other via the O-ring. Then, 1% fetal bovine serum albumin-phosphate buffer solution was put into the opening 35a for storing the sample solution at room temperature under this condition.
Leave for hours. This is because the area of the surface acoustic wave oscillator 17 where the anti-food poisoning bacterial antibody is not adsorbed (non-specific adsorption site) is protected by calf serum albumin.

【0032】このようにして、ポリスチレンを被覆表面
弾性波発振器17に抗食中毒性細菌抗体19を付着させ
て成る実施例のセンサ21が得られる(図1参照)。勿
論、図1は、模式図であることは理解されたい。
In this way, the sensor 21 of the embodiment obtained by attaching the anti-food poisoning bacterial antibody 19 to the surface acoustic wave oscillator 17 coated with polystyrene is obtained (see FIG. 1). Of course, it should be understood that FIG. 1 is a schematic diagram.

【0033】なお、上述のリン酸バッファによる3回の
洗浄及び仔牛血清アルブミンによる非特異吸着サイトの
保護を行なっているので、実施例のセンサで食中毒性細
菌の結合以外の原因で周波数変動が生じるのを極力防止
できる。
Since the above-mentioned washing with the phosphate buffer was performed three times and the non-specific adsorption site was protected with bovine serum albumin, the sensor of the example causes frequency fluctuations due to causes other than the binding of food poisoning bacteria. Can be prevented as much as possible.

【0034】3.実施例のセンサの特性 次に、実施例のセンサのサルモネラ菌に対する発振周波
数変化及びブドウ球菌に対する発振周波数変化をそれぞ
れ以下のように測定した。
3. Characteristics of Sensor of Example Next, changes in the oscillation frequency of the sensor of the example with respect to Salmonella and Staphylococcus were measured as follows.

【0035】先ず、実施例のセンサ21を図1に示すよ
うに増幅器23,25と接続する。増幅器23,25間
に周波数カウンタ(図示せず)を接続し実施例のセンサ
の発振周波数を測定する。なお、この測定系は公知のも
のである。
First, the sensor 21 of the embodiment is connected to the amplifiers 23 and 25 as shown in FIG. A frequency counter (not shown) is connected between the amplifiers 23 and 25 to measure the oscillation frequency of the sensor of the embodiment. Note that this measurement system is known.

【0036】次に、実施例のセンサ21を先ずサルモネ
ラ菌の濃度を所定濃度としたバッファ液中に浸漬し浸漬
後10分経過後の発振周波数を測定し、この発振周波数
からセンサをバッファに浸漬する前の発振周波数を減じ
ることにより周波数変化量を求めた。バッファ中にセン
サを浸漬後10分経過後に発振周波数を測定したのは、
このような経過時間であると周波数が充分に安定したか
らである。
Next, the sensor 21 of the embodiment is first immersed in a buffer solution having a predetermined concentration of Salmonella, and the oscillation frequency is measured 10 minutes after the immersion, and the sensor is immersed in the buffer from this oscillation frequency. The amount of frequency change was obtained by subtracting the previous oscillation frequency. The oscillation frequency was measured 10 minutes after the sensor was immersed in the buffer.
This is because the frequency has become sufficiently stable at such an elapsed time.

【0037】サルモネラ菌の濃度を種々に変えた場合の
センサの発振周波数変化を上記手順と同様な手順でそれ
ぞれ求めた。
The change in the oscillation frequency of the sensor when the concentration of Salmonella was varied was determined by the same procedure as the above procedure.

【0038】図3は、センサを浸漬するバッファ中のサ
ルモネラ菌濃度(単位:mg/ml)を横軸にとり、セ
ンサの発振周波数変化(KHz)を縦軸にとって、両者
の関係をプロットした特性図である。
FIG. 3 is a characteristic diagram in which the concentration of Salmonella in the buffer in which the sensor is immersed (unit: mg / ml) is plotted on the horizontal axis, and the oscillation frequency change (KHz) of the sensor is plotted on the vertical axis, and the relationship between the two is plotted. is there.

【0039】また、センサのブドウ球菌濃度に対する周
波数変化の特性にいてもサルモネラ菌の場合同様に求め
る。図4にこの特性を示した。
Further, the characteristics of the frequency change with respect to the staphylococcal concentration of the sensor are similarly obtained in the case of Salmonella. This characteristic is shown in FIG.

【0040】図3及び図4から明らかなように、センサ
の発振周波数は、細菌濃度の増加に伴い特定の関係で減
少することが分かる。このことから、この発明の方法に
よれば、食中毒性細菌の検出が可能なことが分かる。
As is apparent from FIGS. 3 and 4, it is understood that the oscillation frequency of the sensor decreases in a specific relationship as the bacterial concentration increases. From this, it can be understood that the method of the present invention can detect food poisoning bacteria.

【0041】上述においてはサルモネラ菌、ブドウ球菌
を対象として実施例の説明を行っていたがこの出願に係
る各発明は他の食中毒性細菌の検出にも利用することが
出来る。
In the above description, the examples have been described for Salmonella and Staphylococcus, but the inventions of this application can also be used for the detection of other food-toxic bacteria.

【0042】また、上述の実施例では表面弾性波素子を
STカット水晶板を用いた表面弾性波発振器で構成して
いたが、他の材料で構成したものでも勿論良い。また、
表面弾性波フィルタに抗食中毒性細菌抗体を吸着させた
場合も実施例と同様な効果が期待できる。
Further, in the above-mentioned embodiment, the surface acoustic wave element is composed of the surface acoustic wave oscillator using the ST cut quartz plate, but it may be composed of other materials. Also,
When the surface acoustic wave filter is made to adsorb the anti-food poisoning bacterial antibody, the same effect as that of the embodiment can be expected.

【0043】また、上述の実施例では、抗食中毒性細菌
抗体を表面弾性波発振器17の、第一及び第二トランス
デューサ13、15間部分に付着させていたが、抗食中
毒性細菌抗体を付着させる領域はこれに限られず設計に
応じ変更できる。
Further, in the above embodiment, the anti-food poisoning bacterial antibody is attached to the surface acoustic wave oscillator 17 between the first and second transducers 13 and 15, but the anti-food poisoning bacterial antibody is attached. The area is not limited to this and can be changed according to the design.

【0044】[0044]

【発明の効果】上述した説明からも明らかなように、こ
の出願の第一発明の食中毒性細菌の検出方法によれば、
食中毒性細菌を簡便かつ迅速に検出することが出来る。
As is apparent from the above description, according to the method for detecting food poisoning bacteria of the first invention of this application,
Food poisoning bacteria can be detected easily and quickly.

【0045】また、この出願の第二発明の花粉センサに
よれば、これを食物成分を溶解させたバッファに浸漬し
周波数変化を測定するのみで食物成分中の食中毒性細菌
の有無を検出できるので、第一発明の食中毒性細菌の検
出方法を容易に実施することが出来る。
Further, according to the pollen sensor of the second invention of this application, the presence or absence of food-toxic bacteria in the food component can be detected only by immersing the pollen sensor in the buffer in which the food component is dissolved and measuring the frequency change. The method for detecting food poisoning bacteria of the first invention can be easily carried out.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例のセンサ及び測定系の説明に供する図で
ある。
FIG. 1 is a diagram for explaining a sensor and a measurement system of an example.

【図2】実施例のセンサの作製方法の説明に供する図で
ある。
FIG. 2 is a diagram for explaining a method of manufacturing the sensor according to the example.

【図3】実施例のセンサでの、サルモネラ菌に対する発
振周波数変化の特性を示した図である。
FIG. 3 is a view showing characteristics of oscillation frequency change with respect to Salmonella, in the sensor of the example.

【図4】実施例のセンサでの、ブドウ球菌に対する発振
周波数変化の特性を示した図である。
FIG. 4 is a graph showing characteristics of oscillation frequency change with respect to staphylococci in the sensor of the example.

【符号の説明】[Explanation of symbols]

11:STカットの水晶板 13:第一のトランスデューサ 15:第二のトランスデューサ 17:表面弾性波発振器 19:抗食中毒性細菌抗体 21:実施例のセンサ 23,25:増幅器 31:台座 31a:凹部 33:O(オー)リング 35:上側ブロック 35a:試料液だめ用開口部 37:ボルト 39:雌ねじ部 11: ST-cut crystal plate 13: First transducer 15: Second transducer 17: Surface acoustic wave oscillator 19: Anti-food poisoning bacterial antibody 21: Sensor of Example 23, 25: Amplifier 31: Pedestal 31a: concave portion 33: O-ring 35: Upper block 35a: sample liquid reservoir opening 37: Bolt 39: Female thread

フロントページの続き (72)発明者 海部 勝晶 東京都港区虎ノ門1丁目7番12号 沖電気 工業株式会社内 (72)発明者 加藤 雅一 東京都港区虎ノ門1丁目7番12号 沖電気 工業株式会社内Continued front page    (72) Inventor Masaaki Kaifu             1-7-12 Toranomon, Minato-ku, Tokyo Oki Electric             Industry Co., Ltd. (72) Inventor Masakazu Kato             1-7-12 Toranomon, Minato-ku, Tokyo Oki Electric             Industry Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 食中毒性細菌の有無を検出するに当り、 表面弾性波素子に抗食中毒性細菌抗体を付着させ、 該抗体付着済みの表面弾性波素子に食物成分を接触さ
せ、 該接触の前後での前記表面弾性波素子の周波数変化から
前記食物成分中の食中毒性細菌を検出することを特徴と
する食中毒性細菌の検出方法。
1. When detecting the presence or absence of food poisoning bacteria, an anti-food poisoning bacterial antibody is attached to a surface acoustic wave element, and a food component is brought into contact with the surface acoustic wave element to which the antibody has been attached, and before and after the contact. A method for detecting food poisoning bacteria, which comprises detecting food poisoning bacteria in the food component from the frequency change of the surface acoustic wave device in step 1.
【請求項2】 請求項1に記載の食中毒性細菌の検出方
法において、 前記表面弾性波素子をポリスチレンによって被覆し、該
ポリスチレン被覆済みの表面弾性波素子に前記抗食中毒
性細菌抗体を付着させることを特徴とする食中毒性細菌
の検出方法。
2. The method for detecting food poisoning bacteria according to claim 1, wherein the surface acoustic wave element is coated with polystyrene, and the anti-food poisoning bacterial antibody is attached to the polystyrene-coated surface acoustic wave element. A method for detecting food poisoning bacteria characterized by:
【請求項3】 表面弾性波素子をポリスチレンによって
被覆し該ポリスチレンに抗食中毒性細菌抗体を付着させ
て成ることを特徴とする食中毒性細菌検出用センサ。
3. A sensor for detecting food poisoning bacteria, characterized in that the surface acoustic wave device is coated with polystyrene and an anti-food poisoning bacteria antibody is attached to the polystyrene.
JP18910591A 1991-07-30 1991-07-30 Detecting method of food-poisoning bacteria and sensor using the same Withdrawn JPH0534349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18910591A JPH0534349A (en) 1991-07-30 1991-07-30 Detecting method of food-poisoning bacteria and sensor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18910591A JPH0534349A (en) 1991-07-30 1991-07-30 Detecting method of food-poisoning bacteria and sensor using the same

Publications (1)

Publication Number Publication Date
JPH0534349A true JPH0534349A (en) 1993-02-09

Family

ID=16235451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18910591A Withdrawn JPH0534349A (en) 1991-07-30 1991-07-30 Detecting method of food-poisoning bacteria and sensor using the same

Country Status (1)

Country Link
JP (1) JPH0534349A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004506194A (en) * 2000-08-08 2004-02-26 スミスクライン ビーチャム パブリック リミテッド カンパニー Quartz crystal microbalance
WO2005066637A1 (en) * 2003-12-30 2005-07-21 3M Innovative Properties Company Staphylococcus detection
US7153532B1 (en) 1998-08-28 2006-12-26 Johnson Matthey Public Limited Company Sensing gaseous substances using metal complexes
JP2007518073A (en) * 2003-12-30 2007-07-05 スリーエム イノベイティブ プロパティズ カンパニー Acoustic sensor and method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7153532B1 (en) 1998-08-28 2006-12-26 Johnson Matthey Public Limited Company Sensing gaseous substances using metal complexes
JP2004506194A (en) * 2000-08-08 2004-02-26 スミスクライン ビーチャム パブリック リミテッド カンパニー Quartz crystal microbalance
JP4794112B2 (en) * 2000-08-08 2011-10-19 アレル・スウイツツアーランド・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Quartz crystal microbalance
WO2005066637A1 (en) * 2003-12-30 2005-07-21 3M Innovative Properties Company Staphylococcus detection
JP2007518073A (en) * 2003-12-30 2007-07-05 スリーエム イノベイティブ プロパティズ カンパニー Acoustic sensor and method
US7399609B2 (en) 2003-12-30 2008-07-15 3M Innovative Properties Company Staphylococcus detection
JP4927562B2 (en) * 2003-12-30 2012-05-09 スリーエム イノベイティブ プロパティズ カンパニー Acoustic sensor and method

Similar Documents

Publication Publication Date Title
US4236893A (en) Method for the assay of classes of antigen-specific antibodies
Gehring et al. Enzyme-linked immunomagnetic electrochemical detection of Salmonella typhimurium
EP0295965B1 (en) Oscillator-based methods of detecting a member of a specific binding pair
CA1231304A (en) Ultrasonic enhanced immuno-reactions
US5501986A (en) Piezoelectric specific binding assay with mass amplified reagents
US7811831B2 (en) Systems and methods for molecular recognition
Kurosawa et al. Evaluation of a high-affinity QCM immunosensor using antibody fragmentation and 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer
Ruan et al. A staphylococcal enterotoxin B magnetoelastic immunosensor
US20070054341A1 (en) Immunoassay and reagents and kits for performing the same
Muramatsu et al. Piezoelectric crystal biosensor system for detection of Escherichia coli
DE69306804D1 (en) IMMUNOLOGICAL TEST FOR SOLID PHASE
EP1034430B1 (en) Sensor for detecting biological target complexes
Rajaković et al. Adsorption on film-free and antibody-coated piezoelectric sensors
Bovenizer et al. The detection of Pseudomonas aeruginosa using the quartz crystal microbalance
CA2113383C (en) Immunometric determination of an antigen or hapten
Bahk et al. A new concept for efficient sensitivity amplification of a QCM based immunosensor for TNF-α by using modified magnetic particles under applied magnetic field
JPH0534349A (en) Detecting method of food-poisoning bacteria and sensor using the same
JP3018364B2 (en) Use of divalent cations in immunochemical assays
WO1989009938A1 (en) Piezoelectric specific binding assay with mass amplified reagents
US20040235195A1 (en) Methods for measuring and diagnosing endotoxin, sensor therefor, and method for producing and reusing the sensor
Stubbs et al. Vapor phase detection of a narcotic using surface acoustic wave immunoassay sensors
RU2234704C2 (en) Antibody analysis
Tat'yana et al. Piezoelectric immunosensors: analytical potentials and outlooks
JPS6264934A (en) Quarts oscillator biosensor
AU762659B2 (en) Process for the specific detection of glycosylated proteins

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981008