JPH0534193Y2 - - Google Patents

Info

Publication number
JPH0534193Y2
JPH0534193Y2 JP16877588U JP16877588U JPH0534193Y2 JP H0534193 Y2 JPH0534193 Y2 JP H0534193Y2 JP 16877588 U JP16877588 U JP 16877588U JP 16877588 U JP16877588 U JP 16877588U JP H0534193 Y2 JPH0534193 Y2 JP H0534193Y2
Authority
JP
Japan
Prior art keywords
electrode
cylindrical electrode
cylindrical
thermal stress
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16877588U
Other languages
Japanese (ja)
Other versions
JPH0288424U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16877588U priority Critical patent/JPH0534193Y2/ja
Publication of JPH0288424U publication Critical patent/JPH0288424U/ja
Application granted granted Critical
Publication of JPH0534193Y2 publication Critical patent/JPH0534193Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cable Accessories (AREA)

Description

【考案の詳細な説明】 <産業上の利用分野> 本考案はケーブル接続部用絶縁成形体の改良に
関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to an improvement of an insulating molded body for a cable connection portion.

<従来の技術> 架橋ポリエチレン電力ケーブル等のプラスチツ
ク電力ケーブルを接続する場合、作業の簡易化の
ためのプレハブ工法として、第2図に示すよう
に、金具11′の両端に遮蔽リング12′,12′
を取り付けてなる電極1′を埋込んだエポキシ樹
脂製の絶縁筒体2′を電極内面の中央部において、
ケーブルの導体接続金具3′上に固定し、予め各
ケーブルに引き通しておいたそれぞれのストレス
コーン4′,4′を引戻して絶縁筒体2′の両端内
部のストレスコーン受容孔21′,21′にバネ部
材(図示せず)によつて圧縮し、絶縁筒形体2′
との各端と各ケーブルのシースとの間を外被接続
補助管(図示せず)によつて接合することが公知
である。
<Prior art> When connecting a plastic power cable such as a cross-linked polyethylene power cable, as a prefabricated construction method to simplify the work, as shown in FIG. ′
An insulating cylindrical body 2' made of epoxy resin in which an electrode 1' is embedded is placed in the center of the inner surface of the electrode,
The respective stress cones 4', 4' fixed on the conductor connection fittings 3' of the cables and passed through each cable in advance are pulled back to the stress cone receiving holes 21', 21 inside both ends of the insulating cylinder 2'. ' is compressed by a spring member (not shown), and the insulating cylindrical body 2' is compressed by a spring member (not shown).
It is known to make a connection between each end of the cable and the sheath of each cable by an auxiliary jacket connection tube (not shown).

<考案が解決しようとする課題> 電極を埋込んだ上記のような絶縁筒体において
は、エポキシ樹脂の加熱硬化時、エポキシ樹脂と
電極材料との熱膨張係数の差のために、電極とエ
ポキシ樹脂との接触界面に熱応力が発生し、この
熱応力が残留応力となり、ケーブル運転時、この
残留応力にケーブル、ヒートサイクルに基づく熱
応力が重畳するから、残留応力が過大な箇所では
界面剥離が発生し易い。
<Problem to be solved by the invention> In the above-mentioned insulating cylinder with embedded electrodes, when the epoxy resin is heated and cured, due to the difference in thermal expansion coefficient between the epoxy resin and the electrode material, the electrode and the epoxy resin Thermal stress is generated at the contact interface with the resin, and this thermal stress becomes residual stress. During cable operation, this residual stress is superimposed on the thermal stress due to the cable and heat cycle, so interface peeling occurs at locations where residual stress is excessive. is likely to occur.

而るに、第2図に示す絶縁筒体における電極と
エポキシ樹脂との界面のうち、遮蔽リングの先端
に接するエポキシ樹脂部分は電気ストレスが作用
する界面中、熱応力の分布が最も複雑な部位であ
るので、上記界面剥離による絶縁破壊の起点にな
り易い。
Of the interface between the electrode and the epoxy resin in the insulating cylinder shown in Figure 2, the epoxy resin part that contacts the tip of the shielding ring is the part where the distribution of thermal stress is the most complex among the interfaces where electrical stress acts. Therefore, it is easy to become the starting point of dielectric breakdown due to the above-mentioned interfacial peeling.

そこで、遮蔽リング先端での上記熱応力を緩和
することが望まれる。
Therefore, it is desirable to alleviate the thermal stress at the tip of the shielding ring.

而して、第2図に示す絶縁筒体において、遮蔽
リングの肉厚を充分に薄くし得れば、上記エポキ
シ樹脂の熱硬化時、遮蔽リング先端に作用する熱
応力で遮蔽リングを撓ませてその熱応力を遮蔽リ
ングの撓み変形で吸収させることが可能となる
が、同上絶縁筒体において遮蔽リングを薄くする
ことには、金具への遮蔽リングの取付け上、限度
があり、遮蔽リングの薄肉化による遮蔽リング先
端での熱応力の効果的な吸収は望めない(電極材
には、通常、銅が使用され、遮蔽リングの取付け
に溶接を使用する場合、遮蔽リングの厚みを開先
加工が可能なように、また、溶接箇所の遮蔽リン
グ厚みの全体が溶融しないようにかなり厚くする
必要がある。また、例えば、はんだ付けする場
合、遮蔽リングを薄くし得ても、取付け状態の安
定性を保障し難い)。
Therefore, in the insulating cylinder shown in Fig. 2, if the thickness of the shielding ring can be made sufficiently thin, the shielding ring will not be bent by the thermal stress acting on the tip of the shielding ring when the epoxy resin is thermally cured. However, there is a limit to making the shield ring thinner in the insulating cylinder as described above due to the attachment of the shield ring to the metal fittings. Effective absorption of thermal stress at the tip of the shield ring cannot be expected due to thinning of the wall (copper is normally used for the electrode material, and when welding is used to attach the shield ring, the thickness of the shield ring may be reduced by groove processing). In addition, it is necessary to make the shielding ring fairly thick so that the entire thickness of the shielding ring at the welding point does not melt.For example, when soldering, even if the shielding ring can be made thinner, it is difficult to maintain a stable installation condition. (difficult to guarantee gender).

本考案の目的は、上記の点に鑑み、電極端部で
の熱応力に起因する絶縁破壊をよく防止できるケ
ーブル接続部用絶縁成形体を提供することにあ
る。
In view of the above points, an object of the present invention is to provide an insulating molded body for a cable connection part that can effectively prevent dielectric breakdown caused by thermal stress at the end of an electrode.

<課題を解決するための手段> 本考案のケーブル接続部用絶縁成形体は、筒状
電極を筒状の樹脂成形物内に埋込んだ絶縁体にお
いて、上記筒状電極の内周面に同筒状電極の各端
部に隣接せる環状溝を加工して、この環状溝部分
を、前記絶縁体成形時に樹脂成形物と筒状電極と
の熱膨張差によつて発生する熱応力に対して撓み
うるように薄肉化したことを特徴とする構成であ
る。
<Means for Solving the Problems> The insulating molded body for a cable connection part of the present invention is an insulator in which a cylindrical electrode is embedded in a cylindrical resin molded body. An annular groove adjacent to each end of the cylindrical electrode is machined, and this annular groove portion is made to resist thermal stress generated due to the difference in thermal expansion between the resin molded product and the cylindrical electrode during molding of the insulator. This structure is characterized by a thin wall that allows it to bend.

<実施例の説明> 以下、図面により本考案を説明する。<Explanation of Examples> The present invention will be explained below with reference to the drawings.

第1図において、1は筒状電極であり、各端部
11,11は電気ストレスの緩和のために曲面に
加工してあり、内面の中央には突部12が設けて
ある。13,13は筒状電極の内周面に上記の各
端部に隣接して成形した環状溝であり、この環状
溝のために薄肉部131,131が存在してい
る。2はエポキシ樹脂成形物であり、電極1の外
周面、両端部を包囲し、かつ、環状溝13,13
内を充填している。21,21は成形物2の両端
内部に設けたストレスコーン受容孔である。
In FIG. 1, 1 is a cylindrical electrode, each end 11, 11 is processed into a curved surface to relieve electrical stress, and a protrusion 12 is provided at the center of the inner surface. Reference numerals 13 and 13 denote annular grooves formed on the inner circumferential surface of the cylindrical electrode adjacent to each of the ends, and thin portions 131 and 131 exist because of these annular grooves. 2 is an epoxy resin molded product, which surrounds the outer peripheral surface and both ends of the electrode 1, and has annular grooves 13, 13.
The inside is filled. 21, 21 are stress cone receiving holes provided inside both ends of the molded product 2.

上記のエポキシ樹脂成形物2は注型により成形
し、この場合、加熱状態の成形物並びに筒状電極
が常温に冷却される際に、エポキシ樹脂と電極材
(銅)との熱膨張係数の差(エポキシ樹脂の方が
大)のためにこの熱応力に基づく残留応力に、ケ
ーブルヒートサイクル時の熱応力が重畳し、界面
剥離が発生して絶縁破壊の起点となり易い箇所が
電極各端とエポキシ樹脂との界面であることは記
述した通りである。
The above epoxy resin molded product 2 is molded by casting, and in this case, when the heated molded product and cylindrical electrode are cooled to room temperature, the difference in thermal expansion coefficient between the epoxy resin and the electrode material (copper) (The epoxy resin is larger) Therefore, the thermal stress during the cable heat cycle is superimposed on the residual stress due to this thermal stress, and the areas where interfacial peeling occurs and dielectric breakdown is likely to occur are between the ends of the electrode and the epoxy resin. As described above, it is the interface with the resin.

而るに、電極端部11の曲面上の熱応力分布状
態を把握するには、両端部のエポキシ樹脂部分2
0,20がその間の電極1を両側から押え付け、
この押え付け外力Fに対して電極両端部11の曲
面とエポキシ樹脂との界面に発生する応力を想定
すればよい。
However, in order to understand the thermal stress distribution state on the curved surface of the electrode end 11, it is necessary to
0 and 20 press the electrode 1 between them from both sides,
The stress generated at the interface between the curved surface of both electrode ends 11 and the epoxy resin in response to this pressing external force F can be assumed.

本考案のケーブル接続部用絶縁成形体において
は、筒状電極を筒状の樹脂成形物内に埋込んだ絶
縁体において、当該筒状電極の内周面に同筒状電
極の各端部に隣接せる環状溝を加工して環状溝底
部を薄肉化しており、電極を単一材で構成でき、
第2図に示す従来例とは異なり、別体部材(金具
と遮蔽リング)の接合が不要であり、薄肉部を溶
接上の制限なく充分に薄くでき、従つて、上記押
え付け外力Fに対して薄肉部を容易に撓ませるこ
とができるから、電極各端部11の上記界面に作
用する熱応力を緩和でき、成形時の熱応力に起因
する電極各端部を起点としての絶縁破壊をよく防
止できる。
In the insulating molded article for a cable connection part of the present invention, in the insulator in which a cylindrical electrode is embedded in a cylindrical resin molded article, each end of the cylindrical electrode is attached to the inner peripheral surface of the cylindrical electrode. Adjacent annular grooves are machined to make the bottom of the annular groove thinner, allowing the electrode to be constructed from a single material.
Unlike the conventional example shown in Fig. 2, there is no need to join separate members (metal fittings and shielding ring), and thin-walled parts can be made sufficiently thin without welding restrictions. Since the thin-walled portion can be easily bent by pressing, the thermal stress acting on the interface of each end 11 of the electrode can be alleviated, and dielectric breakdown starting at each end of the electrode due to thermal stress during molding can be prevented. It can be prevented.

また、別体部材の接合をはんだ付けで行う場合
とは異なり、そのような接合を排除して薄肉部の
支持状態を頗る安定に保持できるから、ケーブル
ヒートサイクルによる繰返し熱応力に対し、当該
接合箇所の損傷に起因する絶縁破壊を回避でき
る。
In addition, unlike the case where separate components are joined by soldering, such joints can be eliminated and the support state of thin-walled parts can be maintained extremely stably, so that the joint can withstand repeated thermal stress caused by cable heat cycles. It is possible to avoid dielectric breakdown caused by damage to parts.

上記薄肉部の厚さは、電極厚さ(環状溝を加工
する前での当該箇所の電極厚さ)の1/5以下、好
ましくは1/7〜1/10である。
The thickness of the thin portion is 1/5 or less, preferably 1/7 to 1/10, of the electrode thickness (the electrode thickness at the location before forming the annular groove).

本考案に係るケーブル接続部用絶縁成形体は、
通常154KVまたは275K用に用いられ、275KV用
の場合の寸法は、樹脂成形物の長さ;920mm、同
成形物の外形;380mm、電極の長さ;410mm、電極
の外形;248mm、電極の内径;140mm、薄肉部の厚
み;3mm、溝の巾;20mmである。この275KV用
実施例品について、液中ヒートシヨツクテストを
行つたところ、耐電圧性の低下はみられなかつた
が、薄肉部を形成しない従来品については耐電圧
性の低下が認められた。
The insulating molded body for cable connection parts according to the present invention is
Usually used for 154KV or 275K, the dimensions for 275KV are: Length of resin molding: 920mm, Outer diameter of the molding: 380mm, Length of electrode: 410mm, Outer diameter of electrode: 248mm, Inner diameter of electrode 140mm, thickness of thin part: 3mm, width of groove: 20mm. When this example product for 275KV was subjected to a submerged heat shock test, no decrease in voltage resistance was observed, but a decrease in voltage resistance was observed for the conventional product that did not form a thin wall portion.

<考案の効果> 本考案のケーブル接続部用絶縁成形体は上述し
た通りの構成であり、筒状電極の各端部に接する
エポキシ樹脂部分の残留熱応力に起因する絶縁破
壊を当該電極のケーブルヒートサイクル下での機
械的安定性をよく保持して充分に防止でき、耐電
圧性に優れたケーブル接続部用絶縁成形体を提供
できる。
<Effects of the invention> The insulating molded body for cable connection parts of the present invention has the configuration as described above, and prevents dielectric breakdown caused by residual thermal stress in the epoxy resin portion that contacts each end of the cylindrical electrode from the cable of the electrode. It is possible to provide an insulating molded body for a cable connection part that maintains mechanical stability well under heat cycles, can sufficiently prevent heat cycles, and has excellent voltage resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案に係るケーブル接続部用絶縁成
形体を示す説明図、第2図は公知のプレハブ式ケ
ーブル接続部を示す説明図である。 図において、1は筒状電極、13,13は環状
溝、131,131は薄肉部、2は筒状の樹脂成
形物である。
FIG. 1 is an explanatory view showing an insulating molded body for a cable connection part according to the present invention, and FIG. 2 is an explanatory view showing a known prefabricated cable connection part. In the figure, 1 is a cylindrical electrode, 13, 13 are annular grooves, 131, 131 are thin parts, and 2 is a cylindrical resin molded product.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 筒状電極を筒状の樹脂成形物内に埋込んだ絶縁
体において、上記筒状電極の内周面に同筒状電極
の各端部に隣接せる環状溝を加工して、この環状
溝部分を、前記絶縁体成形時に樹脂成形物と筒状
電極との熱膨張差によつて発生する熱応力に対し
て撓みうるように薄肉化したことを特徴とするケ
ーブル接続部用絶縁成形体。
In an insulator in which a cylindrical electrode is embedded in a cylindrical resin molding, an annular groove is machined on the inner peripheral surface of the cylindrical electrode to be adjacent to each end of the cylindrical electrode, and the annular groove portion is An insulating molded body for a cable connection portion, characterized in that the insulating molded body is made thin so as to be able to bend against thermal stress generated due to a difference in thermal expansion between the resin molded product and the cylindrical electrode during molding of the insulator.
JP16877588U 1988-12-26 1988-12-26 Expired - Lifetime JPH0534193Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16877588U JPH0534193Y2 (en) 1988-12-26 1988-12-26

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16877588U JPH0534193Y2 (en) 1988-12-26 1988-12-26

Publications (2)

Publication Number Publication Date
JPH0288424U JPH0288424U (en) 1990-07-12
JPH0534193Y2 true JPH0534193Y2 (en) 1993-08-30

Family

ID=31458250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16877588U Expired - Lifetime JPH0534193Y2 (en) 1988-12-26 1988-12-26

Country Status (1)

Country Link
JP (1) JPH0534193Y2 (en)

Also Published As

Publication number Publication date
JPH0288424U (en) 1990-07-12

Similar Documents

Publication Publication Date Title
JPH0375262B2 (en)
JPH048636Y2 (en)
KR960023643A (en) Conductor connection for fluid heater
US5227596A (en) Self regulating connecting device containing fusible material
JPH0534193Y2 (en)
CA2224542A1 (en) Torch for shielded arc welding
JP2727406B2 (en) Adapter for thermocouple
JP4372745B2 (en) Cable connection
JPH05196174A (en) Insulated vacuum valve
JP2016001542A (en) Electric wire with terminal
CN213636317U (en) Insulating tubular busbar joint device based on melting area
US20230307865A1 (en) Electrical connector
JPH0132311Y2 (en)
JPS591303Y2 (en) temperature fuse
JPH04306571A (en) Solid insulating material coated conductor
JPH0336072Y2 (en)
JPS6115414Y2 (en)
JPH048637Y2 (en)
JPH0436028Y2 (en)
JPS5846936B2 (en) power cable termination device
JPH08223770A (en) Air termination joint box for power cable
JP2003217804A (en) Tubular heater and manufacturing method thereof
JP2003086336A (en) Cartridge heater
JPH0757857A (en) Electric heating element and its manufacture
JPH0412629Y2 (en)