JPH0534166B2 - - Google Patents

Info

Publication number
JPH0534166B2
JPH0534166B2 JP819984A JP819984A JPH0534166B2 JP H0534166 B2 JPH0534166 B2 JP H0534166B2 JP 819984 A JP819984 A JP 819984A JP 819984 A JP819984 A JP 819984A JP H0534166 B2 JPH0534166 B2 JP H0534166B2
Authority
JP
Japan
Prior art keywords
damping force
signal
frequency component
circuit
low frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP819984A
Other languages
Japanese (ja)
Other versions
JPS60151111A (en
Inventor
Fukashi Sugasawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP819984A priority Critical patent/JPS60151111A/en
Priority to US06/691,531 priority patent/US4770438A/en
Priority to EP85100527A priority patent/EP0151421B1/en
Priority to DE8585100527T priority patent/DE3564786D1/en
Publication of JPS60151111A publication Critical patent/JPS60151111A/en
Priority to US07/157,790 priority patent/US4967359A/en
Priority to US07/299,452 priority patent/US5034890A/en
Priority to US07/576,076 priority patent/US5075855A/en
Publication of JPH0534166B2 publication Critical patent/JPH0534166B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0165Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input to an external condition, e.g. rough road surface, side wind
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/019Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/019Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
    • B60G17/01941Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof characterised by the use of piezoelectric elements, e.g. sensors or actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/10Type of spring
    • B60G2202/15Fluid spring
    • B60G2202/154Fluid spring with an accumulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/40Type of actuator
    • B60G2202/42Electric actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/102Acceleration; Deceleration vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/106Acceleration; Deceleration longitudinal with regard to vehicle, e.g. braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/204Vehicle speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/25Stroke; Height; Displacement
    • B60G2400/252Stroke; Height; Displacement vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/50Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/60Load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/80Exterior conditions
    • B60G2400/82Ground surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/80Exterior conditions
    • B60G2400/82Ground surface
    • B60G2400/821Uneven, rough road sensing affecting vehicle body vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/90Other conditions or factors
    • B60G2400/91Frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2401/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60G2401/10Piezoelectric elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2401/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60G2401/12Strain gauge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2401/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60G2401/17Magnetic/Electromagnetic
    • B60G2401/176Radio or audio sensitive means, e.g. Ultrasonic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2401/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60G2401/22Radioactivity sensitive materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/10Damping action or damper
    • B60G2500/102Damping action or damper stepwise
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/20Spring action or springs
    • B60G2500/22Spring constant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/02Retarders, delaying means, dead zones, threshold values, cut-off frequency, timer interruption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/18Automatic control means
    • B60G2600/182Active control means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/18Automatic control means
    • B60G2600/184Semi-Active control means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/60Signal noise suppression; Electronic filtering means
    • B60G2600/602Signal noise suppression; Electronic filtering means high pass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/60Signal noise suppression; Electronic filtering means
    • B60G2600/604Signal noise suppression; Electronic filtering means low pass

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Vehicle Body Suspensions (AREA)

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は、路面凹凸状況に応じて車体の揺動
を抑制する揺動抑制手段に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a rocking suppressing means for suppressing rocking of a vehicle body in response to road surface irregularities.

〔従来技術〕[Prior art]

従来の路面検出装置としては、例えば特開昭58
−30542号公報(発明の名称:可変シヨツクアブ
ソーバ装置)に開示されているものがある。この
ものは、油圧式シヨツクアブソーバに組み込ま
れ、該シヨツクアブソーバの減衰力を変化するた
めに、通流断面積を調整可能な可変オリフイス
と、前記可変オリフイスの通流断面積を変化させ
るためにシヨツクアブソーバに組み込まれたソレ
ノイドと、車両の車高値を電気的に検出する車高
センサと、車高センサの検出信号に基づいて前記
ソレノイドへ励磁電流を供給して可変オリフイス
の通流断面積を小さくする制御回路と、を含み、
所定の車高条件にてシヨツクアブソーバの減衰力
を大きくすることを特徴とし、悪路走行時等にお
いてシヨツクアブソーバの減衰力を大きくして良
好な走行状態を得ることができるものである。
As a conventional road surface detection device, for example,
There is one disclosed in Japanese Patent No. 30542 (title of invention: variable shock absorber device). This device is incorporated into a hydraulic shock absorber, and includes a variable orifice whose flow cross-sectional area can be adjusted in order to change the damping force of the shock absorber, and a shock absorber to change the flow cross-sectional area of the variable orifice. A solenoid built into the absorber, a vehicle height sensor that electrically detects the vehicle height value, and an excitation current supplied to the solenoid based on the detection signal of the vehicle height sensor to reduce the flow cross-sectional area of the variable orifice. a control circuit to
The damping force of the shock absorber is increased under a predetermined vehicle height condition, and the damping force of the shock absorber is increased when driving on a rough road to obtain a good driving condition.

〔従来技術の問題点〕[Problems with conventional technology]

しかしながら、このような従来の路面検出装置
にあつては、車高センサによる車体上下動の振幅
を検出し、これに基づきシヨツクアブソーバの減
衰力を制御する構成となつていたため、路面状況
がうねり路のように比較的低周波で、ばね上振動
の発生を伴う路面と、悪路のように比較的高周波
で、ばね下振動を伴う路面との判別を行うことが
できない問題点があつた。
However, such conventional road surface detection devices are configured to detect the amplitude of vertical movement of the vehicle body using a vehicle height sensor and control the damping force of the shock absorber based on this. There is a problem in that it is not possible to distinguish between a road surface that causes sprung mass vibration at a relatively low frequency, such as a road surface that causes unsprung mass vibration, and a road surface that causes unsprung mass vibration that occurs at a relatively high frequency, such as a rough road.

このため、例えばシヨツクアブソーバの減衰力
を制御する場合に、うねり路では比較的低いレベ
ルでも減衰力を高めて車両のピツチングやハウジ
ングを抑制して乗心地を向上させる必要があるの
に対し、悪路では比較的高いレベルになつてから
接地性の向上やばね下振動を抑制するために減衰
力を高める制御を行うのが望ましいにもかかわら
ず、同一レベルで検出してしまい、悪路にレベル
を合わせるとうねり路では減衰力が低すぎ、逆に
うねり路に合わせると悪路では減衰力が高すぎる
という問題点があつた。
For this reason, for example, when controlling the damping force of a shock absorber, it is necessary to increase the damping force even at a relatively low level on a undulating road to suppress pitching and housing of the vehicle and improve ride comfort. Although it is desirable to control the damping force to increase the damping force to improve ground contact and suppress unsprung vibration after reaching a relatively high level on the road, it is detected at the same level, and the level is increased on rough roads. There was a problem that when combined with undulating roads, the damping force was too low on undulating roads, and conversely, when combined with undulating roads, the damping force was too high on rough roads.

〔発明の目的〕[Purpose of the invention]

この発明は、車体の上下振動を上下振動検出器
で検出して、その検出信号中に含まれる高周波成
分及び低周波成分のレベルを夫々別個の判定手段
で判定し、その判定結果に基づき低周波成分判定
手段の判定レベルを変更することにより、上記従
来例の問題点を解決することを目的とする。
This invention detects the vertical vibration of the vehicle body using a vertical vibration detector, determines the levels of high-frequency components and low-frequency components contained in the detection signal using separate determining means, and then detects the low-frequency components based on the determination results. It is an object of the present invention to solve the problems of the above-mentioned conventional example by changing the determination level of the component determination means.

〔発明の構成〕[Structure of the invention]

上記目的を達成するために、この発明は、車体
の揺動を抑制する揺動抑制手段を備え、該揺動抑
制手段の抑制力を路面の凹凸状況に応じて変化さ
せる車両の揺動制御装置において、路面状況に応
じた車体の上下振動を検出する上下振動検出器
と、該上下振動検出器の検出信号中の低周波成分
が所定判定レベル以上であるか否かを判定する低
周波成分判定手段と、該低周波成分判定手段の判
定結果が前記低周波成分が所定判定レベル以上で
あるときに前記揺動抑制手段の抑制力を大きくす
る制御手段と、前記上下振動検出器の検出信号中
の高周波成分が所定判定レベル以上であるか否か
を判定する高周波成分判定手段と、前記高周波成
分判定手段の判定結果に応じて前記低周波成分判
定手段の判定レベルを変更する判定レベル設定手
段とを備えていることを特徴とする。
In order to achieve the above object, the present invention provides a vehicle rocking control device that includes a rocking suppressing means for suppressing the rocking of a vehicle body, and that changes the suppressing force of the rocking suppressing means according to the unevenness of the road surface. , a vertical vibration detector that detects vertical vibration of a vehicle body depending on road surface conditions, and a low frequency component determination that determines whether a low frequency component in a detection signal of the vertical vibration detector is equal to or higher than a predetermined determination level. means, control means for increasing the suppressing force of the rocking suppressing means when the judgment result of the low frequency component judging means is that the low frequency component is equal to or higher than a predetermined judgment level; high frequency component determining means for determining whether or not the high frequency component of is equal to or higher than a predetermined determination level; and determination level setting means for changing the determination level of the low frequency component determining means in accordance with the determination result of the high frequency component determining means. It is characterized by having the following.

〔発明の作用〕[Action of the invention]

この発明における車両の揺動制御装置にあつて
は、路面状況に応じた車体の上下振動を上下振動
検出器で検出し、その検出信号中に含まれる低周
波成分のレベルが所定判定レベル以上であると低
周波成分判定手段によつて判定された場合、制御
手段により揺動抑制手段の抑制力を大きくするた
め、車体の揺動が抑制される。ここで、高周波成
分判定手段が前記上下振動検出器の検出信号中に
含まれる高周波成分のレベル判定することにより
路面が悪路であるか否かを検出することができ、
悪路である場合には低周波成分判定手段の判定レ
ベルを変更するため、うねり路のように比較的低
周波で、ばね上振動の発生を伴う路面と、悪路の
ように比較的高周波でバネ下信号の発生を伴う路
面とに応じた車両の揺動制御を行える。
In the vehicle rocking control device of the present invention, a vertical vibration detector detects the vertical vibration of the vehicle body depending on the road surface condition, and when the level of the low frequency component included in the detection signal is equal to or higher than a predetermined determination level. When the low frequency component determining means determines that the vibration exists, the control means increases the suppressing force of the rocking suppressing means, thereby suppressing the rocking of the vehicle body. Here, the high frequency component determination means can detect whether the road surface is a rough road by determining the level of the high frequency component included in the detection signal of the vertical vibration detector,
When the road is rough, the judgment level of the low frequency component judgment means is changed, so it is possible to change the judgment level of the low frequency component judgment means when the road surface is relatively low frequency and generates sprung mass vibration, such as a undulating road, and when it is relatively high frequency, such as a rough road. It is possible to control the vehicle's oscillation according to the road surface with the generation of an unsprung signal.

〔発明の実施例〕[Embodiments of the invention]

以下、図面に基づいてこの発明の実施例を説明
する。
Embodiments of the present invention will be described below based on the drawings.

第1図は、この発明の一実施例を示すブロツク
図、第2図は減衰力可変シヨツクアブソーバの一
例を示す断面図、第3図及び第4図は、この発明
の動作の説明に供する信号波形図である。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a sectional view showing an example of a variable damping force shock absorber, and FIGS. 3 and 4 are signals for explaining the operation of the present invention. FIG.

第1図において、1は車高検出器であつて、車
体の前端部下面に取り付けられた超音波距離測定
装置で構成されており、図示しないが超音波送波
器から発射した超音波が路面で反射した反射波を
超音波受波器で受波するまでの時間を計測してそ
の計測時間に音速を乗じて車体及び路面間の距離
即ち車高に応じた車高検出信号DHを出力するよ
うに構成されている。
In Fig. 1, reference numeral 1 denotes a vehicle height detector, which is composed of an ultrasonic distance measuring device attached to the lower surface of the front end of the vehicle body. Measures the time it takes for the reflected wave to be received by an ultrasonic receiver, multiplies the measured time by the speed of sound, and outputs a vehicle height detection signal DH corresponding to the distance between the vehicle body and the road surface, that is, the vehicle height. It is configured as follows.

この車高検出器1の車高検出信号DHは、比較
的低周波数の信号成分を通過させる低周波バンド
パスフイルタ2及び比較的高周波数の信号成分を
通過させる高周波バンドパスフイルタ3に夫々供
給される。低周波バンドパスフイルタ2は、ばね
上共振周波数f1(例えば1〜2Hz)以外の信号成
分をカツトするようにそのカツトオフ周波数が選
定され、また、高周波バンドパスフイルタ3は、
ばね下共振周波数f2(例えば12〜13Hz)以外の信
号成分をカツトするようにそのカツトオフ周波数
が選定されている。
The vehicle height detection signal DH from the vehicle height detector 1 is supplied to a low frequency band pass filter 2 that passes relatively low frequency signal components and a high frequency band pass filter 3 that passes relatively high frequency signal components. Ru. The cutoff frequency of the low frequency band pass filter 2 is selected so as to cut out signal components other than the sprung resonance frequency f 1 (for example, 1 to 2 Hz), and the high frequency band pass filter 3 has a
The cutoff frequency is selected to cut signal components other than the unsprung resonance frequency f 2 (for example, 12 to 13 Hz).

そして、低周波バンドパスフイルタ2から出力
される低周波信号成分LFがAC−DC変換回路4
に供給されて直流レベル信号LVに変換されこれ
が低周波成分判定手段としての比較回路6の比較
信号入力側に供給されている。
Then, the low frequency signal component LF output from the low frequency band pass filter 2 is transferred to the AC-DC conversion circuit 4.
The DC level signal LV is converted into a DC level signal LV, which is then supplied to the comparison signal input side of a comparison circuit 6 as a low frequency component determining means.

また、高周波バンドパスフイルタ3から出力さ
れる高周波信号成分HFがAC−DC変換回路5に
供給されて直流レベル信号HVに変換されこれが
高周波成分判定手段としての比較回路7の比較信
号入力側に供給されている。
Further, the high frequency signal component HF output from the high frequency band pass filter 3 is supplied to the AC-DC conversion circuit 5 and converted into a DC level signal HV, which is then supplied to the comparison signal input side of the comparison circuit 7 as high frequency component determination means. has been done.

一方、比較回路6及び7の参照電圧入力側に
は、夫々後述する判定レベル設定回路32及び3
3からの設定レベル信号LL及びHLが給されてい
る。したがつて、比較回路6からは、AC−DC変
換回路4の出力信号LVのレベルが判定レベル設
定回路32からの設定レベル信号LL以上となつ
たときに、例えば論理値“1”の比較出力信号
LCが路面状況検出信号として出力される。また、
比較回路7からは、AC−DC変換回路5の出力信
号HVのレベルが判定レベル設定回路33からの
設定レベル信号HL以上となつたときに、例えば
論理値“1”の比較出力信号HCが出力される。
On the other hand, the reference voltage input sides of the comparison circuits 6 and 7 are provided with judgment level setting circuits 32 and 3, which will be described later.
Setting level signals LL and HL from 3 are supplied. Therefore, when the level of the output signal LV of the AC-DC conversion circuit 4 exceeds the set level signal LL from the judgment level setting circuit 32, the comparison circuit 6 outputs a comparison output of, for example, a logical value of "1". signal
LC is output as a road condition detection signal. Also,
When the level of the output signal HV of the AC-DC conversion circuit 5 exceeds the set level signal HL from the judgment level setting circuit 33, the comparison circuit 7 outputs, for example, a comparison output signal HC with a logical value of "1". be done.

而して、比較回路6の比較出力信号LCは、減
衰力可変シヨツクアブソーバ10a〜10dの減
衰力を制御する減衰力制御回路8に供給され、こ
の減衰力制御回路8で、比較出力信号LCが論理
値“0”のときに減衰力可変シヨツクアブソーバ
10a〜10dの減衰力を低下させる論理値
“0”の制御信号CSを、比較出力信号LCが論理
値“1”のときに、減衰力変シヨツクアブソーバ
10a〜10dの減衰力を高める論理値“1”の
制御信号CSを夫々駆動回路9に出力する。
The comparison output signal LC of the comparison circuit 6 is supplied to a damping force control circuit 8 that controls the damping force of the variable damping force shock absorbers 10a to 10d, and in this damping force control circuit 8, the comparison output signal LC is The control signal CS, which has a logic value of "0", reduces the damping force of the variable damping force shock absorbers 10a to 10d when the logic value is "0", and when the comparison output signal LC has a logic value of "1", the damping force is changed. A control signal CS having a logical value of "1" for increasing the damping force of the shock absorbers 10a to 10d is output to the drive circuit 9, respectively.

駆動回路9は、これに給される制御信号CSに
応じて減衰力可変シヨツクアブソーバ10a〜1
0dのソレノイド20を非励磁、励磁状態とする
励磁電流を出力する。ここで、減衰力制御回路8
及び駆動回路9で制御手段が構成され、減衰力可
変シヨツクアブソーバ10a〜10dで揺動抑制
手段が構成されている。
The drive circuit 9 operates variable damping force shock absorbers 10a to 1 in response to a control signal CS supplied thereto.
An excitation current is output that makes the solenoid 20 at 0d de-energized and excited. Here, the damping force control circuit 8
The drive circuit 9 and the drive circuit 9 constitute a control means, and the variable damping force shock absorbers 10a to 10d constitute a swing suppressing means.

減衰力可変シヨツクアブソーバ10a〜10d
は、車両の各車輪及び車体間に配設されたサスペ
ンシヨン装置に組み込まれて路面状況に応じた車
輪の過渡的な上下振動を吸収するように第2図に
示す構成を有する。
Damping force variable shock absorber 10a to 10d
has a configuration shown in FIG. 2, which is incorporated into a suspension device disposed between each wheel of a vehicle and the vehicle body to absorb transient vertical vibrations of the wheels depending on road surface conditions.

すなわち、減衰力可変シヨツクアブソーバ10
a〜10dは、内筒11及び外筒12によつて構
成されるシリンダ13と、その内部に摺動自在の
ピストンロツド14と、シリンダ13の底部に配
設された減衰力発生ボトムバルブ15とを有して
構成されている。ピストンロツド14は軸方向
に、アツパピストンロツド16とロアピストンロ
ツド17とに分割されており、ロアピストンロツ
ド17には、ピストンとなる減衰力発生メインバ
ルブ18をバイパスして、液室B及びCとを直接
連通させるバイパス路19を形成する一方、アツ
パピストンロツド16には、ソレノイド20とプ
ランジヤ21とを有するアクチユエータ22を内
装している。さらに、プランジヤ21を前記バイ
パス路19内に浸入させるように位置付けて、ア
クチユエータ22におけるソレノイド20の通
電、非通電に応じてプランジヤ21を作動させ、
もつて、バイパス路19を開閉して液室B及びC
間を直接連通させたり、遮断させたりするもので
ある。ここに、ソレノイド20は、前記駆動回路
9にリード線23を介して接続され、減衰力制御
回路8からの制御信号CSに応じてプランジヤ2
1を作動させることにより、その減衰力を高、低
に切換制御することが可能となる。なお、図中、
24,25及び26,27は、夫々縮み側及び伸
び側の各減衰力発生オリフイス、28,29は、
ノンリターンバルブ、30は復帰スプリングであ
る。
That is, the variable damping force shock absorber 10
a to 10d each include a cylinder 13 composed of an inner cylinder 11 and an outer cylinder 12, a piston rod 14 that is slidable inside the cylinder, and a damping force generating bottom valve 15 disposed at the bottom of the cylinder 13. It is configured with The piston rod 14 is divided in the axial direction into an upper piston rod 16 and a lower piston rod 17. A bypass passage 19 is formed to allow direct communication between B and C, and an actuator 22 having a solenoid 20 and a plunger 21 is installed inside the upper piston rod 16. Further, the plunger 21 is positioned so as to penetrate into the bypass passage 19, and the plunger 21 is actuated in accordance with whether the solenoid 20 in the actuator 22 is energized or de-energized;
Then, the bypass passage 19 is opened and closed to open and close the liquid chambers B and C.
It connects or blocks direct communication between the two. Here, the solenoid 20 is connected to the drive circuit 9 via a lead wire 23, and operates the plunger 2 in response to a control signal CS from the damping force control circuit 8.
1, it becomes possible to switch and control the damping force between high and low. In addition, in the figure,
24, 25 and 26, 27 are damping force generating orifices on the compression side and expansion side, respectively; 28, 29 are
The non-return valve 30 is a return spring.

一方、減衰力制御回路8の制御信号CSは、イ
ンバータ31を介して比較回路6の参照電圧を設
定する判定レベル設定手段としての判定レベル設
定回路32と、比較回路7の参照電圧を設定する
判定レベル設定回路33とに夫々供給されてい
る。判定レベル設定回路32は、直流電源及び接
地間に接続された分圧用抵抗R1,R2と、これら
抵抗R1及びR2の接続点及びインバータ31間に
接続された抵抗R3とダイオードD1との直列回路
とを有すると共に、抵抗R1及びR2の接続点と比
較回路7の比較出力側との間に介挿されたダイオ
ードD2及び抵抗R4の直列回路を有する。そして、
ダイオードD1のカソードに前記インバータ31
の出力側が接続され、ダイオードD2のアノード
側に前記比較回路7の比較出力側が接続され、さ
らに、分圧用抵抗R1及びR2の接続点から出力さ
れる判定レベル信号LLが前記比較回路6の参照
電圧入力側に供給されている。この場合、判定レ
ベル設定回路32から出力される判定レベル信号
LLの値Aは、インバータ31の出力信号INの値
をC、比較回路7の出力信号の値をDとすると、
次式で表すことができる。
On the other hand, the control signal CS of the damping force control circuit 8 is transmitted via an inverter 31 to a judgment level setting circuit 32 as judgment level setting means for setting the reference voltage of the comparison circuit 6 and a judgment level setting circuit 32 for setting the reference voltage of the comparison circuit 7. and a level setting circuit 33, respectively. The judgment level setting circuit 32 includes voltage dividing resistors R 1 and R 2 connected between the DC power supply and ground, and a resistor R 3 and a diode D connected between the connection point of these resistors R 1 and R 2 and the inverter 31 . 1 and a series circuit of a diode D 2 and a resistor R 4 inserted between the connection point of the resistors R 1 and R 2 and the comparison output side of the comparison circuit 7. and,
The inverter 31 is connected to the cathode of the diode D1 .
The output side of the comparator circuit 7 is connected to the anode side of the diode D2 , and the comparison output side of the comparator circuit 7 is connected to the anode side of the diode D2.Furthermore, the judgment level signal LL output from the connection point of the voltage dividing resistors R1 and R2 is connected to the anode side of the diode D2. is supplied to the reference voltage input side of the In this case, the determination level signal output from the determination level setting circuit 32
The value A of LL is as follows, where C is the value of the output signal IN of the inverter 31, and D is the value of the output signal of the comparator circuit 7.
It can be expressed by the following formula.

A=A0−α1×C+α2×D ……(1) ここで、A0は、直流電源電圧を分圧用抵抗R1
及びR2で分圧した両者の接続点の電圧値、α1は、
抵抗R3の値で決定される定数、α2は抵抗R4で決
定される定数である。
A= A0α1 ×C+ α2 ×D……(1) Here, A0 is the resistance R1 for dividing the DC power supply voltage.
And the voltage value at the connection point of both divided by R 2 , α 1 is,
α 2 is a constant determined by the value of resistor R 3 and α 2 is a constant determined by resistor R 4 .

また、判定レベル設定回路33は、前記判定レ
ベル設定回路32と同様の分圧用抵抗R1,R2
抵抗R3、ダイオードD1を有し、抵抗R1及びR2
接続点から出力される判定レベル設定信号HLが
比較回路7の参照電圧入力側に供給されている。
この場合、判定レベル信号HLの値Bは、次式で
表すことができる。
Further, the judgment level setting circuit 33 includes voltage dividing resistors R 1 , R 2 , similar to the judgment level setting circuit 32 ,
It has a resistor R 3 and a diode D 1 , and a judgment level setting signal HL output from a connection point between the resistors R 1 and R 2 is supplied to the reference voltage input side of the comparator circuit 7 .
In this case, the value B of the determination level signal HL can be expressed by the following equation.

B=B0−β×C ……(2) ここで、B0は、直流電源電圧を分圧用抵抗R1
及びR2で分圧した両者の接続点の電圧値、βは、
抵抗R3の値によつて決定される定数である。
B=B 0 −β×C ……(2) Here, B 0 is the resistance R 1 for dividing the DC power supply voltage.
And the voltage value at the connection point of both divided by R 2 , β is,
It is a constant determined by the value of resistance R3 .

次に、作用について説明する。今、減衰力制御
回路8からの制御信号CSが論理値“0”であつ
て、各減衰力可変シヨツクアブソーバ10a〜1
0dのソレノイド20が非励磁状態にあるものと
すると、プランジヤ21が復帰スプリング30の
力によつて上方に付勢されている。その結果、液
室B及びC間のバイパス路19が開放状態となつ
て、両室間の作動液の流通が容易となり、減衰力
可変シヨツクアブソーバの減衰力が低下されてい
るものとする。
Next, the effect will be explained. Now, the control signal CS from the damping force control circuit 8 has a logical value of "0", and each of the variable damping force shock absorbers 10a to 1
Assuming that the solenoid 20 at 0d is in a non-energized state, the plunger 21 is urged upward by the force of the return spring 30. As a result, the bypass passage 19 between the fluid chambers B and C is opened, facilitating the flow of the working fluid between the two chambers, and reducing the damping force of the variable damping force shock absorber.

この状態で、車高検出器1からは、第3図aに
示す如、路面から車輪に伝達される路面状況に応
じた比較的高周波の振動信号成分HFと、車体の
揺動による比較的低周波の振動成分LFとが重畳
された検出信号DHが出力される。このため、車
両が平坦な良路を走行しているときには、路面か
らの高周波信号成分HFが少なく、しかも、車両
の揺動による低周波信号成分LFも少ない。した
がつて、この車高検出信号DHが夫々バンドパス
フイル2,3に供給されるので、これらパンドパ
スフイルタ2,3で夫々第3図b及びcに示す如
く低周波信号成分LF及び高周波信号成分HFが分
離抽出され、これらがAC−DC変換回路4及び5
に供給される。したがつて、これら変換回路4及
び5からは、夫々第3図d及びeに示す如く比較
的低レベルの出力信号LV及びHVが出力され、
これらが夫々比較回路6及び7に供給される。
In this state, as shown in Figure 3a, the vehicle height detector 1 outputs a relatively high-frequency vibration signal component HF that is transmitted from the road surface to the wheels according to the road surface condition, and a relatively low-frequency vibration signal component HF that is transmitted from the road surface to the wheels due to the vibration of the vehicle body. A detection signal DH on which the frequency vibration component LF is superimposed is output. Therefore, when the vehicle is traveling on a flat, good road, the high frequency signal component HF from the road surface is small, and the low frequency signal component LF due to the shaking of the vehicle is also small. Therefore, this vehicle height detection signal DH is supplied to the band pass filters 2 and 3, respectively, so that the band pass filters 2 and 3 detect the low frequency signal component LF and the high frequency signal as shown in FIG. 3b and c, respectively. The component HF is separated and extracted, and these are sent to AC-DC conversion circuits 4 and 5.
supplied to Therefore, relatively low level output signals LV and HV are outputted from these conversion circuits 4 and 5 as shown in FIG. 3d and e, respectively.
These are supplied to comparison circuits 6 and 7, respectively.

ここで、比較回路7の参照電圧入力側には、判
定レベル設定回路33の判定レベル信号HLが供
給されているが、この判定信号HLは、前記した
ように減衰力制御回路8からの制御信号CSが論
理値“0”であるので、インバータ31の出力信
号INは、論理値“1”となる。このため、ダイ
オードD1がカツトオフ状態となつているので、
抵抗R3を通じる電流が遮断され、直流電源電圧
が分圧用抵抗R1及びR2によつて分圧された電圧
値B0が第4図bに示す如く判定レベル信号HLと
して出力されている。
Here, the reference voltage input side of the comparator circuit 7 is supplied with the judgment level signal HL of the judgment level setting circuit 33, and as described above, this judgment signal HL is the control signal from the damping force control circuit 8. Since CS has a logic value of "0", the output signal IN of the inverter 31 has a logic value of "1". For this reason, diode D1 is in a cut-off state, so
The current passing through the resistor R3 is cut off, and the voltage value B0 obtained by dividing the DC power supply voltage by the voltage dividing resistors R1 and R2 is output as the judgment level signal HL as shown in Figure 4b. .

したがつて、比較回路7の比較出力信号HC
は、論理値“0”であり、このため、判定レベル
設定回路32には、論理値“0”の比較出力信号
HCと、論理値“1”のインバータ出力EINが供
給されているので、この判定レベル設定回路32
の判定レベル信号LLは、第4図aで実線図示の
如く、直流電源電圧を分圧用抵抗R1及びR2で分
圧した電圧値A0が判定レベル信号LLとして出力
されている。したがつて、比較回路6から出力さ
れる比較出力信号LCは、論理値“0”を維持し、
これが減衰力制御回路8に供給されるので、この
減衰力制御回路8からの制御信号CSは、論理値
“0”を維持する。その結果、各減衰力可変シヨ
ツクアブソーバ10a〜10dの減衰力は、低下
した状態に維持される。
Therefore, the comparison output signal HC of the comparison circuit 7
has a logical value of "0", and therefore, the judgment level setting circuit 32 receives a comparison output signal of a logical value of "0".
Since HC and the inverter output EIN of logical value “1” are supplied, this judgment level setting circuit 32
As shown by the solid line in FIG. 4a, the voltage value A 0 obtained by dividing the DC power supply voltage by voltage dividing resistors R 1 and R 2 is output as the determination level signal LL. Therefore, the comparison output signal LC output from the comparison circuit 6 maintains the logical value "0",
Since this is supplied to the damping force control circuit 8, the control signal CS from the damping force control circuit 8 maintains the logical value "0". As a result, the damping force of each of the variable damping force shock absorbers 10a to 10d is maintained in a reduced state.

この状態から、時点t1で車両が路面の凹凸の少
ないうねり路を走行する状態となると、この場合
の車高検出器1から出力される車高検出信号DH
は、第3図Cに示す如くその中に含まれる路面状
況に応じた高周波信号成分HFは、路面の凹凸が
少ないために、その振幅が小さい。したがつて、
比較回路7の比較出力信号HCは、論理値“0”
を維持し、判定レベル設定回路32からの判定レ
ベル信号LLの値は、分圧電圧A0に維持される。
その結果、路面のうねり状態が比較的緩慢である
ときには、車両の揺動がすくなく、車高検出器1
からの車高検出信号DH中に含まれる低周波成分
LFの振幅が小さいため、AC−DC変換回路4の
出力信号のレベルが低く、比較回路6の比較出力
信号LCは、論理値“0”を維持する。したがつ
て、各減衰力可変シヨツクアブソーバ10a〜1
0bは、低減衰力状態に維持される。また、路面
のうねり状態の周期が比較的短いときには、車両
の揺動が大きくなるので、車高検出器1からの車
高検出信号DH中に含まれる低周波信号成分LFの
振幅が大きくなり、AC−DC変換回路4の出力信
号のレベルが判定レベル信号LLに比較して大き
くなり、比較回路6の比較出力信号LCが論理値
“1”となる。このため、減衰力制御回路8の制
御信号CSが論理値“1”となり、各減衰力可変
シヨツクアブソーバ10a〜10dの減衰力を高
める。即ち、減衰力制御回路8の制御信号CSが
論理値“1”となると、駆動回路9から励磁電流
が出力され、これが各減衰力可変シヨツクアブソ
ーバ10a〜10dのソレノイド20に供給され
ることにより、このソレノイド20が励磁状態と
なり、これに応じてプランジヤ21が復帰スプリ
ング30に抗して下降する。その結果、プランジ
ヤ21の下端によつてバイパス路19が閉塞され
ることになり、液室B及びC間が減衰力発生オリ
フイス24,26のみによつて連通されるので、
両室間の作動液の移動が制限され、減衰力可変シ
ヨツクアブソーバ10a〜10dの減衰力が高め
られる。このように減衰力制御回路8から減衰力
可変シヨツクアブソーバの減衰力を高める論理値
“1”の制御信号CSが出力されると、これに応じ
てインバータ31の出力信号INが論理値“0”
となる。このため、判定レベル設定回路33の直
流電源からの電流の一部が抵抗R3及びダイオー
ドD1を通じ、さらに、インバータ31内の例え
ばトランジスタを通じてアース側に流れる。した
がつて、第4図bに示す如く、判定レベル設定回
路33の分圧抵抗R1及びR2の接続点における電
圧値がβC分低下し、これが判定レベル信号HLと
しては比較回路7に供給される。その結果、判定
レベル信号HLの値が減衰力可変シヨツクアブソ
ーバ10a〜10bの減衰力を高めたことによる
車高変化量の低下を補償することができ、路面状
況に応じた正確な路面状況信号を比較回路7から
出力することができる。
From this state, at time t1 , when the vehicle is running on a undulating road with few road surface irregularities, the vehicle height detection signal DH output from the vehicle height detector 1 in this case
As shown in FIG. 3C, the high frequency signal component HF corresponding to the road surface condition included therein has a small amplitude because the road surface has few irregularities. Therefore,
The comparison output signal HC of the comparison circuit 7 has a logical value of “0”
, and the value of the judgment level signal LL from the judgment level setting circuit 32 is maintained at the divided voltage A 0 .
As a result, when the undulation of the road surface is relatively slow, the vehicle does not shake much, and the vehicle height detector 1
Low frequency components included in the vehicle height detection signal DH from
Since the amplitude of LF is small, the level of the output signal of the AC-DC conversion circuit 4 is low, and the comparison output signal LC of the comparison circuit 6 maintains the logical value "0". Therefore, each variable damping force shock absorber 10a to 1
0b is maintained in a low damping force state. Furthermore, when the period of the road surface undulation is relatively short, the shaking of the vehicle becomes large, so the amplitude of the low frequency signal component LF included in the vehicle height detection signal DH from the vehicle height detector 1 becomes large. The level of the output signal of the AC-DC conversion circuit 4 becomes larger than the determination level signal LL, and the comparison output signal LC of the comparison circuit 6 becomes a logical value "1". Therefore, the control signal CS of the damping force control circuit 8 has a logical value of "1", increasing the damping force of each of the variable damping force shock absorbers 10a to 10d. That is, when the control signal CS of the damping force control circuit 8 becomes a logical value "1", an excitation current is output from the drive circuit 9, and this is supplied to the solenoids 20 of each of the variable damping force shock absorbers 10a to 10d. This solenoid 20 becomes energized, and in response, the plunger 21 descends against the return spring 30. As a result, the bypass passage 19 is closed by the lower end of the plunger 21, and the liquid chambers B and C are communicated only through the damping force generating orifices 24 and 26.
Movement of the hydraulic fluid between the two chambers is restricted, and the damping force of the variable damping force shock absorbers 10a to 10d is increased. In this way, when the damping force control circuit 8 outputs the control signal CS with the logical value "1" that increases the damping force of the variable damping force shock absorber, the output signal IN of the inverter 31 changes to the logical value "0" in response.
becomes. Therefore, a part of the current from the DC power source of the determination level setting circuit 33 flows through the resistor R 3 and the diode D 1 and further through, for example, a transistor in the inverter 31 to the ground side. Therefore, as shown in FIG. 4b, the voltage value at the connection point between the voltage dividing resistors R 1 and R 2 of the judgment level setting circuit 33 decreases by βC, and this is supplied to the comparator circuit 7 as the judgment level signal HL. be done. As a result, the value of the judgment level signal HL can compensate for the decrease in the amount of change in vehicle height caused by increasing the damping force of the variable damping force shock absorbers 10a to 10b, and provide an accurate road surface condition signal according to the road surface condition. It can be output from the comparison circuit 7.

さらに、この状態から、時点t2で車両が路面凹
凸の多い悪路を走行する状態となると、車高検出
器1から出力される車高検出信号DH中に含まれ
る路面凹凸に応じた高周波信号成分HFの振幅が
大きくなるので、AC−DC変換回路5の出力信号
のレベルが判定レベル信号HL以上となり、比較
回路7から論理値“1”の比較出力信号HCが出
力される。このため、判定レベル設定回路32の
ダイオードD2及び抵抗R4を通じて分圧用抵抗R1
及びR2の接続点に供給されるので、その接続点
における電圧が第4図aで点線図示の如くα2×D
分上昇し、これが判定レベル信号LLとして比較
回路6に供給される。このため、比較回路6にお
いて判定レベルが上昇することになるので、車両
の揺動による低周波信号成分LFの振幅が大きく
なつて、AC−DC変換回路4の出力信号LVのレ
ベルが判定レベル信号LLの値以上となると、比
較回路6の比較出力信号LCが論理値“1”とな
る。したがつて、減衰力制御回路8の制御信号
CSが論理値“1”となり、各減衰力可変シヨツ
クアブソーバ10a〜10dの減衰力が高めら
れ、その結果、路面凹凸状況によつて生じる車両
のばね下振動及びばね上振動を抑制して、車両の
乗心地及び車輪の接地性を向上させることができ
る。また、車両に大きな揺動を生じない程度の路
面凹凸状況であるときには、車高検出器1の車高
検出信号DH中に含まれる低周波信号成分LFの振
幅が小さいので、AC−DC変換回路4の出力信号
LVのレベルが判定レベル信号LL未満となり、こ
れに応じて比較回路6の比較出力信号LCが論理
値“0”となり、減衰力制御回路8の制御信号
CSが論理値“0”となつて、各減衰力可変シヨ
ツクアブソーバ10a〜10dの減衰力を低下さ
せる。
Furthermore, from this state, when the vehicle enters a state where it is traveling on a rough road with many road surface irregularities at time t2 , a high frequency signal corresponding to the road surface irregularities included in the vehicle height detection signal DH output from the vehicle height detector 1 is generated. Since the amplitude of the component HF increases, the level of the output signal of the AC-DC conversion circuit 5 becomes higher than the determination level signal HL, and the comparison circuit 7 outputs a comparison output signal HC with a logical value of "1". Therefore, the voltage dividing resistor R 1 is
and R 2 , so that the voltage at that connection point becomes α 2 ×D as shown by the dotted line in Figure 4a.
This is supplied to the comparator circuit 6 as the determination level signal LL. Therefore, the determination level in the comparator circuit 6 increases, and the amplitude of the low-frequency signal component LF due to vehicle rocking increases, causing the level of the output signal LV of the AC-DC conversion circuit 4 to become the determination level signal. When the value exceeds the value of LL, the comparison output signal LC of the comparison circuit 6 becomes the logical value "1". Therefore, the control signal of the damping force control circuit 8
CS becomes the logical value "1", and the damping force of each variable damping force shock absorber 10a to 10d is increased, and as a result, the unsprung vibration and sprung vibration of the vehicle caused by uneven road conditions are suppressed, and the The ride comfort of the vehicle and the ground contact of the wheels can be improved. In addition, when the road surface is uneven to the extent that the vehicle does not shake significantly, the amplitude of the low frequency signal component LF included in the vehicle height detection signal DH of the vehicle height detector 1 is small, so the AC-DC conversion circuit 4 output signal
The level of LV becomes less than the judgment level signal LL, and accordingly, the comparison output signal LC of the comparison circuit 6 becomes the logical value "0", and the control signal of the damping force control circuit 8
CS takes on a logical value of "0" and reduces the damping force of each variable damping force shock absorber 10a to 10d.

なお、上記実施例においては、路面状況に応じ
た車体の上下振動を検出する上下振動検出器とし
て超音波を使用した車高検出器1を適用した場合
について説明したが、これに限定されるものでは
なく、車体の上下振動を上下加速度検出器、ある
いはシヨツクアブソーバのピストンロツドの変位
量を検出コイルのインダクタンス変化またはロー
ドセル等の荷重変化として検出する形式の上下振
動検出器を適用するようにしてもよい。但し、こ
の場合は、減衰力可変シヨツクアブソーバ10a
〜10dの減衰力の変更による車体上下振動の検
出値の差が大きくなり、しかも減衰力を高めると
増大する方向に変化するので、第5図に示す如
く、判定レベル設定回路32,33のダイオード
D1の極性を反転させると共に、インバータ31
を省略して減衰力制御回路8の制御信号CSを直
接ダイオードD1に供給するように構成して判定
レベル信号LL及びHLを、第6図a及びbに示す
如く変化させる必要がある。
In addition, in the above embodiment, a case has been described in which the vehicle height detector 1 using ultrasonic waves is applied as a vertical vibration detector that detects vertical vibration of the vehicle body depending on the road surface condition, but the present invention is not limited to this. Instead, a vertical acceleration detector may be used to detect the vertical vibration of the vehicle body, or a vertical vibration detector that detects the amount of displacement of the piston rod of the shock absorber as a change in the inductance of a detection coil or a change in the load of a load cell, etc. . However, in this case, the variable damping force shock absorber 10a
The difference in the detected value of the vertical vibration of the vehicle body increases when the damping force is changed by ~10d, and when the damping force is increased, it changes in the direction of increasing.As shown in FIG.
While reversing the polarity of D 1 , inverter 31
It is necessary to omit the control signal CS of the damping force control circuit 8 and supply it directly to the diode D1 , thereby changing the determination level signals LL and HL as shown in FIGS. 6a and 6b.

また、車体の上下振動を抑制する揺動抑制手段
としては、減衰力可変シヨツクアブソーバ10a
〜10dに限定されるものではなく、第7図に示
す如く、ばね定数を変化させる構成であつてもよ
い。すなわち、第7図におけるサスペンシヨン装
置35は、シヨツクアブソーバ36と、このシヨ
ツクアブソーバ36の上部に一体に形成され、且
つ上下方向に伸縮可能な空気室37とから構成さ
れている。そして、このサスペンシヨン装置35
が車両にシヨツクアブソーバ36のピストンロツ
ド38の上端及び空気室37の上端を車体側の部
材に取り付けることにより、装着されている。
Further, as a vibration suppressing means for suppressing vertical vibration of the vehicle body, a variable damping force shock absorber 10a is used.
The spring constant is not limited to ~10d, and the spring constant may be changed as shown in FIG. That is, the suspension device 35 in FIG. 7 is composed of a shock absorber 36 and an air chamber 37 that is integrally formed on the upper part of the shock absorber 36 and is expandable and retractable in the vertical direction. And this suspension device 35
is attached to the vehicle by attaching the upper end of the piston rod 38 of the shock absorber 36 and the upper end of the air chamber 37 to a member on the vehicle body side.

ここで、開閉弁39が閉じている場合には、サ
スペンシヨン装置35のばね定数は、空気室37
の容積のみによつて決定される。一方、開閉弁3
9を開いて空気室37とリザーバタンク40とを
連通させると、空気室37の容積にリザーバタン
ク40の容積を加えた容積によつて、サスペンシ
ヨン装置35のばね定数が決定される。したがつ
て、開閉弁39を開閉ることにより、このサスペ
ンシヨン装置35の空気ばねのばね定数を大、小
に切り換え変更することができる。そして、この
ばね定数の変更は、第1図における減衰力制御回
路8からの制御信号CSが供給された駆動回路9
により開閉弁39を開閉することによりなされ、
制御信号CSが論理値“1”のときに、開閉弁3
9を閉状態としてばね定数を大きくし、一方、制
御信号CSが論理値“0”のときに、開閉弁39
を開状態として、ばね定数を小さくすることによ
りなされる。
Here, when the on-off valve 39 is closed, the spring constant of the suspension device 35 is
determined solely by the volume of On the other hand, on-off valve 3
9 is opened to communicate the air chamber 37 and the reservoir tank 40, the spring constant of the suspension device 35 is determined by the volume of the air chamber 37 plus the volume of the reservoir tank 40. Therefore, by opening and closing the on-off valve 39, the spring constant of the air spring of the suspension device 35 can be switched between large and small. This change in spring constant is carried out by the drive circuit 9 which is supplied with the control signal CS from the damping force control circuit 8 in FIG.
This is done by opening and closing the on-off valve 39,
When the control signal CS is logical value “1”, the on-off valve 3
9 is in the closed state and the spring constant is increased, and on the other hand, when the control signal CS is the logical value "0", the on-off valve 39 is closed.
This is done by opening the spring and reducing the spring constant.

なお、図中、42はゴム等の弾性体、43は通
路、44は他のサスペンシヨン装置に連通する通
路、45は吸排気弁、46は空気供給装置であ
る。この他、揺動抑制手段としては、捩り剛性を
変化させることが可能な振り捩り剛性可変スタビ
ライザも適用することができる。
In the figure, 42 is an elastic body such as rubber, 43 is a passage, 44 is a passage communicating with other suspension devices, 45 is an intake/exhaust valve, and 46 is an air supply device. In addition, a variable torsional rigidity stabilizer whose torsional rigidity can be varied may also be used as the rocking suppression means.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、車体
の揺動を抑制する揺動抑制手段を備え、該揺動抑
制手段の抑制力を路面の凹凸状況に応じて変化さ
せる車両の揺動制御装置において、路面状況に応
じた車体の上下振動を検出する上下振動検出器
と、該上下振動検出器の検出信号中の低周波成分
が所定判定レベル以上であるか否かを判定する低
周波成分判定手段と、該低周波成分判定手段の判
定結果が前記低周波成分が所定判定レベル以上で
あるときに前記揺動抑制制御手段の抑制力を大き
くする制御手段と、前記上下振動検出器の検出信
号中の高周波成分が所定レベル以上であるか否か
を判定する高周波成分判定手段と、該高周波成分
判定手段の判定結果に応じて前記低周波成分判定
手段の判定レベルを変更する判定レベル設定手段
と、を備える構成としたため、うねり路と悪路と
に応じた車両の揺動制御を行うことができるとい
う効果が得られる。
As explained above, according to the present invention, a vehicle rocking control device includes a rocking suppressing means for suppressing the rocking of a vehicle body, and changes the suppressing force of the rocking suppressing means in accordance with the unevenness of the road surface. , a vertical vibration detector that detects vertical vibration of a vehicle body depending on road surface conditions, and a low frequency component determination that determines whether a low frequency component in a detection signal of the vertical vibration detector is equal to or higher than a predetermined determination level. means, a control means for increasing the suppressing force of the rocking suppression control means when the judgment result of the low frequency component judgment means is that the low frequency component is equal to or higher than a predetermined judgment level, and a detection signal of the vertical vibration detector. a high frequency component determining means for determining whether the middle high frequency component is equal to or higher than a predetermined level; and a determination level setting means for changing the determination level of the low frequency component determining means in accordance with the determination result of the high frequency component determining means. Since the configuration includes the following, it is possible to achieve the effect that the vehicle swing control can be performed depending on the undulating road and the rough road.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施例を示すブロツク
図、第2図は、この発明に適用し得る減衰力可変
シヨツクアブソーバの一例を示す断面図、第3図
a〜e及び第4図a及びbは、夫々この発明の動
作の説明に供する信号波形図、第5図は、この発
明の他の実施例を示すブロツク図、第6図a及び
bは、夫々その判定レベル設定回路の判定レベル
信号を示す波形図、第7図は、この発明に適用し
得るサスペンシヨン装置の他の例を示す断面図で
ある。 1……車高検出器、2……低周波バンドパスフ
イルタ、3……高周波バンドパスフイルタ、4,
5……AC−DC変換回路、6……比較回路(低周
波成分判定手段)、7……比較回路(高周波成分
判定手段)、8……減衰力制御回路、9……駆動
回路、10a〜10d……減衰力可変シヨツクア
ブソーバ、13……シリンダ、14……ピストン
ロツド、19……バイパス路、20……ソレノイ
ド、21……プランジヤ、31……インバータ、
32……判定レベル設定回路(判定レベル設定手
段)、33……判定レベル設定回路、35……サ
スペンシヨン装置。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a sectional view showing an example of a variable damping force shock absorber applicable to the present invention, FIGS. 3 a to e, and FIGS. 4 a and b are signal waveform diagrams for explaining the operation of the present invention, FIG. 5 is a block diagram showing another embodiment of the present invention, and FIGS. 6 a and b are diagrams showing the determination of the determination level setting circuit, respectively. FIG. 7, a waveform diagram showing a level signal, is a sectional view showing another example of a suspension device to which the present invention can be applied. 1...Vehicle height detector, 2...Low frequency band pass filter, 3...High frequency band pass filter, 4,
5... AC-DC conversion circuit, 6... Comparison circuit (low frequency component determining means), 7... Comparing circuit (high frequency component determining means), 8... Damping force control circuit, 9... Drive circuit, 10a~ 10d... Variable damping force shock absorber, 13... Cylinder, 14... Piston rod, 19... Bypass path, 20... Solenoid, 21... Plunger, 31... Inverter,
32... Judgment level setting circuit (judgment level setting means), 33... Judgment level setting circuit, 35... Suspension device.

Claims (1)

【特許請求の範囲】[Claims] 1 車体の揺動を抑制する揺動抑制手段を備え、
該揺動抑制手段の抑制力を路面の凹凸状況に応じ
て変化させる車両の揺動制御装置において、路面
状況に応じた車体の上下振動を検出する上下振動
検出器と、該上下振動検出器の検出信号中の低周
波成分が所定判定レベル以上であるか否かを判定
する低周波成分判定手段と、該低周波成分判定手
段の判定結果が前記低周波成分が所定判定レベル
以上であるときに前記揺動抑制手段の抑制力を大
きくする制御手段と、前記上下振動検出器の検出
信号中の高周波成分が所定判定レベル以上である
か否かを判定する高周波成分判定手段と、該高周
波成分判定手段の判定結果に応じて前記低周波成
分判定手段の判定レベルを変更する判定レベル設
定手段と、を備えていることを特徴とする車両の
揺動制御装置。
1 Equipped with a rocking suppression means for suppressing the rocking of the vehicle body,
A vehicle rocking control device that changes the suppressing force of the rocking suppressing means according to the unevenness of the road surface includes a vertical vibration detector that detects vertical vibration of a vehicle body depending on the road surface condition; low frequency component determining means for determining whether a low frequency component in a detection signal is at least a predetermined determination level; and when a determination result of the low frequency component determining means is that the low frequency component is at least a predetermined determination level; A control means for increasing the suppressing force of the vibration suppressing means, a high frequency component determining means for determining whether a high frequency component in a detection signal of the vertical vibration detector is equal to or higher than a predetermined determination level, and the high frequency component determining means. A swing control device for a vehicle, comprising: determination level setting means for changing the determination level of the low frequency component determining means according to a determination result of the means.
JP819984A 1984-01-20 1984-01-20 Road-surface state detector Granted JPS60151111A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP819984A JPS60151111A (en) 1984-01-20 1984-01-20 Road-surface state detector
US06/691,531 US4770438A (en) 1984-01-20 1985-01-15 Automotive suspension control system with road-condition-dependent damping characteristics
EP85100527A EP0151421B1 (en) 1984-01-20 1985-01-18 Automotive suspension control system with road-condition-dependent damping characteristics
DE8585100527T DE3564786D1 (en) 1984-01-20 1985-01-18 Automotive suspension control system with road-condition-dependent damping characteristics
US07/157,790 US4967359A (en) 1984-01-20 1988-02-19 Automotive suspension control system with road-condition-dependent damping characteristics
US07/299,452 US5034890A (en) 1984-01-20 1989-01-18 Automotive suspension control system with road-condition-dependent damping characteristics
US07/576,076 US5075855A (en) 1984-01-20 1990-09-25 Automotive suspension control system with road-condition-dependent damping characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP819984A JPS60151111A (en) 1984-01-20 1984-01-20 Road-surface state detector

Publications (2)

Publication Number Publication Date
JPS60151111A JPS60151111A (en) 1985-08-09
JPH0534166B2 true JPH0534166B2 (en) 1993-05-21

Family

ID=11686594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP819984A Granted JPS60151111A (en) 1984-01-20 1984-01-20 Road-surface state detector

Country Status (1)

Country Link
JP (1) JPS60151111A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2532059B2 (en) * 1985-09-13 1996-09-11 日産自動車株式会社 Vehicle suspension control device
JPH0811484B2 (en) * 1985-09-27 1996-02-07 日産自動車株式会社 Vehicle suspension control device
JPH0741781B2 (en) * 1985-10-03 1995-05-10 トヨタ自動車株式会社 Suspension controller
JPS6288605A (en) * 1985-10-12 1987-04-23 フオルクスヴア−ゲン・アクチエンゲゼルシヤフト Method and device for adaptation-adjusting or controlling parameter of chassis device for surface travelling car
JPS6326415U (en) * 1986-08-07 1988-02-20
JPS6357308A (en) * 1986-08-27 1988-03-12 Kayaba Ind Co Ltd Suspension control device in wheel
JPS63269709A (en) * 1987-04-24 1988-11-08 Fuji Heavy Ind Ltd Active suspension for automobile
JPS6444312A (en) * 1987-08-10 1989-02-16 Fuji Heavy Ind Ltd Controlling method for automobile suspension
DE3937841A1 (en) * 1988-11-14 1990-05-17 Atsugi Unisia Corp Road unevenness detector for vehicle suspension control - has lateral acceleration sensor for vehicle body with discriminator circuit
JP3004895U (en) * 1994-06-02 1994-11-29 三貴物産株式会社 Document hanging
FR2911651B1 (en) 2007-01-22 2012-08-31 Commissariat Energie Atomique SYSTEM FOR LIMITING THE TRANSMISSION OF MECHANICAL VIBRATIONS BY FREQUENCY FILTRATION.

Also Published As

Publication number Publication date
JPS60151111A (en) 1985-08-09

Similar Documents

Publication Publication Date Title
JPS60183211A (en) Suspension system for vehicle
EP0255720B1 (en) Vehicle suspension system
JPS6164517A (en) Vehicle suspension device
JPS611522A (en) Suspension controller in vehicles
JPS6118513A (en) Suspension controller for vehicle
JPH0450015A (en) Active suspension device for vehicle
JPH0534166B2 (en)
JPH0316281B2 (en)
JPS59227515A (en) Suspension of automobile
JPH0316286B2 (en)
CN104385874A (en) Resonant frequency self-tracking giant magnetostrictive vehicle suspension vibration reduction device
JPS6137511A (en) Shock absorber controlling device of vehicle
JPS61184113A (en) Shock absorber controller
JP3185566B2 (en) Suspension control device
JPS629047B2 (en)
CN204222577U (en) The ultra-magnetic telescopic vehicle suspension shock attenuation unit of resonant frequency autotracking
JP3180581B2 (en) Suspension control device
JPS5871210A (en) Shock absorber control of vehicle with ground clearance adjuster
JP2541346B2 (en) Active suspension system for vehicles
JPS6189110A (en) Control device for shock absorber
JPH0435204Y2 (en)
JPH0316285B2 (en)
JP2595787B2 (en) Active suspension system for vehicles
JPS61184114A (en) Controller for shock absorber
JPH0672129A (en) Suspension controller for vehicle

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term