JPH05341337A - Nonlinear optical material - Google Patents

Nonlinear optical material

Info

Publication number
JPH05341337A
JPH05341337A JP34673791A JP34673791A JPH05341337A JP H05341337 A JPH05341337 A JP H05341337A JP 34673791 A JP34673791 A JP 34673791A JP 34673791 A JP34673791 A JP 34673791A JP H05341337 A JPH05341337 A JP H05341337A
Authority
JP
Japan
Prior art keywords
group
substd
nonlinear optical
unsubstd
arom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34673791A
Other languages
Japanese (ja)
Inventor
Akiko Konishi
昭子 小西
Kaoru Teramura
薫 寺村
Masayuki Shiyoji
正幸 所司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP34673791A priority Critical patent/JPH05341337A/en
Publication of JPH05341337A publication Critical patent/JPH05341337A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the nonlinear optical material which exhibits a high nonlinear optical effect by constituting the material of the benzoxazole compd. expressed by a specific formula. CONSTITUTION:This nonlinear optical material consists of the benzoxazole compd. expressed by the formula. In the formula, R denotes a hydrogen atom, alkyl group, halogen atom, substd. or unsubstd. phenyl group or nitro group; Ar denotes a substd. or unsubstd. arom. group; n denotes 0, 1 or 2. In the formula, the arom. group includes polycyclic arom. groups, such as phenyl group, naphthalene, anthracene and pyrene; the substituents of the arom. groups include a substd. amino group, hydroxy group, substd. or unsubstd. alkoxy group, substd. or unsubstd. alkyl group, substd. or unsubstd. phenyl group and halogen atom, such as chlorine or bromine.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気光学素子、波長変
換素子、及び光スイッチング素子等に有用なベンゾオキ
ソゾール化合物からなる非線形光学材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-linear optical material comprising a benzooxozole compound useful for electro-optical elements, wavelength converting elements, optical switching elements and the like.

【0002】[0002]

【従来の技術】近年、非線形光学効果−強いレーザー光
を物質に入射したとき、その相互作用によって入射光と
異なった成分を持つ出射光が得られる現象−を有した材
料が注目を集めている。かかる材料は、一般に非線形光
学材料として知られており、例えば次のものなどに詳し
く記載されている。“Nonlinier Optic
al Properties of Organic
and Polymeric Materials”A
CS SYMPOSIUM SERIES 233,D
avid J.Williamms編(America
n Chemical Society,1983年
刊)、「有機非線形光学材料」加藤政雄、中西八郎監修
(シー・エム・シー、1983年刊)、「有機エレクト
ロニクス材料」谷口彬雄編集(サイエンスフォーラム社
1986年刊)。
2. Description of the Related Art In recent years, materials having a non-linear optical effect-a phenomenon in which when intense laser light is incident on a substance, emitted light having a component different from that of the incident light is obtained due to the interaction thereof-has attracted attention. .. Such materials are generally known as nonlinear optical materials and are described in detail in, for example, the following. "Nonlinier Optic
al Properties of Organic
and Polymeric Materials "A
CS SYMPOSIUM SERIES 233, D
avid J. Edited by Williams (America
n Chemical Society, 1983), "Organic Nonlinear Optical Materials" edited by Masao Kato, Hachiro Nakanishi (CMC, 1983), "Organic Electronics Materials" edited by Akio Taniguchi (Science Forum, 1986).

【0003】非線形光学材料は、第二次高調波発生(以
下、SHGという)、第三次高調波発生(以下、THG
という)などの波長変換や、光スイッチ、位相共役波発
生などの能動的光素子に用いられる光学材料であり、将
来の光情報処理分野において、中核的役割を担う材料と
期待されている。
Non-linear optical materials include second harmonic generation (hereinafter referred to as SHG) and third harmonic generation (hereinafter referred to as THG).
It is an optical material used in active optical devices such as wavelength conversion, optical switch, phase conjugate wave generation, etc., and is expected to play a central role in the future optical information processing field.

【0004】これまで、非線形光学材料としては、リン
酸二水素カリウム(KDP)、ニオブ酸リチウム(Li
NbO3)等の無機結晶が実用に供されており、また、
尿素、4−ニトロアニリン(p−NA)、2−メチル−
4−ニトロアニリン(MNA)等の有機結晶も知られて
いる。アイ・イー・イー・イー・スペクトラム(IEE
E Spectrum)June(1981年)第26
〜33頁の記載によれば、一般的に有機結晶は、無機結
晶にくらべ非線形光学効果が大きく、SHG及びTHG
等の係数が10〜100程度であり、光応答速度も10
00倍程度短いとされており、光損傷に対するしきい値
も大きいことが認められている。またSHGは、偶数次
の非線形光学効果の特徴として対称中心をもつ単結晶で
は発現しないことが知られている。
Hitherto, as non-linear optical materials, potassium dihydrogen phosphate (KDP) and lithium niobate (Li) have been used.
Inorganic crystals such as NbO 3 ) have been put to practical use.
Urea, 4-nitroaniline (p-NA), 2-methyl-
Organic crystals such as 4-nitroaniline (MNA) are also known. I / E / E Spectrum (IEE
E Spectrum) June (1981) No. 26
According to the description on page 33, an organic crystal generally has a larger nonlinear optical effect than an inorganic crystal, and SHG and THG
And the like, and the optical response speed is 10 as well.
It is considered to be about 00 times shorter, and it is recognized that the threshold value for optical damage is also large. Further, it is known that SHG does not appear in a single crystal having a symmetry center as a feature of the even-order nonlinear optical effect.

【0005】一般に非線形有機材料の場合は、分子1個
1個が非線形光学応答を示し、その分子超分極率:β
(molecurar hyperpolarizab
ility)の大きさに依存するが、4−ニトロアニリ
ン(p−NA)に代表されるように分子状態では高い二
次の非線形性能を示しても(すなわち大きなβを有して
いても)、結晶となったとき、分子配列に中心対称性が
あるため結晶状態ではまったく二次の非線形光学効果を
示さないものが多くみられる。また、このp−NAのオ
ルト位にメチル基を導入し、分子の性能(すなわち、β
の大きさ)を低下させずに結晶の対称性を崩すことに成
功したMNAは大きなSHGテンソルd11をもっている
が{B.F.Levine,et al,j.App
l.Phys.50,2523(1970)}、この成
分はSHGを効率よく取り出すための位相整合条件を有
効に利用するのは困難である。また、MNAは大きな単
結晶が得難くデバイスとして応用するためには問題点が
多い。
Generally, in the case of a nonlinear organic material, each molecule exhibits a nonlinear optical response, and its molecular hyperpolarizability: β
(Molecular hyperpolarizab
(depending on the size of the ionicity), even if a high quadratic nonlinear performance is exhibited in the molecular state as represented by 4-nitroaniline (p-NA) (that is, it has a large β), When crystallized, many molecules do not exhibit a quadratic nonlinear optical effect in the crystalline state because of the molecular symmetry. In addition, a methyl group was introduced into the ortho position of this p-NA to improve the molecular performance (ie β
Although the MNA that succeeded in breaking the crystal symmetry without decreasing the (size of B) has a large SHG tensor d 11 , {B. F. Levine, et al, j. App
l. Phys. 50, 2523 (1970)}, it is difficult to effectively use the phase matching condition for efficiently extracting SHG. Further, MNA is difficult to obtain a large single crystal, and there are many problems in applying it as a device.

【0006】この他、高分子中に高性能分子を分散し、
電解によってポーリングする(特開昭61−18694
2)等の方法も考えられているが必ずしもよい結果は得
られていない。
In addition, high-performance molecules are dispersed in a polymer,
Poling by electrolysis (Japanese Patent Laid-Open No. 61-18694)
Methods such as 2) have also been considered, but good results have not always been obtained.

【0007】一方、非線形有機材料の中で、光双安定な
ど光信号処理として期待されている三次の非線形光学効
果を示す材料の探索はさほどなされていない現状にあ
る。すなわち、三次の非線形光学性はすべての有機材料
が有する属性であるものの、光学素子として実用化の対
象と考えうる材料としては、ポリジアセチレン化合物が
あるに留まっている。
On the other hand, among the nonlinear organic materials, there is not much search for materials exhibiting the third-order nonlinear optical effect expected for optical signal processing such as optical bistable. That is, although the third-order nonlinear optical property is an attribute of all organic materials, polydiacetylene compounds are the only materials that can be considered for practical use as optical elements.

【0008】[0008]

【発明が解決しようとする課題】本発明はこうした事情
に鑑み、高い非線形光学効果を示す化合物からなる非線
形光学材料を提供することを目的とするものである。
SUMMARY OF THE INVENTION In view of such circumstances, it is an object of the present invention to provide a non-linear optical material made of a compound exhibiting a high non-linear optical effect.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記の課
題を解決するため従来より研究を重ねてきたが、特定の
ベンゾオキサゾール化合物を非線形光学材料として用い
ることが有効であることを見出し、本発明に至った。
Means for Solving the Problems The inventors of the present invention have conducted extensive research in order to solve the above problems, but have found that it is effective to use a specific benzoxazole compound as a nonlinear optical material. The present invention has been reached.

【0010】すなわち、本発明は、下記一般式(I)で
表されるベンゾオキサゾール化合物からなることを特徴
とする非線形光学材料である。
That is, the present invention is a non-linear optical material characterized by comprising a benzoxazole compound represented by the following general formula (I).

【0011】[0011]

【化2】 [Chemical 2]

【0012】(ただし、Rは水素原子、アルキル基、ハ
ロゲン原子、置換または無置換のフェニール基、あるい
はニトロ基、Arは置換または無置換の芳香族基、nは
0、1または2を示す。)本発明の上記一般式(I)に
おいて芳香族基としては、フェニール基、ナフタレン、
アントラセン、ピレンなどの多環芳香族を、芳香族基の
置換基としては、置換アミノ基、ヒドロキシ基、置換ま
たは無置換のアルコキシ基、置換または無置換のアルキ
ル基、置換または無置換のフェニール基、塩素或いは臭
素などのハロゲン原子などを挙げることができる。
(Wherein R represents a hydrogen atom, an alkyl group, a halogen atom, a substituted or unsubstituted phenyl group, or a nitro group, Ar represents a substituted or unsubstituted aromatic group, and n represents 0, 1 or 2. ) As the aromatic group in the above general formula (I) of the present invention, a phenyl group, naphthalene,
Polycyclic aromatic compounds such as anthracene and pyrene, the substituent of the aromatic group, a substituted amino group, a hydroxy group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted phenyl group And halogen atoms such as chlorine and bromine.

【0013】以下の表1に本発明の一般式(I)で表さ
れるベンゾオキサゾール化合物の具体例を示すが、本発
明の範囲はこれらのみに限定されるものではない。
Specific examples of the benzoxazole compound represented by formula (I) of the present invention are shown in Table 1 below, but the scope of the present invention is not limited to these.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】[0016]

【表3】 [Table 3]

【0017】[0017]

【表4】 [Table 4]

【0018】[0018]

【表5】 [Table 5]

【0019】[0019]

【表6】 [Table 6]

【0020】[0020]

【表7】 [Table 7]

【0021】[0021]

【表8】 [Table 8]

【0022】[0022]

【表9】 [Table 9]

【0023】[0023]

【表10】 [Table 10]

【0024】[0024]

【表11】 [Table 11]

【0025】[0025]

【表12】 [Table 12]

【0026】[0026]

【表13】 [Table 13]

【0027】[0027]

【表14】 [Table 14]

【0028】[0028]

【表15】 [Table 15]

【0029】[0029]

【表16】 [Table 16]

【0030】[0030]

【表17】 [Table 17]

【0031】[0031]

【表18】 [Table 18]

【0032】これら一般式(I)の化合物は一般に下記
一般式(II)のo−アミノフェノール化合物と一般式
(III)のカルボン酸化合物、あるいは一般式(IV)の
アルデヒド化合物を用いて、製造することができる。酸
性触媒としてはp−トルエンスルホン酸、ポリリン酸、
或いは硫酸などが使用され、必要に応じて溶媒が使用さ
れ、その溶媒としてはトルエン、キシレン、テトラヒド
ロフラン、塩化メチレン、1,2−ジクロロエタン、及
びエタノール等が使用される。なお、反応温度は室温か
ら150℃、好ましくは80から120℃である。な
お、一般式(II)の化合物と一般式(III)あるいは一
般式(IV)の化合物の割合は化学量論量でよい。
These compounds of the general formula (I) are generally prepared by using an o-aminophenol compound of the following general formula (II) and a carboxylic acid compound of the general formula (III) or an aldehyde compound of the general formula (IV). can do. As the acidic catalyst, p-toluenesulfonic acid, polyphosphoric acid,
Alternatively, sulfuric acid or the like is used, and a solvent is used if necessary, and as the solvent, toluene, xylene, tetrahydrofuran, methylene chloride, 1,2-dichloroethane, ethanol or the like is used. The reaction temperature is room temperature to 150 ° C, preferably 80 to 120 ° C. The ratio of the compound of general formula (II) to the compound of general formula (III) or general formula (IV) may be stoichiometric.

【0033】[0033]

【化3】 [Chemical 3]

【0034】Ar−(CH=CH)nCOOH (II
I) Ar−(CH=CH)n−CHO (IV)
Ar- (CH = CH) nCOOH (II
I) Ar- (CH = CH) n- CHO (IV)

【0035】[0035]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明はこれらの実施例に限定されるも
のではない。
The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to these examples.

【0036】実施例1 2−(p−ジメチルアミノベンゼン)ベンゾオキサゾー
ルの製造方法、p−ジメチルアミノベンズアルデヒド
4.5g(0.03mol)をエタノール150mlに
溶解させ、o−アミノフェノール3.3g(0.03m
ol)を加え、5時間還流させる。放冷した後、析出し
た結晶を濾別し、テトラヒドロフラン300mlに溶解
させ、ジシアノジクロロベンゾキノン6.7g(0.0
3mol)を加え、室温で撹拌しながら反応させる。反
応終了後この中に氷水200ml及びトルエン200m
lを加えてよく撹拌し、分離したトルエン層を水洗後、
無水硫酸マグネシウムで乾燥させる。トルエンを留去し
た残渣に対し、ジイソプロピルエーテルからの再結晶を
行い、純粋な目的物2.0gを得た。
Example 1 Method for producing 2- (p-dimethylaminobenzene) benzoxazole: 4.5 g (0.03 mol) of p-dimethylaminobenzaldehyde was dissolved in 150 ml of ethanol to obtain 3.3 g (0%) of o-aminophenol. .03m
ol) is added and the mixture is refluxed for 5 hours. After allowing to cool, the precipitated crystals were separated by filtration, dissolved in 300 ml of tetrahydrofuran, and 6.7 g (0.0%) of dicyanodichlorobenzoquinone.
(3 mol) is added, and the mixture is reacted at room temperature with stirring. After the reaction was completed, 200 ml of ice water and 200 m of toluene were added to this.
l was added and stirred well, and the separated toluene layer was washed with water,
Dry over anhydrous magnesium sulfate. The residue obtained by distilling off toluene was recrystallized from diisopropyl ether to obtain 2.0 g of a pure target product.

【0037】融点:177〜178℃ また、このものの赤外線吸収スペクトル図を図2に示
す。
Melting point: 177 to 178 ° C. The infrared absorption spectrum of this product is shown in FIG.

【0038】実施例2 2−(p−ジメチルアミノ)スチリルベンゾオキサゾー
ルの製造方法 実施例1と同様の方法で純粋な目的物を得た。
Example 2 Method for producing 2- (p-dimethylamino) styrylbenzoxazole A pure target product was obtained in the same manner as in Example 1.

【0039】以上のようにして得られた化合物の融点及
び元素分析結果を表2に示す。
Table 2 shows melting points and elemental analysis results of the compounds obtained as described above.

【0040】[0040]

【表19】 [Table 19]

【0041】[0041]

【使用例】前記化合物の非線形光学性能を測定した。[Example of use] The nonlinear optical performance of the compound was measured.

【0042】代表的な二次非線形光学効果である第二次
高調波発生(SHG)の測定をS.K.Kurtzと
T.T.PerryがJ.Appl.Phys.39,
3798(1968)に発表した方法により行なった。
この方法は測定したい化合物粉末に強いレーザー光を照
射し、発生するSHGの強度を基準材料に対して測定す
る方法であり、おおよその二次の非線形性能を見積る事
が出来る。
A second harmonic generation (SHG) measurement, which is a typical second-order nonlinear optical effect, is measured by S. K. Kurtz and T.M. T. Perry is J. Appl. Phys. 39,
3798 (1968).
This method is a method of irradiating the compound powder to be measured with a strong laser beam and measuring the intensity of the generated SHG with respect to the reference material, and it is possible to estimate the approximate second-order nonlinear performance.

【0043】本発明者らは、光源として、高出力のN
d:YAGレーザー(250mJ/パルス、パルス幅〜
20ns)を利用した。(Nd:YAGレーザーの発振
波長は1.064μmであり、この光をSHG活性な材
料に照射すると532nmの緑色のSHGが得られる)
石英ガラスに充填したサンプルからのSHGはレーザー
光進行方向にたいし、前方と後方の両側に散乱して観測
されるので、前方と後方の両側でSHG強度を測定し
た。その結果を表3に示す。この時の検知器は光電子増
倍管であり、赤外吸収フィルターでレーザー光をカット
し、干渉フィルターによって532nmのSHGのみ取
りだした。
As a light source, the present inventors have developed a high-power N
d: YAG laser (250 mJ / pulse, pulse width ~
20 ns) was used. (The oscillation wavelength of the Nd: YAG laser is 1.064 μm, and when this light is applied to the SHG active material, green SHG of 532 nm is obtained.)
Since the SHG from the sample filled in the quartz glass is scattered and observed in both the forward and backward directions with respect to the laser light traveling direction, the SHG intensity was measured in both the forward and backward directions. The results are shown in Table 3. The detector at this time was a photomultiplier tube, the infrared absorption filter cut the laser light, and the interference filter took out only SHG of 532 nm.

【0044】この時サンプルの粒径はふるいわけておら
ず、基準材料は平均粒径約100μmの尿素である。
At this time, the particle size of the sample was not sieved, and the reference material was urea having an average particle size of about 100 μm.

【0045】[0045]

【表20】 [Table 20]

【0046】(*ADP:リン酸2水素アンモニウム)
表3より明らかなように本発明の化合物は非線形光学材
料として有効であり、例えば本材料を単結晶化すること
で図1に示すようにSHG素子として使用するものであ
る。
(* ADP: ammonium dihydrogen phosphate)
As is clear from Table 3, the compound of the present invention is effective as a non-linear optical material, and for example, it is used as an SHG element as shown in FIG. 1 by single crystallizing this material.

【0047】[0047]

【発明の効果】以上説明したように、本発明のアゾ化合
物は新規な高性能非線形光学材料として有用なものであ
る。
As described above, the azo compound of the present invention is useful as a novel high performance nonlinear optical material.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の非線形光学材料を利用したSHG素子
の一例を模式的に示す図、
FIG. 1 is a diagram schematically showing an example of an SHG element using the nonlinear optical material of the present invention,

【図2】実施例1で合成された本発明の材料の赤外線吸
収スペクトル図、
2 is an infrared absorption spectrum diagram of the material of the present invention synthesized in Example 1, FIG.

【図3】実施例2で合成された本発明の材料赤外線吸収
スペクトル図である。
3 is an infrared absorption spectrum diagram of the material of the present invention synthesized in Example 2. FIG.

【符号の説明】[Explanation of symbols]

1 半導体レーザー 2 本発明の単結晶 1 semiconductor laser 2 single crystal of the present invention

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式(I)で表されるベンゾオキ
サゾール化合物からなることを特徴とする非線形光学材
料 【化1】 (ただし、Rは水素原子、アルキル基、ハロゲン原子、
置換または無置換のフェニール基、或いはニトロ基、 Arは置換または無置換の芳香族基、 nは0または1を示す。)
1. A non-linear optical material comprising a benzoxazole compound represented by the following general formula (I): (However, R is a hydrogen atom, an alkyl group, a halogen atom,
Substituted or unsubstituted phenyl group, or nitro group, Ar is a substituted or unsubstituted aromatic group, and n is 0 or 1. )
JP34673791A 1991-12-27 1991-12-27 Nonlinear optical material Pending JPH05341337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34673791A JPH05341337A (en) 1991-12-27 1991-12-27 Nonlinear optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34673791A JPH05341337A (en) 1991-12-27 1991-12-27 Nonlinear optical material

Publications (1)

Publication Number Publication Date
JPH05341337A true JPH05341337A (en) 1993-12-24

Family

ID=18385476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34673791A Pending JPH05341337A (en) 1991-12-27 1991-12-27 Nonlinear optical material

Country Status (1)

Country Link
JP (1) JPH05341337A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020096023A (en) * 2002-09-30 2002-12-28 건설화학공업(주) Light-emitting compound and display device adopting light-emitting compound as color-developing substance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020096023A (en) * 2002-09-30 2002-12-28 건설화학공업(주) Light-emitting compound and display device adopting light-emitting compound as color-developing substance

Similar Documents

Publication Publication Date Title
JP2700475B2 (en) Nonlinear optical materials and elements
JPH05341337A (en) Nonlinear optical material
JPH05341336A (en) Nonlinear optical material
JPH0532587A (en) New aromatic compound and nonlinear optical material
JPH04121717A (en) Novel organic nonlinear optical material and method for converting light wavelength by using this material
JPH05140065A (en) New azo compound and non-linear optical material
JPH0532606A (en) New aromatic compound and nonlinear optical material
JPH01185527A (en) Nonlinar optical material
JPH0678301B2 (en) Square lilium derivative and method for producing the same
JPH06118462A (en) Organic nonlinear optical material
JPH06128234A (en) Compound having asymmetric carbon atom and non-linear optical material composed of the compound
JP3383820B2 (en) Organic nonlinear optical material
JP2763224B2 (en) Organic nonlinear optical material
JP2539834B2 (en) Non-linear optical element
JPH01201630A (en) Nonlinear optical material
JP2783869B2 (en) Nonlinear optical element
JP2540584B2 (en) Second-order nonlinear optical material and nonlinear optical element using the same
JP2725935B2 (en) Organic nonlinear optical material
JP2725929B2 (en) Organic nonlinear optical material
JPH0386854A (en) Schiff base compound
JPH07225402A (en) Organic nonlinear optical material and optical functional element using the same
JPH02157254A (en) New schiff base compound and production thereof
JPH0337631A (en) Nonlinear optical material
JP2729673B2 (en) Novel organic nonlinear optical material and method of converting light wavelength using the same
JPH02188727A (en) Nonlinear optical material